mirror of https://github.com/axmolengine/axmol.git
1887 lines
55 KiB
C
1887 lines
55 KiB
C
/*
|
|
** IR assembler (SSA IR -> machine code).
|
|
** Copyright (C) 2005-2013 Mike Pall. See Copyright Notice in luajit.h
|
|
*/
|
|
|
|
#define lj_asm_c
|
|
#define LUA_CORE
|
|
|
|
#include "lj_obj.h"
|
|
|
|
#if LJ_HASJIT
|
|
|
|
#include "lj_gc.h"
|
|
#include "lj_str.h"
|
|
#include "lj_tab.h"
|
|
#include "lj_frame.h"
|
|
#if LJ_HASFFI
|
|
#include "lj_ctype.h"
|
|
#endif
|
|
#include "lj_ir.h"
|
|
#include "lj_jit.h"
|
|
#include "lj_ircall.h"
|
|
#include "lj_iropt.h"
|
|
#include "lj_mcode.h"
|
|
#include "lj_iropt.h"
|
|
#include "lj_trace.h"
|
|
#include "lj_snap.h"
|
|
#include "lj_asm.h"
|
|
#include "lj_dispatch.h"
|
|
#include "lj_vm.h"
|
|
#include "lj_target.h"
|
|
|
|
/* -- Assembler state and common macros ----------------------------------- */
|
|
|
|
/* Assembler state. */
|
|
typedef struct ASMState {
|
|
RegCost cost[RID_MAX]; /* Reference and blended allocation cost for regs. */
|
|
|
|
MCode *mcp; /* Current MCode pointer (grows down). */
|
|
MCode *mclim; /* Lower limit for MCode memory + red zone. */
|
|
|
|
IRIns *ir; /* Copy of pointer to IR instructions/constants. */
|
|
jit_State *J; /* JIT compiler state. */
|
|
|
|
#if LJ_TARGET_X86ORX64
|
|
x86ModRM mrm; /* Fused x86 address operand. */
|
|
#endif
|
|
|
|
RegSet freeset; /* Set of free registers. */
|
|
RegSet modset; /* Set of registers modified inside the loop. */
|
|
RegSet weakset; /* Set of weakly referenced registers. */
|
|
RegSet phiset; /* Set of PHI registers. */
|
|
|
|
uint32_t flags; /* Copy of JIT compiler flags. */
|
|
int loopinv; /* Loop branch inversion (0:no, 1:yes, 2:yes+CC_P). */
|
|
|
|
int32_t evenspill; /* Next even spill slot. */
|
|
int32_t oddspill; /* Next odd spill slot (or 0). */
|
|
|
|
IRRef curins; /* Reference of current instruction. */
|
|
IRRef stopins; /* Stop assembly before hitting this instruction. */
|
|
IRRef orignins; /* Original T->nins. */
|
|
|
|
IRRef snapref; /* Current snapshot is active after this reference. */
|
|
IRRef snaprename; /* Rename highwater mark for snapshot check. */
|
|
SnapNo snapno; /* Current snapshot number. */
|
|
SnapNo loopsnapno; /* Loop snapshot number. */
|
|
|
|
IRRef fuseref; /* Fusion limit (loopref, 0 or FUSE_DISABLED). */
|
|
IRRef sectref; /* Section base reference (loopref or 0). */
|
|
IRRef loopref; /* Reference of LOOP instruction (or 0). */
|
|
|
|
BCReg topslot; /* Number of slots for stack check (unless 0). */
|
|
int32_t gcsteps; /* Accumulated number of GC steps (per section). */
|
|
|
|
GCtrace *T; /* Trace to assemble. */
|
|
GCtrace *parent; /* Parent trace (or NULL). */
|
|
|
|
MCode *mcbot; /* Bottom of reserved MCode. */
|
|
MCode *mctop; /* Top of generated MCode. */
|
|
MCode *mcloop; /* Pointer to loop MCode (or NULL). */
|
|
MCode *invmcp; /* Points to invertible loop branch (or NULL). */
|
|
MCode *flagmcp; /* Pending opportunity to merge flag setting ins. */
|
|
MCode *realign; /* Realign loop if not NULL. */
|
|
|
|
#ifdef RID_NUM_KREF
|
|
int32_t krefk[RID_NUM_KREF];
|
|
#endif
|
|
IRRef1 phireg[RID_MAX]; /* PHI register references. */
|
|
uint16_t parentmap[LJ_MAX_JSLOTS]; /* Parent instruction to RegSP map. */
|
|
} ASMState;
|
|
|
|
#define IR(ref) (&as->ir[(ref)])
|
|
|
|
#define ASMREF_TMP1 REF_TRUE /* Temp. register. */
|
|
#define ASMREF_TMP2 REF_FALSE /* Temp. register. */
|
|
#define ASMREF_L REF_NIL /* Stores register for L. */
|
|
|
|
/* Check for variant to invariant references. */
|
|
#define iscrossref(as, ref) ((ref) < as->sectref)
|
|
|
|
/* Inhibit memory op fusion from variant to invariant references. */
|
|
#define FUSE_DISABLED (~(IRRef)0)
|
|
#define mayfuse(as, ref) ((ref) > as->fuseref)
|
|
#define neverfuse(as) (as->fuseref == FUSE_DISABLED)
|
|
#define canfuse(as, ir) (!neverfuse(as) && !irt_isphi((ir)->t))
|
|
#define opisfusableload(o) \
|
|
((o) == IR_ALOAD || (o) == IR_HLOAD || (o) == IR_ULOAD || \
|
|
(o) == IR_FLOAD || (o) == IR_XLOAD || (o) == IR_SLOAD || (o) == IR_VLOAD)
|
|
|
|
/* Sparse limit checks using a red zone before the actual limit. */
|
|
#define MCLIM_REDZONE 64
|
|
#define checkmclim(as) \
|
|
if (LJ_UNLIKELY(as->mcp < as->mclim)) asm_mclimit(as)
|
|
|
|
static LJ_NORET LJ_NOINLINE void asm_mclimit(ASMState *as)
|
|
{
|
|
lj_mcode_limiterr(as->J, (size_t)(as->mctop - as->mcp + 4*MCLIM_REDZONE));
|
|
}
|
|
|
|
#ifdef RID_NUM_KREF
|
|
#define ra_iskref(ref) ((ref) < RID_NUM_KREF)
|
|
#define ra_krefreg(ref) ((Reg)(RID_MIN_KREF + (Reg)(ref)))
|
|
#define ra_krefk(as, ref) (as->krefk[(ref)])
|
|
|
|
static LJ_AINLINE void ra_setkref(ASMState *as, Reg r, int32_t k)
|
|
{
|
|
IRRef ref = (IRRef)(r - RID_MIN_KREF);
|
|
as->krefk[ref] = k;
|
|
as->cost[r] = REGCOST(ref, ref);
|
|
}
|
|
|
|
#else
|
|
#define ra_iskref(ref) 0
|
|
#define ra_krefreg(ref) RID_MIN_GPR
|
|
#define ra_krefk(as, ref) 0
|
|
#endif
|
|
|
|
/* Arch-specific field offsets. */
|
|
static const uint8_t field_ofs[IRFL__MAX+1] = {
|
|
#define FLOFS(name, ofs) (uint8_t)(ofs),
|
|
IRFLDEF(FLOFS)
|
|
#undef FLOFS
|
|
0
|
|
};
|
|
|
|
/* -- Target-specific instruction emitter --------------------------------- */
|
|
|
|
#if LJ_TARGET_X86ORX64
|
|
#include "lj_emit_x86.h"
|
|
#elif LJ_TARGET_ARM
|
|
#include "lj_emit_arm.h"
|
|
#elif LJ_TARGET_PPC
|
|
#include "lj_emit_ppc.h"
|
|
#elif LJ_TARGET_MIPS
|
|
#include "lj_emit_mips.h"
|
|
#else
|
|
#error "Missing instruction emitter for target CPU"
|
|
#endif
|
|
|
|
/* -- Register allocator debugging ---------------------------------------- */
|
|
|
|
/* #define LUAJIT_DEBUG_RA */
|
|
|
|
#ifdef LUAJIT_DEBUG_RA
|
|
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
|
|
#define RIDNAME(name) #name,
|
|
static const char *const ra_regname[] = {
|
|
GPRDEF(RIDNAME)
|
|
FPRDEF(RIDNAME)
|
|
VRIDDEF(RIDNAME)
|
|
NULL
|
|
};
|
|
#undef RIDNAME
|
|
|
|
static char ra_dbg_buf[65536];
|
|
static char *ra_dbg_p;
|
|
static char *ra_dbg_merge;
|
|
static MCode *ra_dbg_mcp;
|
|
|
|
static void ra_dstart(void)
|
|
{
|
|
ra_dbg_p = ra_dbg_buf;
|
|
ra_dbg_merge = NULL;
|
|
ra_dbg_mcp = NULL;
|
|
}
|
|
|
|
static void ra_dflush(void)
|
|
{
|
|
fwrite(ra_dbg_buf, 1, (size_t)(ra_dbg_p-ra_dbg_buf), stdout);
|
|
ra_dstart();
|
|
}
|
|
|
|
static void ra_dprintf(ASMState *as, const char *fmt, ...)
|
|
{
|
|
char *p;
|
|
va_list argp;
|
|
va_start(argp, fmt);
|
|
p = ra_dbg_mcp == as->mcp ? ra_dbg_merge : ra_dbg_p;
|
|
ra_dbg_mcp = NULL;
|
|
p += sprintf(p, "%08x \e[36m%04d ", (uintptr_t)as->mcp, as->curins-REF_BIAS);
|
|
for (;;) {
|
|
const char *e = strchr(fmt, '$');
|
|
if (e == NULL) break;
|
|
memcpy(p, fmt, (size_t)(e-fmt));
|
|
p += e-fmt;
|
|
if (e[1] == 'r') {
|
|
Reg r = va_arg(argp, Reg) & RID_MASK;
|
|
if (r <= RID_MAX) {
|
|
const char *q;
|
|
for (q = ra_regname[r]; *q; q++)
|
|
*p++ = *q >= 'A' && *q <= 'Z' ? *q + 0x20 : *q;
|
|
} else {
|
|
*p++ = '?';
|
|
lua_assert(0);
|
|
}
|
|
} else if (e[1] == 'f' || e[1] == 'i') {
|
|
IRRef ref;
|
|
if (e[1] == 'f')
|
|
ref = va_arg(argp, IRRef);
|
|
else
|
|
ref = va_arg(argp, IRIns *) - as->ir;
|
|
if (ref >= REF_BIAS)
|
|
p += sprintf(p, "%04d", ref - REF_BIAS);
|
|
else
|
|
p += sprintf(p, "K%03d", REF_BIAS - ref);
|
|
} else if (e[1] == 's') {
|
|
uint32_t slot = va_arg(argp, uint32_t);
|
|
p += sprintf(p, "[sp+0x%x]", sps_scale(slot));
|
|
} else if (e[1] == 'x') {
|
|
p += sprintf(p, "%08x", va_arg(argp, int32_t));
|
|
} else {
|
|
lua_assert(0);
|
|
}
|
|
fmt = e+2;
|
|
}
|
|
va_end(argp);
|
|
while (*fmt)
|
|
*p++ = *fmt++;
|
|
*p++ = '\e'; *p++ = '['; *p++ = 'm'; *p++ = '\n';
|
|
if (p > ra_dbg_buf+sizeof(ra_dbg_buf)-256) {
|
|
fwrite(ra_dbg_buf, 1, (size_t)(p-ra_dbg_buf), stdout);
|
|
p = ra_dbg_buf;
|
|
}
|
|
ra_dbg_p = p;
|
|
}
|
|
|
|
#define RA_DBG_START() ra_dstart()
|
|
#define RA_DBG_FLUSH() ra_dflush()
|
|
#define RA_DBG_REF() \
|
|
do { char *_p = ra_dbg_p; ra_dprintf(as, ""); \
|
|
ra_dbg_merge = _p; ra_dbg_mcp = as->mcp; } while (0)
|
|
#define RA_DBGX(x) ra_dprintf x
|
|
|
|
#else
|
|
#define RA_DBG_START() ((void)0)
|
|
#define RA_DBG_FLUSH() ((void)0)
|
|
#define RA_DBG_REF() ((void)0)
|
|
#define RA_DBGX(x) ((void)0)
|
|
#endif
|
|
|
|
/* -- Register allocator -------------------------------------------------- */
|
|
|
|
#define ra_free(as, r) rset_set(as->freeset, (r))
|
|
#define ra_modified(as, r) rset_set(as->modset, (r))
|
|
#define ra_weak(as, r) rset_set(as->weakset, (r))
|
|
#define ra_noweak(as, r) rset_clear(as->weakset, (r))
|
|
|
|
#define ra_used(ir) (ra_hasreg((ir)->r) || ra_hasspill((ir)->s))
|
|
|
|
/* Setup register allocator. */
|
|
static void ra_setup(ASMState *as)
|
|
{
|
|
Reg r;
|
|
/* Initially all regs (except the stack pointer) are free for use. */
|
|
as->freeset = RSET_INIT;
|
|
as->modset = RSET_EMPTY;
|
|
as->weakset = RSET_EMPTY;
|
|
as->phiset = RSET_EMPTY;
|
|
memset(as->phireg, 0, sizeof(as->phireg));
|
|
for (r = RID_MIN_GPR; r < RID_MAX; r++)
|
|
as->cost[r] = REGCOST(~0u, 0u);
|
|
}
|
|
|
|
/* Rematerialize constants. */
|
|
static Reg ra_rematk(ASMState *as, IRRef ref)
|
|
{
|
|
IRIns *ir;
|
|
Reg r;
|
|
if (ra_iskref(ref)) {
|
|
r = ra_krefreg(ref);
|
|
lua_assert(!rset_test(as->freeset, r));
|
|
ra_free(as, r);
|
|
ra_modified(as, r);
|
|
emit_loadi(as, r, ra_krefk(as, ref));
|
|
return r;
|
|
}
|
|
ir = IR(ref);
|
|
r = ir->r;
|
|
lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s));
|
|
ra_free(as, r);
|
|
ra_modified(as, r);
|
|
ir->r = RID_INIT; /* Do not keep any hint. */
|
|
RA_DBGX((as, "remat $i $r", ir, r));
|
|
#if !LJ_SOFTFP
|
|
if (ir->o == IR_KNUM) {
|
|
emit_loadn(as, r, ir_knum(ir));
|
|
} else
|
|
#endif
|
|
if (emit_canremat(REF_BASE) && ir->o == IR_BASE) {
|
|
ra_sethint(ir->r, RID_BASE); /* Restore BASE register hint. */
|
|
emit_getgl(as, r, jit_base);
|
|
} else if (emit_canremat(ASMREF_L) && ir->o == IR_KPRI) {
|
|
lua_assert(irt_isnil(ir->t)); /* REF_NIL stores ASMREF_L register. */
|
|
emit_getgl(as, r, jit_L);
|
|
#if LJ_64
|
|
} else if (ir->o == IR_KINT64) {
|
|
emit_loadu64(as, r, ir_kint64(ir)->u64);
|
|
#endif
|
|
} else {
|
|
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
|
|
ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL);
|
|
emit_loadi(as, r, ir->i);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/* Force a spill. Allocate a new spill slot if needed. */
|
|
static int32_t ra_spill(ASMState *as, IRIns *ir)
|
|
{
|
|
int32_t slot = ir->s;
|
|
if (!ra_hasspill(slot)) {
|
|
if (irt_is64(ir->t)) {
|
|
slot = as->evenspill;
|
|
as->evenspill += 2;
|
|
} else if (as->oddspill) {
|
|
slot = as->oddspill;
|
|
as->oddspill = 0;
|
|
} else {
|
|
slot = as->evenspill;
|
|
as->oddspill = slot+1;
|
|
as->evenspill += 2;
|
|
}
|
|
if (as->evenspill > 256)
|
|
lj_trace_err(as->J, LJ_TRERR_SPILLOV);
|
|
ir->s = (uint8_t)slot;
|
|
}
|
|
return sps_scale(slot);
|
|
}
|
|
|
|
/* Release the temporarily allocated register in ASMREF_TMP1/ASMREF_TMP2. */
|
|
static Reg ra_releasetmp(ASMState *as, IRRef ref)
|
|
{
|
|
IRIns *ir = IR(ref);
|
|
Reg r = ir->r;
|
|
lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s));
|
|
ra_free(as, r);
|
|
ra_modified(as, r);
|
|
ir->r = RID_INIT;
|
|
return r;
|
|
}
|
|
|
|
/* Restore a register (marked as free). Rematerialize or force a spill. */
|
|
static Reg ra_restore(ASMState *as, IRRef ref)
|
|
{
|
|
if (emit_canremat(ref)) {
|
|
return ra_rematk(as, ref);
|
|
} else {
|
|
IRIns *ir = IR(ref);
|
|
int32_t ofs = ra_spill(as, ir); /* Force a spill slot. */
|
|
Reg r = ir->r;
|
|
lua_assert(ra_hasreg(r));
|
|
ra_sethint(ir->r, r); /* Keep hint. */
|
|
ra_free(as, r);
|
|
if (!rset_test(as->weakset, r)) { /* Only restore non-weak references. */
|
|
ra_modified(as, r);
|
|
RA_DBGX((as, "restore $i $r", ir, r));
|
|
emit_spload(as, ir, r, ofs);
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
/* Save a register to a spill slot. */
|
|
static void ra_save(ASMState *as, IRIns *ir, Reg r)
|
|
{
|
|
RA_DBGX((as, "save $i $r", ir, r));
|
|
emit_spstore(as, ir, r, sps_scale(ir->s));
|
|
}
|
|
|
|
#define MINCOST(name) \
|
|
if (rset_test(RSET_ALL, RID_##name) && \
|
|
LJ_LIKELY(allow&RID2RSET(RID_##name)) && as->cost[RID_##name] < cost) \
|
|
cost = as->cost[RID_##name];
|
|
|
|
/* Evict the register with the lowest cost, forcing a restore. */
|
|
static Reg ra_evict(ASMState *as, RegSet allow)
|
|
{
|
|
IRRef ref;
|
|
RegCost cost = ~(RegCost)0;
|
|
lua_assert(allow != RSET_EMPTY);
|
|
if (RID_NUM_FPR == 0 || allow < RID2RSET(RID_MAX_GPR)) {
|
|
GPRDEF(MINCOST)
|
|
} else {
|
|
FPRDEF(MINCOST)
|
|
}
|
|
ref = regcost_ref(cost);
|
|
lua_assert(ra_iskref(ref) || (ref >= as->T->nk && ref < as->T->nins));
|
|
/* Preferably pick any weak ref instead of a non-weak, non-const ref. */
|
|
if (!irref_isk(ref) && (as->weakset & allow)) {
|
|
IRIns *ir = IR(ref);
|
|
if (!rset_test(as->weakset, ir->r))
|
|
ref = regcost_ref(as->cost[rset_pickbot((as->weakset & allow))]);
|
|
}
|
|
return ra_restore(as, ref);
|
|
}
|
|
|
|
/* Pick any register (marked as free). Evict on-demand. */
|
|
static Reg ra_pick(ASMState *as, RegSet allow)
|
|
{
|
|
RegSet pick = as->freeset & allow;
|
|
if (!pick)
|
|
return ra_evict(as, allow);
|
|
else
|
|
return rset_picktop(pick);
|
|
}
|
|
|
|
/* Get a scratch register (marked as free). */
|
|
static Reg ra_scratch(ASMState *as, RegSet allow)
|
|
{
|
|
Reg r = ra_pick(as, allow);
|
|
ra_modified(as, r);
|
|
RA_DBGX((as, "scratch $r", r));
|
|
return r;
|
|
}
|
|
|
|
/* Evict all registers from a set (if not free). */
|
|
static void ra_evictset(ASMState *as, RegSet drop)
|
|
{
|
|
RegSet work;
|
|
as->modset |= drop;
|
|
#if !LJ_SOFTFP
|
|
work = (drop & ~as->freeset) & RSET_FPR;
|
|
while (work) {
|
|
Reg r = rset_pickbot(work);
|
|
ra_restore(as, regcost_ref(as->cost[r]));
|
|
rset_clear(work, r);
|
|
checkmclim(as);
|
|
}
|
|
#endif
|
|
work = (drop & ~as->freeset);
|
|
while (work) {
|
|
Reg r = rset_pickbot(work);
|
|
ra_restore(as, regcost_ref(as->cost[r]));
|
|
rset_clear(work, r);
|
|
checkmclim(as);
|
|
}
|
|
}
|
|
|
|
/* Evict (rematerialize) all registers allocated to constants. */
|
|
static void ra_evictk(ASMState *as)
|
|
{
|
|
RegSet work;
|
|
#if !LJ_SOFTFP
|
|
work = ~as->freeset & RSET_FPR;
|
|
while (work) {
|
|
Reg r = rset_pickbot(work);
|
|
IRRef ref = regcost_ref(as->cost[r]);
|
|
if (emit_canremat(ref) && irref_isk(ref)) {
|
|
ra_rematk(as, ref);
|
|
checkmclim(as);
|
|
}
|
|
rset_clear(work, r);
|
|
}
|
|
#endif
|
|
work = ~as->freeset & RSET_GPR;
|
|
while (work) {
|
|
Reg r = rset_pickbot(work);
|
|
IRRef ref = regcost_ref(as->cost[r]);
|
|
if (emit_canremat(ref) && irref_isk(ref)) {
|
|
ra_rematk(as, ref);
|
|
checkmclim(as);
|
|
}
|
|
rset_clear(work, r);
|
|
}
|
|
}
|
|
|
|
#ifdef RID_NUM_KREF
|
|
/* Allocate a register for a constant. */
|
|
static Reg ra_allock(ASMState *as, int32_t k, RegSet allow)
|
|
{
|
|
/* First try to find a register which already holds the same constant. */
|
|
RegSet pick, work = ~as->freeset & RSET_GPR;
|
|
Reg r;
|
|
while (work) {
|
|
IRRef ref;
|
|
r = rset_pickbot(work);
|
|
ref = regcost_ref(as->cost[r]);
|
|
if (ref < ASMREF_L &&
|
|
k == (ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i))
|
|
return r;
|
|
rset_clear(work, r);
|
|
}
|
|
pick = as->freeset & allow;
|
|
if (pick) {
|
|
/* Constants should preferably get unmodified registers. */
|
|
if ((pick & ~as->modset))
|
|
pick &= ~as->modset;
|
|
r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */
|
|
} else {
|
|
r = ra_evict(as, allow);
|
|
}
|
|
RA_DBGX((as, "allock $x $r", k, r));
|
|
ra_setkref(as, r, k);
|
|
rset_clear(as->freeset, r);
|
|
ra_noweak(as, r);
|
|
return r;
|
|
}
|
|
|
|
/* Allocate a specific register for a constant. */
|
|
static void ra_allockreg(ASMState *as, int32_t k, Reg r)
|
|
{
|
|
Reg kr = ra_allock(as, k, RID2RSET(r));
|
|
if (kr != r) {
|
|
IRIns irdummy;
|
|
irdummy.t.irt = IRT_INT;
|
|
ra_scratch(as, RID2RSET(r));
|
|
emit_movrr(as, &irdummy, r, kr);
|
|
}
|
|
}
|
|
#else
|
|
#define ra_allockreg(as, k, r) emit_loadi(as, (r), (k))
|
|
#endif
|
|
|
|
/* Allocate a register for ref from the allowed set of registers.
|
|
** Note: this function assumes the ref does NOT have a register yet!
|
|
** Picks an optimal register, sets the cost and marks the register as non-free.
|
|
*/
|
|
static Reg ra_allocref(ASMState *as, IRRef ref, RegSet allow)
|
|
{
|
|
IRIns *ir = IR(ref);
|
|
RegSet pick = as->freeset & allow;
|
|
Reg r;
|
|
lua_assert(ra_noreg(ir->r));
|
|
if (pick) {
|
|
/* First check register hint from propagation or PHI. */
|
|
if (ra_hashint(ir->r)) {
|
|
r = ra_gethint(ir->r);
|
|
if (rset_test(pick, r)) /* Use hint register if possible. */
|
|
goto found;
|
|
/* Rematerialization is cheaper than missing a hint. */
|
|
if (rset_test(allow, r) && emit_canremat(regcost_ref(as->cost[r]))) {
|
|
ra_rematk(as, regcost_ref(as->cost[r]));
|
|
goto found;
|
|
}
|
|
RA_DBGX((as, "hintmiss $f $r", ref, r));
|
|
}
|
|
/* Invariants should preferably get unmodified registers. */
|
|
if (ref < as->loopref && !irt_isphi(ir->t)) {
|
|
if ((pick & ~as->modset))
|
|
pick &= ~as->modset;
|
|
r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */
|
|
} else {
|
|
/* We've got plenty of regs, so get callee-save regs if possible. */
|
|
if (RID_NUM_GPR > 8 && (pick & ~RSET_SCRATCH))
|
|
pick &= ~RSET_SCRATCH;
|
|
r = rset_picktop(pick);
|
|
}
|
|
} else {
|
|
r = ra_evict(as, allow);
|
|
}
|
|
found:
|
|
RA_DBGX((as, "alloc $f $r", ref, r));
|
|
ir->r = (uint8_t)r;
|
|
rset_clear(as->freeset, r);
|
|
ra_noweak(as, r);
|
|
as->cost[r] = REGCOST_REF_T(ref, irt_t(ir->t));
|
|
return r;
|
|
}
|
|
|
|
/* Allocate a register on-demand. */
|
|
static Reg ra_alloc1(ASMState *as, IRRef ref, RegSet allow)
|
|
{
|
|
Reg r = IR(ref)->r;
|
|
/* Note: allow is ignored if the register is already allocated. */
|
|
if (ra_noreg(r)) r = ra_allocref(as, ref, allow);
|
|
ra_noweak(as, r);
|
|
return r;
|
|
}
|
|
|
|
/* Rename register allocation and emit move. */
|
|
static void ra_rename(ASMState *as, Reg down, Reg up)
|
|
{
|
|
IRRef ren, ref = regcost_ref(as->cost[up] = as->cost[down]);
|
|
IRIns *ir = IR(ref);
|
|
ir->r = (uint8_t)up;
|
|
as->cost[down] = 0;
|
|
lua_assert((down < RID_MAX_GPR) == (up < RID_MAX_GPR));
|
|
lua_assert(!rset_test(as->freeset, down) && rset_test(as->freeset, up));
|
|
ra_free(as, down); /* 'down' is free ... */
|
|
ra_modified(as, down);
|
|
rset_clear(as->freeset, up); /* ... and 'up' is now allocated. */
|
|
ra_noweak(as, up);
|
|
RA_DBGX((as, "rename $f $r $r", regcost_ref(as->cost[up]), down, up));
|
|
emit_movrr(as, ir, down, up); /* Backwards codegen needs inverse move. */
|
|
if (!ra_hasspill(IR(ref)->s)) { /* Add the rename to the IR. */
|
|
lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), ref, as->snapno);
|
|
ren = tref_ref(lj_ir_emit(as->J));
|
|
as->ir = as->T->ir; /* The IR may have been reallocated. */
|
|
IR(ren)->r = (uint8_t)down;
|
|
IR(ren)->s = SPS_NONE;
|
|
}
|
|
}
|
|
|
|
/* Pick a destination register (marked as free).
|
|
** Caveat: allow is ignored if there's already a destination register.
|
|
** Use ra_destreg() to get a specific register.
|
|
*/
|
|
static Reg ra_dest(ASMState *as, IRIns *ir, RegSet allow)
|
|
{
|
|
Reg dest = ir->r;
|
|
if (ra_hasreg(dest)) {
|
|
ra_free(as, dest);
|
|
ra_modified(as, dest);
|
|
} else {
|
|
if (ra_hashint(dest) && rset_test((as->freeset&allow), ra_gethint(dest))) {
|
|
dest = ra_gethint(dest);
|
|
ra_modified(as, dest);
|
|
RA_DBGX((as, "dest $r", dest));
|
|
} else {
|
|
dest = ra_scratch(as, allow);
|
|
}
|
|
ir->r = dest;
|
|
}
|
|
if (LJ_UNLIKELY(ra_hasspill(ir->s))) ra_save(as, ir, dest);
|
|
return dest;
|
|
}
|
|
|
|
/* Force a specific destination register (marked as free). */
|
|
static void ra_destreg(ASMState *as, IRIns *ir, Reg r)
|
|
{
|
|
Reg dest = ra_dest(as, ir, RID2RSET(r));
|
|
if (dest != r) {
|
|
lua_assert(rset_test(as->freeset, r));
|
|
ra_modified(as, r);
|
|
emit_movrr(as, ir, dest, r);
|
|
}
|
|
}
|
|
|
|
#if LJ_TARGET_X86ORX64
|
|
/* Propagate dest register to left reference. Emit moves as needed.
|
|
** This is a required fixup step for all 2-operand machine instructions.
|
|
*/
|
|
static void ra_left(ASMState *as, Reg dest, IRRef lref)
|
|
{
|
|
IRIns *ir = IR(lref);
|
|
Reg left = ir->r;
|
|
if (ra_noreg(left)) {
|
|
if (irref_isk(lref)) {
|
|
if (ir->o == IR_KNUM) {
|
|
cTValue *tv = ir_knum(ir);
|
|
/* FP remat needs a load except for +0. Still better than eviction. */
|
|
if (tvispzero(tv) || !(as->freeset & RSET_FPR)) {
|
|
emit_loadn(as, dest, tv);
|
|
return;
|
|
}
|
|
#if LJ_64
|
|
} else if (ir->o == IR_KINT64) {
|
|
emit_loadu64(as, dest, ir_kint64(ir)->u64);
|
|
return;
|
|
#endif
|
|
} else {
|
|
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
|
|
ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL);
|
|
emit_loadi(as, dest, ir->i);
|
|
return;
|
|
}
|
|
}
|
|
if (!ra_hashint(left) && !iscrossref(as, lref))
|
|
ra_sethint(ir->r, dest); /* Propagate register hint. */
|
|
left = ra_allocref(as, lref, dest < RID_MAX_GPR ? RSET_GPR : RSET_FPR);
|
|
}
|
|
ra_noweak(as, left);
|
|
/* Move needed for true 3-operand instruction: y=a+b ==> y=a; y+=b. */
|
|
if (dest != left) {
|
|
/* Use register renaming if dest is the PHI reg. */
|
|
if (irt_isphi(ir->t) && as->phireg[dest] == lref) {
|
|
ra_modified(as, left);
|
|
ra_rename(as, left, dest);
|
|
} else {
|
|
emit_movrr(as, ir, dest, left);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
/* Similar to ra_left, except we override any hints. */
|
|
static void ra_leftov(ASMState *as, Reg dest, IRRef lref)
|
|
{
|
|
IRIns *ir = IR(lref);
|
|
Reg left = ir->r;
|
|
if (ra_noreg(left)) {
|
|
ra_sethint(ir->r, dest); /* Propagate register hint. */
|
|
left = ra_allocref(as, lref,
|
|
(LJ_SOFTFP || dest < RID_MAX_GPR) ? RSET_GPR : RSET_FPR);
|
|
}
|
|
ra_noweak(as, left);
|
|
if (dest != left) {
|
|
/* Use register renaming if dest is the PHI reg. */
|
|
if (irt_isphi(ir->t) && as->phireg[dest] == lref) {
|
|
ra_modified(as, left);
|
|
ra_rename(as, left, dest);
|
|
} else {
|
|
emit_movrr(as, ir, dest, left);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !LJ_64
|
|
/* Force a RID_RETLO/RID_RETHI destination register pair (marked as free). */
|
|
static void ra_destpair(ASMState *as, IRIns *ir)
|
|
{
|
|
Reg destlo = ir->r, desthi = (ir+1)->r;
|
|
/* First spill unrelated refs blocking the destination registers. */
|
|
if (!rset_test(as->freeset, RID_RETLO) &&
|
|
destlo != RID_RETLO && desthi != RID_RETLO)
|
|
ra_restore(as, regcost_ref(as->cost[RID_RETLO]));
|
|
if (!rset_test(as->freeset, RID_RETHI) &&
|
|
destlo != RID_RETHI && desthi != RID_RETHI)
|
|
ra_restore(as, regcost_ref(as->cost[RID_RETHI]));
|
|
/* Next free the destination registers (if any). */
|
|
if (ra_hasreg(destlo)) {
|
|
ra_free(as, destlo);
|
|
ra_modified(as, destlo);
|
|
} else {
|
|
destlo = RID_RETLO;
|
|
}
|
|
if (ra_hasreg(desthi)) {
|
|
ra_free(as, desthi);
|
|
ra_modified(as, desthi);
|
|
} else {
|
|
desthi = RID_RETHI;
|
|
}
|
|
/* Check for conflicts and shuffle the registers as needed. */
|
|
if (destlo == RID_RETHI) {
|
|
if (desthi == RID_RETLO) {
|
|
#if LJ_TARGET_X86
|
|
*--as->mcp = XI_XCHGa + RID_RETHI;
|
|
#else
|
|
emit_movrr(as, ir, RID_RETHI, RID_TMP);
|
|
emit_movrr(as, ir, RID_RETLO, RID_RETHI);
|
|
emit_movrr(as, ir, RID_TMP, RID_RETLO);
|
|
#endif
|
|
} else {
|
|
emit_movrr(as, ir, RID_RETHI, RID_RETLO);
|
|
if (desthi != RID_RETHI) emit_movrr(as, ir, desthi, RID_RETHI);
|
|
}
|
|
} else if (desthi == RID_RETLO) {
|
|
emit_movrr(as, ir, RID_RETLO, RID_RETHI);
|
|
if (destlo != RID_RETLO) emit_movrr(as, ir, destlo, RID_RETLO);
|
|
} else {
|
|
if (desthi != RID_RETHI) emit_movrr(as, ir, desthi, RID_RETHI);
|
|
if (destlo != RID_RETLO) emit_movrr(as, ir, destlo, RID_RETLO);
|
|
}
|
|
/* Restore spill slots (if any). */
|
|
if (ra_hasspill((ir+1)->s)) ra_save(as, ir+1, RID_RETHI);
|
|
if (ra_hasspill(ir->s)) ra_save(as, ir, RID_RETLO);
|
|
}
|
|
#endif
|
|
|
|
/* -- Snapshot handling --------- ----------------------------------------- */
|
|
|
|
/* Can we rematerialize a KNUM instead of forcing a spill? */
|
|
static int asm_snap_canremat(ASMState *as)
|
|
{
|
|
Reg r;
|
|
for (r = RID_MIN_FPR; r < RID_MAX_FPR; r++)
|
|
if (irref_isk(regcost_ref(as->cost[r])))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Check whether a sunk store corresponds to an allocation. */
|
|
static int asm_sunk_store(ASMState *as, IRIns *ira, IRIns *irs)
|
|
{
|
|
if (irs->s == 255) {
|
|
if (irs->o == IR_ASTORE || irs->o == IR_HSTORE ||
|
|
irs->o == IR_FSTORE || irs->o == IR_XSTORE) {
|
|
IRIns *irk = IR(irs->op1);
|
|
if (irk->o == IR_AREF || irk->o == IR_HREFK)
|
|
irk = IR(irk->op1);
|
|
return (IR(irk->op1) == ira);
|
|
}
|
|
return 0;
|
|
} else {
|
|
return (ira + irs->s == irs); /* Quick check. */
|
|
}
|
|
}
|
|
|
|
/* Allocate register or spill slot for a ref that escapes to a snapshot. */
|
|
static void asm_snap_alloc1(ASMState *as, IRRef ref)
|
|
{
|
|
IRIns *ir = IR(ref);
|
|
if (!irref_isk(ref) && (!(ra_used(ir) || ir->r == RID_SUNK))) {
|
|
if (ir->r == RID_SINK) {
|
|
ir->r = RID_SUNK;
|
|
#if LJ_HASFFI
|
|
if (ir->o == IR_CNEWI) { /* Allocate CNEWI value. */
|
|
asm_snap_alloc1(as, ir->op2);
|
|
if (LJ_32 && (ir+1)->o == IR_HIOP)
|
|
asm_snap_alloc1(as, (ir+1)->op2);
|
|
} else
|
|
#endif
|
|
{ /* Allocate stored values for TNEW, TDUP and CNEW. */
|
|
IRIns *irs;
|
|
lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP || ir->o == IR_CNEW);
|
|
for (irs = IR(as->snapref-1); irs > ir; irs--)
|
|
if (irs->r == RID_SINK && asm_sunk_store(as, ir, irs)) {
|
|
lua_assert(irs->o == IR_ASTORE || irs->o == IR_HSTORE ||
|
|
irs->o == IR_FSTORE || irs->o == IR_XSTORE);
|
|
asm_snap_alloc1(as, irs->op2);
|
|
if (LJ_32 && (irs+1)->o == IR_HIOP)
|
|
asm_snap_alloc1(as, (irs+1)->op2);
|
|
}
|
|
}
|
|
} else {
|
|
RegSet allow;
|
|
if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT) {
|
|
IRIns *irc;
|
|
for (irc = IR(as->curins); irc > ir; irc--)
|
|
if ((irc->op1 == ref || irc->op2 == ref) &&
|
|
!(irc->r == RID_SINK || irc->r == RID_SUNK))
|
|
goto nosink; /* Don't sink conversion if result is used. */
|
|
asm_snap_alloc1(as, ir->op1);
|
|
return;
|
|
}
|
|
nosink:
|
|
allow = (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR;
|
|
if ((as->freeset & allow) ||
|
|
(allow == RSET_FPR && asm_snap_canremat(as))) {
|
|
/* Get a weak register if we have a free one or can rematerialize. */
|
|
Reg r = ra_allocref(as, ref, allow); /* Allocate a register. */
|
|
if (!irt_isphi(ir->t))
|
|
ra_weak(as, r); /* But mark it as weakly referenced. */
|
|
checkmclim(as);
|
|
RA_DBGX((as, "snapreg $f $r", ref, ir->r));
|
|
} else {
|
|
ra_spill(as, ir); /* Otherwise force a spill slot. */
|
|
RA_DBGX((as, "snapspill $f $s", ref, ir->s));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate refs escaping to a snapshot. */
|
|
static void asm_snap_alloc(ASMState *as)
|
|
{
|
|
SnapShot *snap = &as->T->snap[as->snapno];
|
|
SnapEntry *map = &as->T->snapmap[snap->mapofs];
|
|
MSize n, nent = snap->nent;
|
|
for (n = 0; n < nent; n++) {
|
|
SnapEntry sn = map[n];
|
|
IRRef ref = snap_ref(sn);
|
|
if (!irref_isk(ref)) {
|
|
asm_snap_alloc1(as, ref);
|
|
if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM)) {
|
|
lua_assert(irt_type(IR(ref+1)->t) == IRT_SOFTFP);
|
|
asm_snap_alloc1(as, ref+1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* All guards for a snapshot use the same exitno. This is currently the
|
|
** same as the snapshot number. Since the exact origin of the exit cannot
|
|
** be determined, all guards for the same snapshot must exit with the same
|
|
** RegSP mapping.
|
|
** A renamed ref which has been used in a prior guard for the same snapshot
|
|
** would cause an inconsistency. The easy way out is to force a spill slot.
|
|
*/
|
|
static int asm_snap_checkrename(ASMState *as, IRRef ren)
|
|
{
|
|
SnapShot *snap = &as->T->snap[as->snapno];
|
|
SnapEntry *map = &as->T->snapmap[snap->mapofs];
|
|
MSize n, nent = snap->nent;
|
|
for (n = 0; n < nent; n++) {
|
|
SnapEntry sn = map[n];
|
|
IRRef ref = snap_ref(sn);
|
|
if (ref == ren || (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && ++ref == ren)) {
|
|
IRIns *ir = IR(ref);
|
|
ra_spill(as, ir); /* Register renamed, so force a spill slot. */
|
|
RA_DBGX((as, "snaprensp $f $s", ref, ir->s));
|
|
return 1; /* Found. */
|
|
}
|
|
}
|
|
return 0; /* Not found. */
|
|
}
|
|
|
|
/* Prepare snapshot for next guard instruction. */
|
|
static void asm_snap_prep(ASMState *as)
|
|
{
|
|
if (as->curins < as->snapref) {
|
|
do {
|
|
if (as->snapno == 0) return; /* Called by sunk stores before snap #0. */
|
|
as->snapno--;
|
|
as->snapref = as->T->snap[as->snapno].ref;
|
|
} while (as->curins < as->snapref);
|
|
asm_snap_alloc(as);
|
|
as->snaprename = as->T->nins;
|
|
} else {
|
|
/* Process any renames above the highwater mark. */
|
|
for (; as->snaprename < as->T->nins; as->snaprename++) {
|
|
IRIns *ir = IR(as->snaprename);
|
|
if (asm_snap_checkrename(as, ir->op1))
|
|
ir->op2 = REF_BIAS-1; /* Kill rename. */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* -- Miscellaneous helpers ----------------------------------------------- */
|
|
|
|
/* Collect arguments from CALL* and CARG instructions. */
|
|
static void asm_collectargs(ASMState *as, IRIns *ir,
|
|
const CCallInfo *ci, IRRef *args)
|
|
{
|
|
uint32_t n = CCI_NARGS(ci);
|
|
lua_assert(n <= CCI_NARGS_MAX);
|
|
if ((ci->flags & CCI_L)) { *args++ = ASMREF_L; n--; }
|
|
while (n-- > 1) {
|
|
ir = IR(ir->op1);
|
|
lua_assert(ir->o == IR_CARG);
|
|
args[n] = ir->op2 == REF_NIL ? 0 : ir->op2;
|
|
}
|
|
args[0] = ir->op1 == REF_NIL ? 0 : ir->op1;
|
|
lua_assert(IR(ir->op1)->o != IR_CARG);
|
|
}
|
|
|
|
/* Reconstruct CCallInfo flags for CALLX*. */
|
|
static uint32_t asm_callx_flags(ASMState *as, IRIns *ir)
|
|
{
|
|
uint32_t nargs = 0;
|
|
if (ir->op1 != REF_NIL) { /* Count number of arguments first. */
|
|
IRIns *ira = IR(ir->op1);
|
|
nargs++;
|
|
while (ira->o == IR_CARG) { nargs++; ira = IR(ira->op1); }
|
|
}
|
|
#if LJ_HASFFI
|
|
if (IR(ir->op2)->o == IR_CARG) { /* Copy calling convention info. */
|
|
CTypeID id = (CTypeID)IR(IR(ir->op2)->op2)->i;
|
|
CType *ct = ctype_get(ctype_ctsG(J2G(as->J)), id);
|
|
nargs |= ((ct->info & CTF_VARARG) ? CCI_VARARG : 0);
|
|
#if LJ_TARGET_X86
|
|
nargs |= (ctype_cconv(ct->info) << CCI_CC_SHIFT);
|
|
#endif
|
|
}
|
|
#endif
|
|
return (nargs | (ir->t.irt << CCI_OTSHIFT));
|
|
}
|
|
|
|
/* Calculate stack adjustment. */
|
|
static int32_t asm_stack_adjust(ASMState *as)
|
|
{
|
|
if (as->evenspill <= SPS_FIXED)
|
|
return 0;
|
|
return sps_scale(sps_align(as->evenspill));
|
|
}
|
|
|
|
/* Must match with hash*() in lj_tab.c. */
|
|
static uint32_t ir_khash(IRIns *ir)
|
|
{
|
|
uint32_t lo, hi;
|
|
if (irt_isstr(ir->t)) {
|
|
return ir_kstr(ir)->hash;
|
|
} else if (irt_isnum(ir->t)) {
|
|
lo = ir_knum(ir)->u32.lo;
|
|
hi = ir_knum(ir)->u32.hi << 1;
|
|
} else if (irt_ispri(ir->t)) {
|
|
lua_assert(!irt_isnil(ir->t));
|
|
return irt_type(ir->t)-IRT_FALSE;
|
|
} else {
|
|
lua_assert(irt_isgcv(ir->t));
|
|
lo = u32ptr(ir_kgc(ir));
|
|
hi = lo + HASH_BIAS;
|
|
}
|
|
return hashrot(lo, hi);
|
|
}
|
|
|
|
/* -- Allocations --------------------------------------------------------- */
|
|
|
|
static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args);
|
|
static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci);
|
|
|
|
static void asm_snew(ASMState *as, IRIns *ir)
|
|
{
|
|
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_new];
|
|
IRRef args[3];
|
|
args[0] = ASMREF_L; /* lua_State *L */
|
|
args[1] = ir->op1; /* const char *str */
|
|
args[2] = ir->op2; /* size_t len */
|
|
as->gcsteps++;
|
|
asm_setupresult(as, ir, ci); /* GCstr * */
|
|
asm_gencall(as, ci, args);
|
|
}
|
|
|
|
static void asm_tnew(ASMState *as, IRIns *ir)
|
|
{
|
|
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_new1];
|
|
IRRef args[2];
|
|
args[0] = ASMREF_L; /* lua_State *L */
|
|
args[1] = ASMREF_TMP1; /* uint32_t ahsize */
|
|
as->gcsteps++;
|
|
asm_setupresult(as, ir, ci); /* GCtab * */
|
|
asm_gencall(as, ci, args);
|
|
ra_allockreg(as, ir->op1 | (ir->op2 << 24), ra_releasetmp(as, ASMREF_TMP1));
|
|
}
|
|
|
|
static void asm_tdup(ASMState *as, IRIns *ir)
|
|
{
|
|
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_dup];
|
|
IRRef args[2];
|
|
args[0] = ASMREF_L; /* lua_State *L */
|
|
args[1] = ir->op1; /* const GCtab *kt */
|
|
as->gcsteps++;
|
|
asm_setupresult(as, ir, ci); /* GCtab * */
|
|
asm_gencall(as, ci, args);
|
|
}
|
|
|
|
static void asm_gc_check(ASMState *as);
|
|
|
|
/* Explicit GC step. */
|
|
static void asm_gcstep(ASMState *as, IRIns *ir)
|
|
{
|
|
IRIns *ira;
|
|
for (ira = IR(as->stopins+1); ira < ir; ira++)
|
|
if ((ira->o == IR_TNEW || ira->o == IR_TDUP ||
|
|
(LJ_HASFFI && (ira->o == IR_CNEW || ira->o == IR_CNEWI))) &&
|
|
ra_used(ira))
|
|
as->gcsteps++;
|
|
if (as->gcsteps)
|
|
asm_gc_check(as);
|
|
as->gcsteps = 0x80000000; /* Prevent implicit GC check further up. */
|
|
}
|
|
|
|
/* -- PHI and loop handling ----------------------------------------------- */
|
|
|
|
/* Break a PHI cycle by renaming to a free register (evict if needed). */
|
|
static void asm_phi_break(ASMState *as, RegSet blocked, RegSet blockedby,
|
|
RegSet allow)
|
|
{
|
|
RegSet candidates = blocked & allow;
|
|
if (candidates) { /* If this register file has candidates. */
|
|
/* Note: the set for ra_pick cannot be empty, since each register file
|
|
** has some registers never allocated to PHIs.
|
|
*/
|
|
Reg down, up = ra_pick(as, ~blocked & allow); /* Get a free register. */
|
|
if (candidates & ~blockedby) /* Optimize shifts, else it's a cycle. */
|
|
candidates = candidates & ~blockedby;
|
|
down = rset_picktop(candidates); /* Pick candidate PHI register. */
|
|
ra_rename(as, down, up); /* And rename it to the free register. */
|
|
}
|
|
}
|
|
|
|
/* PHI register shuffling.
|
|
**
|
|
** The allocator tries hard to preserve PHI register assignments across
|
|
** the loop body. Most of the time this loop does nothing, since there
|
|
** are no register mismatches.
|
|
**
|
|
** If a register mismatch is detected and ...
|
|
** - the register is currently free: rename it.
|
|
** - the register is blocked by an invariant: restore/remat and rename it.
|
|
** - Otherwise the register is used by another PHI, so mark it as blocked.
|
|
**
|
|
** The renames are order-sensitive, so just retry the loop if a register
|
|
** is marked as blocked, but has been freed in the meantime. A cycle is
|
|
** detected if all of the blocked registers are allocated. To break the
|
|
** cycle rename one of them to a free register and retry.
|
|
**
|
|
** Note that PHI spill slots are kept in sync and don't need to be shuffled.
|
|
*/
|
|
static void asm_phi_shuffle(ASMState *as)
|
|
{
|
|
RegSet work;
|
|
|
|
/* Find and resolve PHI register mismatches. */
|
|
for (;;) {
|
|
RegSet blocked = RSET_EMPTY;
|
|
RegSet blockedby = RSET_EMPTY;
|
|
RegSet phiset = as->phiset;
|
|
while (phiset) { /* Check all left PHI operand registers. */
|
|
Reg r = rset_pickbot(phiset);
|
|
IRIns *irl = IR(as->phireg[r]);
|
|
Reg left = irl->r;
|
|
if (r != left) { /* Mismatch? */
|
|
if (!rset_test(as->freeset, r)) { /* PHI register blocked? */
|
|
IRRef ref = regcost_ref(as->cost[r]);
|
|
/* Blocked by other PHI (w/reg)? */
|
|
if (!ra_iskref(ref) && irt_ismarked(IR(ref)->t)) {
|
|
rset_set(blocked, r);
|
|
if (ra_hasreg(left))
|
|
rset_set(blockedby, left);
|
|
left = RID_NONE;
|
|
} else { /* Otherwise grab register from invariant. */
|
|
ra_restore(as, ref);
|
|
checkmclim(as);
|
|
}
|
|
}
|
|
if (ra_hasreg(left)) {
|
|
ra_rename(as, left, r);
|
|
checkmclim(as);
|
|
}
|
|
}
|
|
rset_clear(phiset, r);
|
|
}
|
|
if (!blocked) break; /* Finished. */
|
|
if (!(as->freeset & blocked)) { /* Break cycles if none are free. */
|
|
asm_phi_break(as, blocked, blockedby, RSET_GPR);
|
|
if (!LJ_SOFTFP) asm_phi_break(as, blocked, blockedby, RSET_FPR);
|
|
checkmclim(as);
|
|
} /* Else retry some more renames. */
|
|
}
|
|
|
|
/* Restore/remat invariants whose registers are modified inside the loop. */
|
|
#if !LJ_SOFTFP
|
|
work = as->modset & ~(as->freeset | as->phiset) & RSET_FPR;
|
|
while (work) {
|
|
Reg r = rset_pickbot(work);
|
|
ra_restore(as, regcost_ref(as->cost[r]));
|
|
rset_clear(work, r);
|
|
checkmclim(as);
|
|
}
|
|
#endif
|
|
work = as->modset & ~(as->freeset | as->phiset);
|
|
while (work) {
|
|
Reg r = rset_pickbot(work);
|
|
ra_restore(as, regcost_ref(as->cost[r]));
|
|
rset_clear(work, r);
|
|
checkmclim(as);
|
|
}
|
|
|
|
/* Allocate and save all unsaved PHI regs and clear marks. */
|
|
work = as->phiset;
|
|
while (work) {
|
|
Reg r = rset_picktop(work);
|
|
IRRef lref = as->phireg[r];
|
|
IRIns *ir = IR(lref);
|
|
if (ra_hasspill(ir->s)) { /* Left PHI gained a spill slot? */
|
|
irt_clearmark(ir->t); /* Handled here, so clear marker now. */
|
|
ra_alloc1(as, lref, RID2RSET(r));
|
|
ra_save(as, ir, r); /* Save to spill slot inside the loop. */
|
|
checkmclim(as);
|
|
}
|
|
rset_clear(work, r);
|
|
}
|
|
}
|
|
|
|
/* Copy unsynced left/right PHI spill slots. Rarely needed. */
|
|
static void asm_phi_copyspill(ASMState *as)
|
|
{
|
|
int need = 0;
|
|
IRIns *ir;
|
|
for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--)
|
|
if (ra_hasspill(ir->s) && ra_hasspill(IR(ir->op1)->s))
|
|
need |= irt_isfp(ir->t) ? 2 : 1; /* Unsynced spill slot? */
|
|
if ((need & 1)) { /* Copy integer spill slots. */
|
|
#if !LJ_TARGET_X86ORX64
|
|
Reg r = RID_TMP;
|
|
#else
|
|
Reg r = RID_RET;
|
|
if ((as->freeset & RSET_GPR))
|
|
r = rset_pickbot((as->freeset & RSET_GPR));
|
|
else
|
|
emit_spload(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
|
|
#endif
|
|
for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--) {
|
|
if (ra_hasspill(ir->s)) {
|
|
IRIns *irl = IR(ir->op1);
|
|
if (ra_hasspill(irl->s) && !irt_isfp(ir->t)) {
|
|
emit_spstore(as, irl, r, sps_scale(irl->s));
|
|
emit_spload(as, ir, r, sps_scale(ir->s));
|
|
}
|
|
}
|
|
}
|
|
#if LJ_TARGET_X86ORX64
|
|
if (!rset_test(as->freeset, r))
|
|
emit_spstore(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
|
|
#endif
|
|
}
|
|
#if !LJ_SOFTFP
|
|
if ((need & 2)) { /* Copy FP spill slots. */
|
|
#if LJ_TARGET_X86
|
|
Reg r = RID_XMM0;
|
|
#else
|
|
Reg r = RID_FPRET;
|
|
#endif
|
|
if ((as->freeset & RSET_FPR))
|
|
r = rset_pickbot((as->freeset & RSET_FPR));
|
|
if (!rset_test(as->freeset, r))
|
|
emit_spload(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
|
|
for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--) {
|
|
if (ra_hasspill(ir->s)) {
|
|
IRIns *irl = IR(ir->op1);
|
|
if (ra_hasspill(irl->s) && irt_isfp(ir->t)) {
|
|
emit_spstore(as, irl, r, sps_scale(irl->s));
|
|
emit_spload(as, ir, r, sps_scale(ir->s));
|
|
}
|
|
}
|
|
}
|
|
if (!rset_test(as->freeset, r))
|
|
emit_spstore(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Emit renames for left PHIs which are only spilled outside the loop. */
|
|
static void asm_phi_fixup(ASMState *as)
|
|
{
|
|
RegSet work = as->phiset;
|
|
while (work) {
|
|
Reg r = rset_picktop(work);
|
|
IRRef lref = as->phireg[r];
|
|
IRIns *ir = IR(lref);
|
|
/* Left PHI gained a spill slot before the loop? */
|
|
if (irt_ismarked(ir->t) && ra_hasspill(ir->s)) {
|
|
IRRef ren;
|
|
lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), lref, as->loopsnapno);
|
|
ren = tref_ref(lj_ir_emit(as->J));
|
|
as->ir = as->T->ir; /* The IR may have been reallocated. */
|
|
IR(ren)->r = (uint8_t)r;
|
|
IR(ren)->s = SPS_NONE;
|
|
}
|
|
irt_clearmark(ir->t); /* Always clear marker. */
|
|
rset_clear(work, r);
|
|
}
|
|
}
|
|
|
|
/* Setup right PHI reference. */
|
|
static void asm_phi(ASMState *as, IRIns *ir)
|
|
{
|
|
RegSet allow = ((!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR) &
|
|
~as->phiset;
|
|
RegSet afree = (as->freeset & allow);
|
|
IRIns *irl = IR(ir->op1);
|
|
IRIns *irr = IR(ir->op2);
|
|
if (ir->r == RID_SINK) /* Sink PHI. */
|
|
return;
|
|
/* Spill slot shuffling is not implemented yet (but rarely needed). */
|
|
if (ra_hasspill(irl->s) || ra_hasspill(irr->s))
|
|
lj_trace_err(as->J, LJ_TRERR_NYIPHI);
|
|
/* Leave at least one register free for non-PHIs (and PHI cycle breaking). */
|
|
if ((afree & (afree-1))) { /* Two or more free registers? */
|
|
Reg r;
|
|
if (ra_noreg(irr->r)) { /* Get a register for the right PHI. */
|
|
r = ra_allocref(as, ir->op2, allow);
|
|
} else { /* Duplicate right PHI, need a copy (rare). */
|
|
r = ra_scratch(as, allow);
|
|
emit_movrr(as, irr, r, irr->r);
|
|
}
|
|
ir->r = (uint8_t)r;
|
|
rset_set(as->phiset, r);
|
|
as->phireg[r] = (IRRef1)ir->op1;
|
|
irt_setmark(irl->t); /* Marks left PHIs _with_ register. */
|
|
if (ra_noreg(irl->r))
|
|
ra_sethint(irl->r, r); /* Set register hint for left PHI. */
|
|
} else { /* Otherwise allocate a spill slot. */
|
|
/* This is overly restrictive, but it triggers only on synthetic code. */
|
|
if (ra_hasreg(irl->r) || ra_hasreg(irr->r))
|
|
lj_trace_err(as->J, LJ_TRERR_NYIPHI);
|
|
ra_spill(as, ir);
|
|
irr->s = ir->s; /* Set right PHI spill slot. Sync left slot later. */
|
|
}
|
|
}
|
|
|
|
static void asm_loop_fixup(ASMState *as);
|
|
|
|
/* Middle part of a loop. */
|
|
static void asm_loop(ASMState *as)
|
|
{
|
|
MCode *mcspill;
|
|
/* LOOP is a guard, so the snapno is up to date. */
|
|
as->loopsnapno = as->snapno;
|
|
if (as->gcsteps)
|
|
asm_gc_check(as);
|
|
/* LOOP marks the transition from the variant to the invariant part. */
|
|
as->flagmcp = as->invmcp = NULL;
|
|
as->sectref = 0;
|
|
if (!neverfuse(as)) as->fuseref = 0;
|
|
asm_phi_shuffle(as);
|
|
mcspill = as->mcp;
|
|
asm_phi_copyspill(as);
|
|
asm_loop_fixup(as);
|
|
as->mcloop = as->mcp;
|
|
RA_DBGX((as, "===== LOOP ====="));
|
|
if (!as->realign) RA_DBG_FLUSH();
|
|
if (as->mcp != mcspill)
|
|
emit_jmp(as, mcspill);
|
|
}
|
|
|
|
/* -- Target-specific assembler ------------------------------------------- */
|
|
|
|
#if LJ_TARGET_X86ORX64
|
|
#include "lj_asm_x86.h"
|
|
#elif LJ_TARGET_ARM
|
|
#include "lj_asm_arm.h"
|
|
#elif LJ_TARGET_PPC
|
|
#include "lj_asm_ppc.h"
|
|
#elif LJ_TARGET_MIPS
|
|
#include "lj_asm_mips.h"
|
|
#else
|
|
#error "Missing assembler for target CPU"
|
|
#endif
|
|
|
|
/* -- Head of trace ------------------------------------------------------- */
|
|
|
|
/* Head of a root trace. */
|
|
static void asm_head_root(ASMState *as)
|
|
{
|
|
int32_t spadj;
|
|
asm_head_root_base(as);
|
|
emit_setvmstate(as, (int32_t)as->T->traceno);
|
|
spadj = asm_stack_adjust(as);
|
|
as->T->spadjust = (uint16_t)spadj;
|
|
emit_spsub(as, spadj);
|
|
/* Root traces assume a checked stack for the starting proto. */
|
|
as->T->topslot = gcref(as->T->startpt)->pt.framesize;
|
|
}
|
|
|
|
/* Head of a side trace.
|
|
**
|
|
** The current simplistic algorithm requires that all slots inherited
|
|
** from the parent are live in a register between pass 2 and pass 3. This
|
|
** avoids the complexity of stack slot shuffling. But of course this may
|
|
** overflow the register set in some cases and cause the dreaded error:
|
|
** "NYI: register coalescing too complex". A refined algorithm is needed.
|
|
*/
|
|
static void asm_head_side(ASMState *as)
|
|
{
|
|
IRRef1 sloadins[RID_MAX];
|
|
RegSet allow = RSET_ALL; /* Inverse of all coalesced registers. */
|
|
RegSet live = RSET_EMPTY; /* Live parent registers. */
|
|
IRIns *irp = &as->parent->ir[REF_BASE]; /* Parent base. */
|
|
int32_t spadj, spdelta;
|
|
int pass2 = 0;
|
|
int pass3 = 0;
|
|
IRRef i;
|
|
|
|
allow = asm_head_side_base(as, irp, allow);
|
|
|
|
/* Scan all parent SLOADs and collect register dependencies. */
|
|
for (i = as->stopins; i > REF_BASE; i--) {
|
|
IRIns *ir = IR(i);
|
|
RegSP rs;
|
|
lua_assert((ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_PARENT)) ||
|
|
(LJ_SOFTFP && ir->o == IR_HIOP) || ir->o == IR_PVAL);
|
|
rs = as->parentmap[i - REF_FIRST];
|
|
if (ra_hasreg(ir->r)) {
|
|
rset_clear(allow, ir->r);
|
|
if (ra_hasspill(ir->s)) {
|
|
ra_save(as, ir, ir->r);
|
|
checkmclim(as);
|
|
}
|
|
} else if (ra_hasspill(ir->s)) {
|
|
irt_setmark(ir->t);
|
|
pass2 = 1;
|
|
}
|
|
if (ir->r == rs) { /* Coalesce matching registers right now. */
|
|
ra_free(as, ir->r);
|
|
} else if (ra_hasspill(regsp_spill(rs))) {
|
|
if (ra_hasreg(ir->r))
|
|
pass3 = 1;
|
|
} else if (ra_used(ir)) {
|
|
sloadins[rs] = (IRRef1)i;
|
|
rset_set(live, rs); /* Block live parent register. */
|
|
}
|
|
}
|
|
|
|
/* Calculate stack frame adjustment. */
|
|
spadj = asm_stack_adjust(as);
|
|
spdelta = spadj - (int32_t)as->parent->spadjust;
|
|
if (spdelta < 0) { /* Don't shrink the stack frame. */
|
|
spadj = (int32_t)as->parent->spadjust;
|
|
spdelta = 0;
|
|
}
|
|
as->T->spadjust = (uint16_t)spadj;
|
|
|
|
/* Reload spilled target registers. */
|
|
if (pass2) {
|
|
for (i = as->stopins; i > REF_BASE; i--) {
|
|
IRIns *ir = IR(i);
|
|
if (irt_ismarked(ir->t)) {
|
|
RegSet mask;
|
|
Reg r;
|
|
RegSP rs;
|
|
irt_clearmark(ir->t);
|
|
rs = as->parentmap[i - REF_FIRST];
|
|
if (!ra_hasspill(regsp_spill(rs)))
|
|
ra_sethint(ir->r, rs); /* Hint may be gone, set it again. */
|
|
else if (sps_scale(regsp_spill(rs))+spdelta == sps_scale(ir->s))
|
|
continue; /* Same spill slot, do nothing. */
|
|
mask = ((!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR) & allow;
|
|
if (mask == RSET_EMPTY)
|
|
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
|
|
r = ra_allocref(as, i, mask);
|
|
ra_save(as, ir, r);
|
|
rset_clear(allow, r);
|
|
if (r == rs) { /* Coalesce matching registers right now. */
|
|
ra_free(as, r);
|
|
rset_clear(live, r);
|
|
} else if (ra_hasspill(regsp_spill(rs))) {
|
|
pass3 = 1;
|
|
}
|
|
checkmclim(as);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Store trace number and adjust stack frame relative to the parent. */
|
|
emit_setvmstate(as, (int32_t)as->T->traceno);
|
|
emit_spsub(as, spdelta);
|
|
|
|
#if !LJ_TARGET_X86ORX64
|
|
/* Restore BASE register from parent spill slot. */
|
|
if (ra_hasspill(irp->s))
|
|
emit_spload(as, IR(REF_BASE), IR(REF_BASE)->r, sps_scale(irp->s));
|
|
#endif
|
|
|
|
/* Restore target registers from parent spill slots. */
|
|
if (pass3) {
|
|
RegSet work = ~as->freeset & RSET_ALL;
|
|
while (work) {
|
|
Reg r = rset_pickbot(work);
|
|
IRRef ref = regcost_ref(as->cost[r]);
|
|
RegSP rs = as->parentmap[ref - REF_FIRST];
|
|
rset_clear(work, r);
|
|
if (ra_hasspill(regsp_spill(rs))) {
|
|
int32_t ofs = sps_scale(regsp_spill(rs));
|
|
ra_free(as, r);
|
|
emit_spload(as, IR(ref), r, ofs);
|
|
checkmclim(as);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Shuffle registers to match up target regs with parent regs. */
|
|
for (;;) {
|
|
RegSet work;
|
|
|
|
/* Repeatedly coalesce free live registers by moving to their target. */
|
|
while ((work = as->freeset & live) != RSET_EMPTY) {
|
|
Reg rp = rset_pickbot(work);
|
|
IRIns *ir = IR(sloadins[rp]);
|
|
rset_clear(live, rp);
|
|
rset_clear(allow, rp);
|
|
ra_free(as, ir->r);
|
|
emit_movrr(as, ir, ir->r, rp);
|
|
checkmclim(as);
|
|
}
|
|
|
|
/* We're done if no live registers remain. */
|
|
if (live == RSET_EMPTY)
|
|
break;
|
|
|
|
/* Break cycles by renaming one target to a temp. register. */
|
|
if (live & RSET_GPR) {
|
|
RegSet tmpset = as->freeset & ~live & allow & RSET_GPR;
|
|
if (tmpset == RSET_EMPTY)
|
|
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
|
|
ra_rename(as, rset_pickbot(live & RSET_GPR), rset_pickbot(tmpset));
|
|
}
|
|
if (!LJ_SOFTFP && (live & RSET_FPR)) {
|
|
RegSet tmpset = as->freeset & ~live & allow & RSET_FPR;
|
|
if (tmpset == RSET_EMPTY)
|
|
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
|
|
ra_rename(as, rset_pickbot(live & RSET_FPR), rset_pickbot(tmpset));
|
|
}
|
|
checkmclim(as);
|
|
/* Continue with coalescing to fix up the broken cycle(s). */
|
|
}
|
|
|
|
/* Inherit top stack slot already checked by parent trace. */
|
|
as->T->topslot = as->parent->topslot;
|
|
if (as->topslot > as->T->topslot) { /* Need to check for higher slot? */
|
|
#ifdef EXITSTATE_CHECKEXIT
|
|
/* Highest exit + 1 indicates stack check. */
|
|
ExitNo exitno = as->T->nsnap;
|
|
#else
|
|
/* Reuse the parent exit in the context of the parent trace. */
|
|
ExitNo exitno = as->J->exitno;
|
|
#endif
|
|
as->T->topslot = (uint8_t)as->topslot; /* Remember for child traces. */
|
|
asm_stack_check(as, as->topslot, irp, allow & RSET_GPR, exitno);
|
|
}
|
|
}
|
|
|
|
/* -- Tail of trace ------------------------------------------------------- */
|
|
|
|
/* Get base slot for a snapshot. */
|
|
static BCReg asm_baseslot(ASMState *as, SnapShot *snap, int *gotframe)
|
|
{
|
|
SnapEntry *map = &as->T->snapmap[snap->mapofs];
|
|
MSize n;
|
|
for (n = snap->nent; n > 0; n--) {
|
|
SnapEntry sn = map[n-1];
|
|
if ((sn & SNAP_FRAME)) {
|
|
*gotframe = 1;
|
|
return snap_slot(sn);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Link to another trace. */
|
|
static void asm_tail_link(ASMState *as)
|
|
{
|
|
SnapNo snapno = as->T->nsnap-1; /* Last snapshot. */
|
|
SnapShot *snap = &as->T->snap[snapno];
|
|
int gotframe = 0;
|
|
BCReg baseslot = asm_baseslot(as, snap, &gotframe);
|
|
|
|
as->topslot = snap->topslot;
|
|
checkmclim(as);
|
|
ra_allocref(as, REF_BASE, RID2RSET(RID_BASE));
|
|
|
|
if (as->T->link == 0) {
|
|
/* Setup fixed registers for exit to interpreter. */
|
|
const BCIns *pc = snap_pc(as->T->snapmap[snap->mapofs + snap->nent]);
|
|
int32_t mres;
|
|
if (bc_op(*pc) == BC_JLOOP) { /* NYI: find a better way to do this. */
|
|
BCIns *retpc = &traceref(as->J, bc_d(*pc))->startins;
|
|
if (bc_isret(bc_op(*retpc)))
|
|
pc = retpc;
|
|
}
|
|
ra_allockreg(as, i32ptr(J2GG(as->J)->dispatch), RID_DISPATCH);
|
|
ra_allockreg(as, i32ptr(pc), RID_LPC);
|
|
mres = (int32_t)(snap->nslots - baseslot);
|
|
switch (bc_op(*pc)) {
|
|
case BC_CALLM: case BC_CALLMT:
|
|
mres -= (int32_t)(1 + bc_a(*pc) + bc_c(*pc)); break;
|
|
case BC_RETM: mres -= (int32_t)(bc_a(*pc) + bc_d(*pc)); break;
|
|
case BC_TSETM: mres -= (int32_t)bc_a(*pc); break;
|
|
default: if (bc_op(*pc) < BC_FUNCF) mres = 0; break;
|
|
}
|
|
ra_allockreg(as, mres, RID_RET); /* Return MULTRES or 0. */
|
|
} else if (baseslot) {
|
|
/* Save modified BASE for linking to trace with higher start frame. */
|
|
emit_setgl(as, RID_BASE, jit_base);
|
|
}
|
|
emit_addptr(as, RID_BASE, 8*(int32_t)baseslot);
|
|
|
|
/* Sync the interpreter state with the on-trace state. */
|
|
asm_stack_restore(as, snap);
|
|
|
|
/* Root traces that add frames need to check the stack at the end. */
|
|
if (!as->parent && gotframe)
|
|
asm_stack_check(as, as->topslot, NULL, as->freeset & RSET_GPR, snapno);
|
|
}
|
|
|
|
/* -- Trace setup --------------------------------------------------------- */
|
|
|
|
/* Clear reg/sp for all instructions and add register hints. */
|
|
static void asm_setup_regsp(ASMState *as)
|
|
{
|
|
GCtrace *T = as->T;
|
|
int sink = T->sinktags;
|
|
IRRef nins = T->nins;
|
|
IRIns *ir, *lastir;
|
|
int inloop;
|
|
#if LJ_TARGET_ARM
|
|
uint32_t rload = 0xa6402a64;
|
|
#endif
|
|
|
|
ra_setup(as);
|
|
|
|
/* Clear reg/sp for constants. */
|
|
for (ir = IR(T->nk), lastir = IR(REF_BASE); ir < lastir; ir++)
|
|
ir->prev = REGSP_INIT;
|
|
|
|
/* REF_BASE is used for implicit references to the BASE register. */
|
|
lastir->prev = REGSP_HINT(RID_BASE);
|
|
|
|
ir = IR(nins-1);
|
|
if (ir->o == IR_RENAME) {
|
|
do { ir--; nins--; } while (ir->o == IR_RENAME);
|
|
T->nins = nins; /* Remove any renames left over from ASM restart. */
|
|
}
|
|
as->snaprename = nins;
|
|
as->snapref = nins;
|
|
as->snapno = T->nsnap;
|
|
|
|
as->stopins = REF_BASE;
|
|
as->orignins = nins;
|
|
as->curins = nins;
|
|
|
|
/* Setup register hints for parent link instructions. */
|
|
ir = IR(REF_FIRST);
|
|
if (as->parent) {
|
|
uint16_t *p;
|
|
lastir = lj_snap_regspmap(as->parent, as->J->exitno, ir);
|
|
if (lastir - ir > LJ_MAX_JSLOTS)
|
|
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
|
|
as->stopins = (IRRef)((lastir-1) - as->ir);
|
|
for (p = as->parentmap; ir < lastir; ir++) {
|
|
RegSP rs = ir->prev;
|
|
*p++ = (uint16_t)rs; /* Copy original parent RegSP to parentmap. */
|
|
if (!ra_hasspill(regsp_spill(rs)))
|
|
ir->prev = (uint16_t)REGSP_HINT(regsp_reg(rs));
|
|
else
|
|
ir->prev = REGSP_INIT;
|
|
}
|
|
}
|
|
|
|
inloop = 0;
|
|
as->evenspill = SPS_FIRST;
|
|
for (lastir = IR(nins); ir < lastir; ir++) {
|
|
if (sink) {
|
|
if (ir->r == RID_SINK)
|
|
continue;
|
|
if (ir->r == RID_SUNK) { /* Revert after ASM restart. */
|
|
ir->r = RID_SINK;
|
|
continue;
|
|
}
|
|
}
|
|
switch (ir->o) {
|
|
case IR_LOOP:
|
|
inloop = 1;
|
|
break;
|
|
#if LJ_TARGET_ARM
|
|
case IR_SLOAD:
|
|
if (!((ir->op2 & IRSLOAD_TYPECHECK) || (ir+1)->o == IR_HIOP))
|
|
break;
|
|
/* fallthrough */
|
|
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
|
|
if (!LJ_SOFTFP && irt_isnum(ir->t)) break;
|
|
ir->prev = (uint16_t)REGSP_HINT((rload & 15));
|
|
rload = lj_ror(rload, 4);
|
|
continue;
|
|
#endif
|
|
case IR_CALLXS: {
|
|
CCallInfo ci;
|
|
ci.flags = asm_callx_flags(as, ir);
|
|
ir->prev = asm_setup_call_slots(as, ir, &ci);
|
|
if (inloop)
|
|
as->modset |= RSET_SCRATCH;
|
|
continue;
|
|
}
|
|
case IR_CALLN: case IR_CALLL: case IR_CALLS: {
|
|
const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
|
|
ir->prev = asm_setup_call_slots(as, ir, ci);
|
|
if (inloop)
|
|
as->modset |= (ci->flags & CCI_NOFPRCLOBBER) ?
|
|
(RSET_SCRATCH & ~RSET_FPR) : RSET_SCRATCH;
|
|
continue;
|
|
}
|
|
#if LJ_SOFTFP || (LJ_32 && LJ_HASFFI)
|
|
case IR_HIOP:
|
|
switch ((ir-1)->o) {
|
|
#if LJ_SOFTFP && LJ_TARGET_ARM
|
|
case IR_SLOAD: case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
|
|
if (ra_hashint((ir-1)->r)) {
|
|
ir->prev = (ir-1)->prev + 1;
|
|
continue;
|
|
}
|
|
break;
|
|
#endif
|
|
#if !LJ_SOFTFP && LJ_NEED_FP64
|
|
case IR_CONV:
|
|
if (irt_isfp((ir-1)->t)) {
|
|
ir->prev = REGSP_HINT(RID_FPRET);
|
|
continue;
|
|
}
|
|
/* fallthrough */
|
|
#endif
|
|
case IR_CALLN: case IR_CALLXS:
|
|
#if LJ_SOFTFP
|
|
case IR_MIN: case IR_MAX:
|
|
#endif
|
|
(ir-1)->prev = REGSP_HINT(RID_RETLO);
|
|
ir->prev = REGSP_HINT(RID_RETHI);
|
|
continue;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if LJ_SOFTFP
|
|
case IR_MIN: case IR_MAX:
|
|
if ((ir+1)->o != IR_HIOP) break;
|
|
/* fallthrough */
|
|
#endif
|
|
/* C calls evict all scratch regs and return results in RID_RET. */
|
|
case IR_SNEW: case IR_XSNEW: case IR_NEWREF:
|
|
if (REGARG_NUMGPR < 3 && as->evenspill < 3)
|
|
as->evenspill = 3; /* lj_str_new and lj_tab_newkey need 3 args. */
|
|
case IR_TNEW: case IR_TDUP: case IR_CNEW: case IR_CNEWI: case IR_TOSTR:
|
|
ir->prev = REGSP_HINT(RID_RET);
|
|
if (inloop)
|
|
as->modset = RSET_SCRATCH;
|
|
continue;
|
|
case IR_STRTO: case IR_OBAR:
|
|
if (inloop)
|
|
as->modset = RSET_SCRATCH;
|
|
break;
|
|
#if !LJ_TARGET_X86ORX64 && !LJ_SOFTFP
|
|
case IR_ATAN2: case IR_LDEXP:
|
|
#endif
|
|
case IR_POW:
|
|
if (!LJ_SOFTFP && irt_isnum(ir->t)) {
|
|
#if LJ_TARGET_X86ORX64
|
|
ir->prev = REGSP_HINT(RID_XMM0);
|
|
if (inloop)
|
|
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
|
|
#else
|
|
ir->prev = REGSP_HINT(RID_FPRET);
|
|
if (inloop)
|
|
as->modset |= RSET_SCRATCH;
|
|
#endif
|
|
continue;
|
|
}
|
|
/* fallthrough for integer POW */
|
|
case IR_DIV: case IR_MOD:
|
|
if (!irt_isnum(ir->t)) {
|
|
ir->prev = REGSP_HINT(RID_RET);
|
|
if (inloop)
|
|
as->modset |= (RSET_SCRATCH & RSET_GPR);
|
|
continue;
|
|
}
|
|
break;
|
|
case IR_FPMATH:
|
|
#if LJ_TARGET_X86ORX64
|
|
if (ir->op2 == IRFPM_EXP2) { /* May be joined to lj_vm_pow_sse. */
|
|
ir->prev = REGSP_HINT(RID_XMM0);
|
|
#if !LJ_64
|
|
if (as->evenspill < 4) /* Leave room for 16 byte scratch area. */
|
|
as->evenspill = 4;
|
|
#endif
|
|
if (inloop)
|
|
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
|
|
continue;
|
|
} else if (ir->op2 <= IRFPM_TRUNC && !(as->flags & JIT_F_SSE4_1)) {
|
|
ir->prev = REGSP_HINT(RID_XMM0);
|
|
if (inloop)
|
|
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
|
|
continue;
|
|
}
|
|
break;
|
|
#else
|
|
ir->prev = REGSP_HINT(RID_FPRET);
|
|
if (inloop)
|
|
as->modset |= RSET_SCRATCH;
|
|
continue;
|
|
#endif
|
|
#if LJ_TARGET_X86ORX64
|
|
/* Non-constant shift counts need to be in RID_ECX on x86/x64. */
|
|
case IR_BSHL: case IR_BSHR: case IR_BSAR: case IR_BROL: case IR_BROR:
|
|
if (!irref_isk(ir->op2) && !ra_hashint(IR(ir->op2)->r)) {
|
|
IR(ir->op2)->r = REGSP_HINT(RID_ECX);
|
|
if (inloop)
|
|
rset_set(as->modset, RID_ECX);
|
|
}
|
|
break;
|
|
#endif
|
|
/* Do not propagate hints across type conversions or loads. */
|
|
case IR_TOBIT:
|
|
case IR_XLOAD:
|
|
#if !LJ_TARGET_ARM
|
|
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
|
|
#endif
|
|
break;
|
|
case IR_CONV:
|
|
if (irt_isfp(ir->t) || (ir->op2 & IRCONV_SRCMASK) == IRT_NUM ||
|
|
(ir->op2 & IRCONV_SRCMASK) == IRT_FLOAT)
|
|
break;
|
|
/* fallthrough */
|
|
default:
|
|
/* Propagate hints across likely 'op reg, imm' or 'op reg'. */
|
|
if (irref_isk(ir->op2) && !irref_isk(ir->op1) &&
|
|
ra_hashint(regsp_reg(IR(ir->op1)->prev))) {
|
|
ir->prev = IR(ir->op1)->prev;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
ir->prev = REGSP_INIT;
|
|
}
|
|
if ((as->evenspill & 1))
|
|
as->oddspill = as->evenspill++;
|
|
else
|
|
as->oddspill = 0;
|
|
}
|
|
|
|
/* -- Assembler core ------------------------------------------------------ */
|
|
|
|
/* Assemble a trace. */
|
|
void lj_asm_trace(jit_State *J, GCtrace *T)
|
|
{
|
|
ASMState as_;
|
|
ASMState *as = &as_;
|
|
MCode *origtop;
|
|
|
|
/* Ensure an initialized instruction beyond the last one for HIOP checks. */
|
|
J->cur.nins = lj_ir_nextins(J);
|
|
J->cur.ir[J->cur.nins].o = IR_NOP;
|
|
|
|
/* Setup initial state. Copy some fields to reduce indirections. */
|
|
as->J = J;
|
|
as->T = T;
|
|
as->ir = T->ir;
|
|
as->flags = J->flags;
|
|
as->loopref = J->loopref;
|
|
as->realign = NULL;
|
|
as->loopinv = 0;
|
|
as->parent = J->parent ? traceref(J, J->parent) : NULL;
|
|
|
|
/* Reserve MCode memory. */
|
|
as->mctop = origtop = lj_mcode_reserve(J, &as->mcbot);
|
|
as->mcp = as->mctop;
|
|
as->mclim = as->mcbot + MCLIM_REDZONE;
|
|
asm_setup_target(as);
|
|
|
|
do {
|
|
as->mcp = as->mctop;
|
|
as->curins = T->nins;
|
|
RA_DBG_START();
|
|
RA_DBGX((as, "===== STOP ====="));
|
|
|
|
/* General trace setup. Emit tail of trace. */
|
|
asm_tail_prep(as);
|
|
as->mcloop = NULL;
|
|
as->flagmcp = NULL;
|
|
as->topslot = 0;
|
|
as->gcsteps = 0;
|
|
as->sectref = as->loopref;
|
|
as->fuseref = (as->flags & JIT_F_OPT_FUSE) ? as->loopref : FUSE_DISABLED;
|
|
asm_setup_regsp(as);
|
|
if (!as->loopref)
|
|
asm_tail_link(as);
|
|
|
|
/* Assemble a trace in linear backwards order. */
|
|
for (as->curins--; as->curins > as->stopins; as->curins--) {
|
|
IRIns *ir = IR(as->curins);
|
|
lua_assert(!(LJ_32 && irt_isint64(ir->t))); /* Handled by SPLIT. */
|
|
if (!ra_used(ir) && !ir_sideeff(ir) && (as->flags & JIT_F_OPT_DCE))
|
|
continue; /* Dead-code elimination can be soooo easy. */
|
|
if (irt_isguard(ir->t))
|
|
asm_snap_prep(as);
|
|
RA_DBG_REF();
|
|
checkmclim(as);
|
|
asm_ir(as, ir);
|
|
}
|
|
} while (as->realign); /* Retry in case the MCode needs to be realigned. */
|
|
|
|
/* Emit head of trace. */
|
|
RA_DBG_REF();
|
|
checkmclim(as);
|
|
if (as->gcsteps > 0) {
|
|
as->curins = as->T->snap[0].ref;
|
|
asm_snap_prep(as); /* The GC check is a guard. */
|
|
asm_gc_check(as);
|
|
}
|
|
ra_evictk(as);
|
|
if (as->parent)
|
|
asm_head_side(as);
|
|
else
|
|
asm_head_root(as);
|
|
asm_phi_fixup(as);
|
|
|
|
RA_DBGX((as, "===== START ===="));
|
|
RA_DBG_FLUSH();
|
|
if (as->freeset != RSET_ALL)
|
|
lj_trace_err(as->J, LJ_TRERR_BADRA); /* Ouch! Should never happen. */
|
|
|
|
/* Set trace entry point before fixing up tail to allow link to self. */
|
|
T->mcode = as->mcp;
|
|
T->mcloop = as->mcloop ? (MSize)((char *)as->mcloop - (char *)as->mcp) : 0;
|
|
if (!as->loopref)
|
|
asm_tail_fixup(as, T->link); /* Note: this may change as->mctop! */
|
|
T->szmcode = (MSize)((char *)as->mctop - (char *)as->mcp);
|
|
lj_mcode_sync(T->mcode, origtop);
|
|
}
|
|
|
|
#undef IR
|
|
|
|
#endif
|