mirror of https://github.com/axmolengine/axmol.git
280 lines
8.2 KiB
C++
280 lines
8.2 KiB
C++
/*
|
|
This source file is part of GIMPACT Library.
|
|
|
|
For the latest info, see http://gimpact.sourceforge.net/
|
|
|
|
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
|
|
email: projectileman@yahoo.com
|
|
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btGImpactShape.h"
|
|
#include "btGImpactMassUtil.h"
|
|
|
|
btGImpactMeshShapePart::btGImpactMeshShapePart(btStridingMeshInterface* meshInterface, int part)
|
|
{
|
|
// moved from .h to .cpp because of conditional compilation
|
|
// (The setting of BT_THREADSAFE may differ between various cpp files, so it is best to
|
|
// avoid using it in h files)
|
|
m_primitive_manager.m_meshInterface = meshInterface;
|
|
m_primitive_manager.m_part = part;
|
|
m_box_set.setPrimitiveManager(&m_primitive_manager);
|
|
#if BT_THREADSAFE
|
|
// If threadsafe is requested, this object uses a different lock/unlock
|
|
// model with the btStridingMeshInterface -- lock once when the object is constructed
|
|
// and unlock once in the destructor.
|
|
// The other way of locking and unlocking for each collision check in the narrowphase
|
|
// is not threadsafe. Note these are not thread-locks, they are calls to the meshInterface's
|
|
// getLockedReadOnlyVertexIndexBase virtual function, which by default just returns a couple of
|
|
// pointers. In theory a client could override the lock function to do all sorts of
|
|
// things like reading data from GPU memory, or decompressing data on the fly, but such things
|
|
// do not seem all that likely or useful, given the performance cost.
|
|
m_primitive_manager.lock();
|
|
#endif
|
|
}
|
|
|
|
btGImpactMeshShapePart::~btGImpactMeshShapePart()
|
|
{
|
|
// moved from .h to .cpp because of conditional compilation
|
|
#if BT_THREADSAFE
|
|
m_primitive_manager.unlock();
|
|
#endif
|
|
}
|
|
|
|
void btGImpactMeshShapePart::lockChildShapes() const
|
|
{
|
|
// moved from .h to .cpp because of conditional compilation
|
|
#if !BT_THREADSAFE
|
|
// called in the narrowphase -- not threadsafe!
|
|
void* dummy = (void*)(m_box_set.getPrimitiveManager());
|
|
TrimeshPrimitiveManager* dummymanager = static_cast<TrimeshPrimitiveManager*>(dummy);
|
|
dummymanager->lock();
|
|
#endif
|
|
}
|
|
|
|
void btGImpactMeshShapePart::unlockChildShapes() const
|
|
{
|
|
// moved from .h to .cpp because of conditional compilation
|
|
#if !BT_THREADSAFE
|
|
// called in the narrowphase -- not threadsafe!
|
|
void* dummy = (void*)(m_box_set.getPrimitiveManager());
|
|
TrimeshPrimitiveManager* dummymanager = static_cast<TrimeshPrimitiveManager*>(dummy);
|
|
dummymanager->unlock();
|
|
#endif
|
|
}
|
|
|
|
#define CALC_EXACT_INERTIA 1
|
|
|
|
void btGImpactCompoundShape::calculateLocalInertia(btScalar mass, btVector3& inertia) const
|
|
{
|
|
lockChildShapes();
|
|
#ifdef CALC_EXACT_INERTIA
|
|
inertia.setValue(0.f, 0.f, 0.f);
|
|
|
|
int i = this->getNumChildShapes();
|
|
btScalar shapemass = mass / btScalar(i);
|
|
|
|
while (i--)
|
|
{
|
|
btVector3 temp_inertia;
|
|
m_childShapes[i]->calculateLocalInertia(shapemass, temp_inertia);
|
|
if (childrenHasTransform())
|
|
{
|
|
inertia = gim_inertia_add_transformed(inertia, temp_inertia, m_childTransforms[i]);
|
|
}
|
|
else
|
|
{
|
|
inertia = gim_inertia_add_transformed(inertia, temp_inertia, btTransform::getIdentity());
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
// Calc box inertia
|
|
|
|
btScalar lx = m_localAABB.m_max[0] - m_localAABB.m_min[0];
|
|
btScalar ly = m_localAABB.m_max[1] - m_localAABB.m_min[1];
|
|
btScalar lz = m_localAABB.m_max[2] - m_localAABB.m_min[2];
|
|
const btScalar x2 = lx * lx;
|
|
const btScalar y2 = ly * ly;
|
|
const btScalar z2 = lz * lz;
|
|
const btScalar scaledmass = mass * btScalar(0.08333333);
|
|
|
|
inertia = scaledmass * (btVector3(y2 + z2, x2 + z2, x2 + y2));
|
|
|
|
#endif
|
|
unlockChildShapes();
|
|
}
|
|
|
|
void btGImpactMeshShapePart::calculateLocalInertia(btScalar mass, btVector3& inertia) const
|
|
{
|
|
lockChildShapes();
|
|
|
|
#ifdef CALC_EXACT_INERTIA
|
|
inertia.setValue(0.f, 0.f, 0.f);
|
|
|
|
int i = this->getVertexCount();
|
|
btScalar pointmass = mass / btScalar(i);
|
|
|
|
while (i--)
|
|
{
|
|
btVector3 pointintertia;
|
|
this->getVertex(i, pointintertia);
|
|
pointintertia = gim_get_point_inertia(pointintertia, pointmass);
|
|
inertia += pointintertia;
|
|
}
|
|
|
|
#else
|
|
|
|
// Calc box inertia
|
|
|
|
btScalar lx = m_localAABB.m_max[0] - m_localAABB.m_min[0];
|
|
btScalar ly = m_localAABB.m_max[1] - m_localAABB.m_min[1];
|
|
btScalar lz = m_localAABB.m_max[2] - m_localAABB.m_min[2];
|
|
const btScalar x2 = lx * lx;
|
|
const btScalar y2 = ly * ly;
|
|
const btScalar z2 = lz * lz;
|
|
const btScalar scaledmass = mass * btScalar(0.08333333);
|
|
|
|
inertia = scaledmass * (btVector3(y2 + z2, x2 + z2, x2 + y2));
|
|
|
|
#endif
|
|
|
|
unlockChildShapes();
|
|
}
|
|
|
|
void btGImpactMeshShape::calculateLocalInertia(btScalar mass, btVector3& inertia) const
|
|
{
|
|
#ifdef CALC_EXACT_INERTIA
|
|
inertia.setValue(0.f, 0.f, 0.f);
|
|
|
|
int i = this->getMeshPartCount();
|
|
btScalar partmass = mass / btScalar(i);
|
|
|
|
while (i--)
|
|
{
|
|
btVector3 partinertia;
|
|
getMeshPart(i)->calculateLocalInertia(partmass, partinertia);
|
|
inertia += partinertia;
|
|
}
|
|
|
|
#else
|
|
|
|
// Calc box inertia
|
|
|
|
btScalar lx = m_localAABB.m_max[0] - m_localAABB.m_min[0];
|
|
btScalar ly = m_localAABB.m_max[1] - m_localAABB.m_min[1];
|
|
btScalar lz = m_localAABB.m_max[2] - m_localAABB.m_min[2];
|
|
const btScalar x2 = lx * lx;
|
|
const btScalar y2 = ly * ly;
|
|
const btScalar z2 = lz * lz;
|
|
const btScalar scaledmass = mass * btScalar(0.08333333);
|
|
|
|
inertia = scaledmass * (btVector3(y2 + z2, x2 + z2, x2 + y2));
|
|
|
|
#endif
|
|
}
|
|
|
|
void btGImpactMeshShape::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btCollisionWorld::RayResultCallback& resultCallback) const
|
|
{
|
|
}
|
|
|
|
void btGImpactMeshShapePart::processAllTrianglesRay(btTriangleCallback* callback, const btVector3& rayFrom, const btVector3& rayTo) const
|
|
{
|
|
lockChildShapes();
|
|
|
|
btAlignedObjectArray<int> collided;
|
|
btVector3 rayDir(rayTo - rayFrom);
|
|
rayDir.normalize();
|
|
m_box_set.rayQuery(rayDir, rayFrom, collided);
|
|
|
|
if (collided.size() == 0)
|
|
{
|
|
unlockChildShapes();
|
|
return;
|
|
}
|
|
|
|
int part = (int)getPart();
|
|
btPrimitiveTriangle triangle;
|
|
int i = collided.size();
|
|
while (i--)
|
|
{
|
|
getPrimitiveTriangle(collided[i], triangle);
|
|
callback->processTriangle(triangle.m_vertices, part, collided[i]);
|
|
}
|
|
unlockChildShapes();
|
|
}
|
|
|
|
void btGImpactMeshShapePart::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
|
|
{
|
|
lockChildShapes();
|
|
btAABB box;
|
|
box.m_min = aabbMin;
|
|
box.m_max = aabbMax;
|
|
|
|
btAlignedObjectArray<int> collided;
|
|
m_box_set.boxQuery(box, collided);
|
|
|
|
if (collided.size() == 0)
|
|
{
|
|
unlockChildShapes();
|
|
return;
|
|
}
|
|
|
|
int part = (int)getPart();
|
|
btPrimitiveTriangle triangle;
|
|
int i = collided.size();
|
|
while (i--)
|
|
{
|
|
this->getPrimitiveTriangle(collided[i], triangle);
|
|
callback->processTriangle(triangle.m_vertices, part, collided[i]);
|
|
}
|
|
unlockChildShapes();
|
|
}
|
|
|
|
void btGImpactMeshShape::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
|
|
{
|
|
int i = m_mesh_parts.size();
|
|
while (i--)
|
|
{
|
|
m_mesh_parts[i]->processAllTriangles(callback, aabbMin, aabbMax);
|
|
}
|
|
}
|
|
|
|
void btGImpactMeshShape::processAllTrianglesRay(btTriangleCallback* callback, const btVector3& rayFrom, const btVector3& rayTo) const
|
|
{
|
|
int i = m_mesh_parts.size();
|
|
while (i--)
|
|
{
|
|
m_mesh_parts[i]->processAllTrianglesRay(callback, rayFrom, rayTo);
|
|
}
|
|
}
|
|
|
|
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
|
const char* btGImpactMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
|
|
{
|
|
btGImpactMeshShapeData* trimeshData = (btGImpactMeshShapeData*)dataBuffer;
|
|
|
|
btCollisionShape::serialize(&trimeshData->m_collisionShapeData, serializer);
|
|
|
|
m_meshInterface->serialize(&trimeshData->m_meshInterface, serializer);
|
|
|
|
trimeshData->m_collisionMargin = float(m_collisionMargin);
|
|
|
|
localScaling.serializeFloat(trimeshData->m_localScaling);
|
|
|
|
trimeshData->m_gimpactSubType = int(getGImpactShapeType());
|
|
|
|
return "btGImpactMeshShapeData";
|
|
}
|