mirror of https://github.com/axmolengine/axmol.git
2020 lines
60 KiB
C++
2020 lines
60 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla Communicator client code, released
|
|
* March 31, 1998.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 1998
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#ifndef jsgc_h___
|
|
#define jsgc_h___
|
|
|
|
/*
|
|
* JS Garbage Collector.
|
|
*/
|
|
#include <setjmp.h>
|
|
|
|
#include "mozilla/Util.h"
|
|
|
|
#include "jsalloc.h"
|
|
#include "jstypes.h"
|
|
#include "jsprvtd.h"
|
|
#include "jspubtd.h"
|
|
#include "jsdhash.h"
|
|
#include "jslock.h"
|
|
#include "jsutil.h"
|
|
#include "jsversion.h"
|
|
#include "jscell.h"
|
|
|
|
#include "ds/BitArray.h"
|
|
#include "gc/Statistics.h"
|
|
#include "js/HashTable.h"
|
|
#include "js/Vector.h"
|
|
#include "js/TemplateLib.h"
|
|
|
|
struct JSCompartment;
|
|
|
|
extern "C" void
|
|
js_TraceXML(JSTracer *trc, JSXML* thing);
|
|
|
|
#if JS_STACK_GROWTH_DIRECTION > 0
|
|
# define JS_CHECK_STACK_SIZE(limit, lval) ((uintptr_t)(lval) < limit)
|
|
#else
|
|
# define JS_CHECK_STACK_SIZE(limit, lval) ((uintptr_t)(lval) > limit)
|
|
#endif
|
|
|
|
namespace js {
|
|
|
|
class GCHelperThread;
|
|
struct Shape;
|
|
|
|
namespace gc {
|
|
|
|
enum State {
|
|
NO_INCREMENTAL,
|
|
MARK_ROOTS,
|
|
MARK,
|
|
SWEEP,
|
|
INVALID
|
|
};
|
|
|
|
struct Arena;
|
|
|
|
/*
|
|
* This must be an upper bound, but we do not need the least upper bound, so
|
|
* we just exclude non-background objects.
|
|
*/
|
|
const size_t MAX_BACKGROUND_FINALIZE_KINDS = FINALIZE_LIMIT - FINALIZE_OBJECT_LIMIT / 2;
|
|
|
|
/*
|
|
* Page size is 4096 by default, except for SPARC, where it is 8192.
|
|
* Note: Do not use JS_CPU_SPARC here, this header is used outside JS.
|
|
* Bug 692267: Move page size definition to gc/Memory.h and include it
|
|
* directly once jsgc.h is no longer an installed header.
|
|
*/
|
|
#if defined(SOLARIS) && (defined(__sparc) || defined(__sparcv9))
|
|
const size_t PageShift = 13;
|
|
#else
|
|
const size_t PageShift = 12;
|
|
#endif
|
|
const size_t PageSize = size_t(1) << PageShift;
|
|
|
|
const size_t ChunkShift = 20;
|
|
const size_t ChunkSize = size_t(1) << ChunkShift;
|
|
const size_t ChunkMask = ChunkSize - 1;
|
|
|
|
const size_t ArenaShift = PageShift;
|
|
const size_t ArenaSize = PageSize;
|
|
const size_t ArenaMask = ArenaSize - 1;
|
|
|
|
/*
|
|
* This is the maximum number of arenas we allow in the FreeCommitted state
|
|
* before we trigger a GC_SHRINK to release free arenas to the OS.
|
|
*/
|
|
const static uint32_t FreeCommittedArenasThreshold = (32 << 20) / ArenaSize;
|
|
|
|
/*
|
|
* The mark bitmap has one bit per each GC cell. For multi-cell GC things this
|
|
* wastes space but allows to avoid expensive devisions by thing's size when
|
|
* accessing the bitmap. In addition this allows to use some bits for colored
|
|
* marking during the cycle GC.
|
|
*/
|
|
const size_t ArenaCellCount = size_t(1) << (ArenaShift - Cell::CellShift);
|
|
const size_t ArenaBitmapBits = ArenaCellCount;
|
|
const size_t ArenaBitmapBytes = ArenaBitmapBits / 8;
|
|
const size_t ArenaBitmapWords = ArenaBitmapBits / JS_BITS_PER_WORD;
|
|
|
|
/*
|
|
* A FreeSpan represents a contiguous sequence of free cells in an Arena.
|
|
* |first| is the address of the first free cell in the span. |last| is the
|
|
* address of the last free cell in the span. This last cell holds a FreeSpan
|
|
* data structure for the next span unless this is the last span on the list
|
|
* of spans in the arena. For this last span |last| points to the last byte of
|
|
* the last thing in the arena and no linkage is stored there, so
|
|
* |last| == arenaStart + ArenaSize - 1. If the space at the arena end is
|
|
* fully used this last span is empty and |first| == |last + 1|.
|
|
*
|
|
* Thus |first| < |last| implies that we have either the last span with at least
|
|
* one element or that the span is not the last and contains at least 2
|
|
* elements. In both cases to allocate a thing from this span we need simply
|
|
* to increment |first| by the allocation size.
|
|
*
|
|
* |first| == |last| implies that we have a one element span that records the
|
|
* next span. So to allocate from it we need to update the span list head
|
|
* with a copy of the span stored at |last| address so the following
|
|
* allocations will use that span.
|
|
*
|
|
* |first| > |last| implies that we have an empty last span and the arena is
|
|
* fully used.
|
|
*
|
|
* Also only for the last span (|last| & 1)! = 0 as all allocation sizes are
|
|
* multiples of Cell::CellSize.
|
|
*/
|
|
struct FreeSpan {
|
|
uintptr_t first;
|
|
uintptr_t last;
|
|
|
|
public:
|
|
FreeSpan() {}
|
|
|
|
FreeSpan(uintptr_t first, uintptr_t last)
|
|
: first(first), last(last) {
|
|
checkSpan();
|
|
}
|
|
|
|
/*
|
|
* To minimize the size of the arena header the first span is encoded
|
|
* there as offsets from the arena start.
|
|
*/
|
|
static size_t encodeOffsets(size_t firstOffset, size_t lastOffset) {
|
|
/* Check that we can pack the offsets into uint16. */
|
|
JS_STATIC_ASSERT(ArenaShift < 16);
|
|
JS_ASSERT(firstOffset <= ArenaSize);
|
|
JS_ASSERT(lastOffset < ArenaSize);
|
|
JS_ASSERT(firstOffset <= ((lastOffset + 1) & ~size_t(1)));
|
|
return firstOffset | (lastOffset << 16);
|
|
}
|
|
|
|
/*
|
|
* Encoded offsets for a full arena when its first span is the last one
|
|
* and empty.
|
|
*/
|
|
static const size_t FullArenaOffsets = ArenaSize | ((ArenaSize - 1) << 16);
|
|
|
|
static FreeSpan decodeOffsets(uintptr_t arenaAddr, size_t offsets) {
|
|
JS_ASSERT(!(arenaAddr & ArenaMask));
|
|
|
|
size_t firstOffset = offsets & 0xFFFF;
|
|
size_t lastOffset = offsets >> 16;
|
|
JS_ASSERT(firstOffset <= ArenaSize);
|
|
JS_ASSERT(lastOffset < ArenaSize);
|
|
|
|
/*
|
|
* We must not use | when calculating first as firstOffset is
|
|
* ArenaMask + 1 for the empty span.
|
|
*/
|
|
return FreeSpan(arenaAddr + firstOffset, arenaAddr | lastOffset);
|
|
}
|
|
|
|
void initAsEmpty(uintptr_t arenaAddr = 0) {
|
|
JS_ASSERT(!(arenaAddr & ArenaMask));
|
|
first = arenaAddr + ArenaSize;
|
|
last = arenaAddr | (ArenaSize - 1);
|
|
JS_ASSERT(isEmpty());
|
|
}
|
|
|
|
bool isEmpty() const {
|
|
checkSpan();
|
|
return first > last;
|
|
}
|
|
|
|
bool hasNext() const {
|
|
checkSpan();
|
|
return !(last & uintptr_t(1));
|
|
}
|
|
|
|
const FreeSpan *nextSpan() const {
|
|
JS_ASSERT(hasNext());
|
|
return reinterpret_cast<FreeSpan *>(last);
|
|
}
|
|
|
|
FreeSpan *nextSpanUnchecked(size_t thingSize) const {
|
|
#ifdef DEBUG
|
|
uintptr_t lastOffset = last & ArenaMask;
|
|
JS_ASSERT(!(lastOffset & 1));
|
|
JS_ASSERT((ArenaSize - lastOffset) % thingSize == 0);
|
|
#endif
|
|
return reinterpret_cast<FreeSpan *>(last);
|
|
}
|
|
|
|
uintptr_t arenaAddressUnchecked() const {
|
|
return last & ~ArenaMask;
|
|
}
|
|
|
|
uintptr_t arenaAddress() const {
|
|
checkSpan();
|
|
return arenaAddressUnchecked();
|
|
}
|
|
|
|
ArenaHeader *arenaHeader() const {
|
|
return reinterpret_cast<ArenaHeader *>(arenaAddress());
|
|
}
|
|
|
|
bool isSameNonEmptySpan(const FreeSpan *another) const {
|
|
JS_ASSERT(!isEmpty());
|
|
JS_ASSERT(!another->isEmpty());
|
|
return first == another->first && last == another->last;
|
|
}
|
|
|
|
bool isWithinArena(uintptr_t arenaAddr) const {
|
|
JS_ASSERT(!(arenaAddr & ArenaMask));
|
|
|
|
/* Return true for the last empty span as well. */
|
|
return arenaAddress() == arenaAddr;
|
|
}
|
|
|
|
size_t encodeAsOffsets() const {
|
|
/*
|
|
* We must use first - arenaAddress(), not first & ArenaMask as
|
|
* first == ArenaMask + 1 for an empty span.
|
|
*/
|
|
uintptr_t arenaAddr = arenaAddress();
|
|
return encodeOffsets(first - arenaAddr, last & ArenaMask);
|
|
}
|
|
|
|
/* See comments before FreeSpan for details. */
|
|
JS_ALWAYS_INLINE void *allocate(size_t thingSize) {
|
|
JS_ASSERT(thingSize % Cell::CellSize == 0);
|
|
checkSpan();
|
|
uintptr_t thing = first;
|
|
if (thing < last) {
|
|
/* Bump-allocate from the current span. */
|
|
first = thing + thingSize;
|
|
} else if (JS_LIKELY(thing == last)) {
|
|
/*
|
|
* Move to the next span. We use JS_LIKELY as without PGO
|
|
* compilers mis-predict == here as unlikely to succeed.
|
|
*/
|
|
*this = *reinterpret_cast<FreeSpan *>(thing);
|
|
} else {
|
|
return NULL;
|
|
}
|
|
checkSpan();
|
|
return reinterpret_cast<void *>(thing);
|
|
}
|
|
|
|
/* A version of allocate when we know that the span is not empty. */
|
|
JS_ALWAYS_INLINE void *infallibleAllocate(size_t thingSize) {
|
|
JS_ASSERT(thingSize % Cell::CellSize == 0);
|
|
checkSpan();
|
|
uintptr_t thing = first;
|
|
if (thing < last) {
|
|
first = thing + thingSize;
|
|
} else {
|
|
JS_ASSERT(thing == last);
|
|
*this = *reinterpret_cast<FreeSpan *>(thing);
|
|
}
|
|
checkSpan();
|
|
return reinterpret_cast<void *>(thing);
|
|
}
|
|
|
|
/*
|
|
* Allocate from a newly allocated arena. We do not move the free list
|
|
* from the arena. Rather we set the arena up as fully used during the
|
|
* initialization so to allocate we simply return the first thing in the
|
|
* arena and set the free list to point to the second.
|
|
*/
|
|
JS_ALWAYS_INLINE void *allocateFromNewArena(uintptr_t arenaAddr, size_t firstThingOffset,
|
|
size_t thingSize) {
|
|
JS_ASSERT(!(arenaAddr & ArenaMask));
|
|
uintptr_t thing = arenaAddr | firstThingOffset;
|
|
first = thing + thingSize;
|
|
last = arenaAddr | ArenaMask;
|
|
checkSpan();
|
|
return reinterpret_cast<void *>(thing);
|
|
}
|
|
|
|
void checkSpan() const {
|
|
#ifdef DEBUG
|
|
/* We do not allow spans at the end of the address space. */
|
|
JS_ASSERT(last != uintptr_t(-1));
|
|
JS_ASSERT(first);
|
|
JS_ASSERT(last);
|
|
JS_ASSERT(first - 1 <= last);
|
|
uintptr_t arenaAddr = arenaAddressUnchecked();
|
|
if (last & 1) {
|
|
/* The span is the last. */
|
|
JS_ASSERT((last & ArenaMask) == ArenaMask);
|
|
|
|
if (first - 1 == last) {
|
|
/* The span is last and empty. The above start != 0 check
|
|
* implies that we are not at the end of the address space.
|
|
*/
|
|
return;
|
|
}
|
|
size_t spanLength = last - first + 1;
|
|
JS_ASSERT(spanLength % Cell::CellSize == 0);
|
|
|
|
/* Start and end must belong to the same arena. */
|
|
JS_ASSERT((first & ~ArenaMask) == arenaAddr);
|
|
return;
|
|
}
|
|
|
|
/* The span is not the last and we have more spans to follow. */
|
|
JS_ASSERT(first <= last);
|
|
size_t spanLengthWithoutOneThing = last - first;
|
|
JS_ASSERT(spanLengthWithoutOneThing % Cell::CellSize == 0);
|
|
|
|
JS_ASSERT((first & ~ArenaMask) == arenaAddr);
|
|
|
|
/*
|
|
* If there is not enough space before the arena end to allocate one
|
|
* more thing, then the span must be marked as the last one to avoid
|
|
* storing useless empty span reference.
|
|
*/
|
|
size_t beforeTail = ArenaSize - (last & ArenaMask);
|
|
JS_ASSERT(beforeTail >= sizeof(FreeSpan) + Cell::CellSize);
|
|
|
|
FreeSpan *next = reinterpret_cast<FreeSpan *>(last);
|
|
|
|
/*
|
|
* The GC things on the list of free spans come from one arena
|
|
* and the spans are linked in ascending address order with
|
|
* at least one non-free thing between spans.
|
|
*/
|
|
JS_ASSERT(last < next->first);
|
|
JS_ASSERT(arenaAddr == next->arenaAddressUnchecked());
|
|
|
|
if (next->first > next->last) {
|
|
/*
|
|
* The next span is the empty span that terminates the list for
|
|
* arenas that do not have any free things at the end.
|
|
*/
|
|
JS_ASSERT(next->first - 1 == next->last);
|
|
JS_ASSERT(arenaAddr + ArenaSize == next->first);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
};
|
|
|
|
/* Every arena has a header. */
|
|
struct ArenaHeader {
|
|
friend struct FreeLists;
|
|
|
|
JSCompartment *compartment;
|
|
|
|
/*
|
|
* ArenaHeader::next has two purposes: when unallocated, it points to the
|
|
* next available Arena's header. When allocated, it points to the next
|
|
* arena of the same size class and compartment.
|
|
*/
|
|
ArenaHeader *next;
|
|
|
|
private:
|
|
/*
|
|
* The first span of free things in the arena. We encode it as the start
|
|
* and end offsets within the arena, not as FreeSpan structure, to
|
|
* minimize the header size.
|
|
*/
|
|
size_t firstFreeSpanOffsets;
|
|
|
|
/*
|
|
* One of AllocKind constants or FINALIZE_LIMIT when the arena does not
|
|
* contain any GC things and is on the list of empty arenas in the GC
|
|
* chunk. The latter allows to quickly check if the arena is allocated
|
|
* during the conservative GC scanning without searching the arena in the
|
|
* list.
|
|
*/
|
|
size_t allocKind : 8;
|
|
|
|
/*
|
|
* When recursive marking uses too much stack the marking is delayed and
|
|
* the corresponding arenas are put into a stack using the following field
|
|
* as a linkage. To distinguish the bottom of the stack from the arenas
|
|
* not present in the stack we use an extra flag to tag arenas on the
|
|
* stack.
|
|
*
|
|
* Delayed marking is also used for arenas that we allocate into during an
|
|
* incremental GC. In this case, we intend to mark all the objects in the
|
|
* arena, and it's faster to do this marking in bulk.
|
|
*
|
|
* To minimize the ArenaHeader size we record the next delayed marking
|
|
* linkage as arenaAddress() >> ArenaShift and pack it with the allocKind
|
|
* field and hasDelayedMarking flag. We use 8 bits for the allocKind, not
|
|
* ArenaShift - 1, so the compiler can use byte-level memory instructions
|
|
* to access it.
|
|
*/
|
|
public:
|
|
size_t hasDelayedMarking : 1;
|
|
size_t allocatedDuringIncremental : 1;
|
|
size_t markOverflow : 1;
|
|
size_t nextDelayedMarking : JS_BITS_PER_WORD - 8 - 1 - 1 - 1;
|
|
|
|
static void staticAsserts() {
|
|
/* We must be able to fit the allockind into uint8_t. */
|
|
JS_STATIC_ASSERT(FINALIZE_LIMIT <= 255);
|
|
|
|
/*
|
|
* nextDelayedMarkingpacking assumes that ArenaShift has enough bits
|
|
* to cover allocKind and hasDelayedMarking.
|
|
*/
|
|
JS_STATIC_ASSERT(ArenaShift >= 8 + 1 + 1 + 1);
|
|
}
|
|
|
|
inline uintptr_t address() const;
|
|
inline Chunk *chunk() const;
|
|
|
|
bool allocated() const {
|
|
JS_ASSERT(allocKind <= size_t(FINALIZE_LIMIT));
|
|
return allocKind < size_t(FINALIZE_LIMIT);
|
|
}
|
|
|
|
void init(JSCompartment *comp, AllocKind kind) {
|
|
JS_ASSERT(!allocated());
|
|
JS_ASSERT(!markOverflow);
|
|
JS_ASSERT(!allocatedDuringIncremental);
|
|
JS_ASSERT(!hasDelayedMarking);
|
|
compartment = comp;
|
|
|
|
JS_STATIC_ASSERT(FINALIZE_LIMIT <= 255);
|
|
allocKind = size_t(kind);
|
|
|
|
/* See comments in FreeSpan::allocateFromNewArena. */
|
|
firstFreeSpanOffsets = FreeSpan::FullArenaOffsets;
|
|
}
|
|
|
|
void setAsNotAllocated() {
|
|
allocKind = size_t(FINALIZE_LIMIT);
|
|
markOverflow = 0;
|
|
allocatedDuringIncremental = 0;
|
|
hasDelayedMarking = 0;
|
|
nextDelayedMarking = 0;
|
|
}
|
|
|
|
uintptr_t arenaAddress() const {
|
|
return address();
|
|
}
|
|
|
|
Arena *getArena() {
|
|
return reinterpret_cast<Arena *>(arenaAddress());
|
|
}
|
|
|
|
AllocKind getAllocKind() const {
|
|
JS_ASSERT(allocated());
|
|
return AllocKind(allocKind);
|
|
}
|
|
|
|
inline size_t getThingSize() const;
|
|
|
|
bool hasFreeThings() const {
|
|
return firstFreeSpanOffsets != FreeSpan::FullArenaOffsets;
|
|
}
|
|
|
|
inline bool isEmpty() const;
|
|
|
|
void setAsFullyUsed() {
|
|
firstFreeSpanOffsets = FreeSpan::FullArenaOffsets;
|
|
}
|
|
|
|
FreeSpan getFirstFreeSpan() const {
|
|
#ifdef DEBUG
|
|
checkSynchronizedWithFreeList();
|
|
#endif
|
|
return FreeSpan::decodeOffsets(arenaAddress(), firstFreeSpanOffsets);
|
|
}
|
|
|
|
void setFirstFreeSpan(const FreeSpan *span) {
|
|
JS_ASSERT(span->isWithinArena(arenaAddress()));
|
|
firstFreeSpanOffsets = span->encodeAsOffsets();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void checkSynchronizedWithFreeList() const;
|
|
#endif
|
|
|
|
inline ArenaHeader *getNextDelayedMarking() const;
|
|
inline void setNextDelayedMarking(ArenaHeader *aheader);
|
|
};
|
|
|
|
struct Arena {
|
|
/*
|
|
* Layout of an arena:
|
|
* An arena is 4K in size and 4K-aligned. It starts with the ArenaHeader
|
|
* descriptor followed by some pad bytes. The remainder of the arena is
|
|
* filled with the array of T things. The pad bytes ensure that the thing
|
|
* array ends exactly at the end of the arena.
|
|
*
|
|
* +-------------+-----+----+----+-----+----+
|
|
* | ArenaHeader | pad | T0 | T1 | ... | Tn |
|
|
* +-------------+-----+----+----+-----+----+
|
|
*
|
|
* <----------------------------------------> = ArenaSize bytes
|
|
* <-------------------> = first thing offset
|
|
*/
|
|
ArenaHeader aheader;
|
|
uint8_t data[ArenaSize - sizeof(ArenaHeader)];
|
|
|
|
private:
|
|
static JS_FRIEND_DATA(const uint32_t) ThingSizes[];
|
|
static JS_FRIEND_DATA(const uint32_t) FirstThingOffsets[];
|
|
|
|
public:
|
|
static void staticAsserts();
|
|
|
|
static size_t thingSize(AllocKind kind) {
|
|
return ThingSizes[kind];
|
|
}
|
|
|
|
static size_t firstThingOffset(AllocKind kind) {
|
|
return FirstThingOffsets[kind];
|
|
}
|
|
|
|
static size_t thingsPerArena(size_t thingSize) {
|
|
JS_ASSERT(thingSize % Cell::CellSize == 0);
|
|
|
|
/* We should be able to fit FreeSpan in any GC thing. */
|
|
JS_ASSERT(thingSize >= sizeof(FreeSpan));
|
|
|
|
return (ArenaSize - sizeof(ArenaHeader)) / thingSize;
|
|
}
|
|
|
|
static size_t thingsSpan(size_t thingSize) {
|
|
return thingsPerArena(thingSize) * thingSize;
|
|
}
|
|
|
|
static bool isAligned(uintptr_t thing, size_t thingSize) {
|
|
/* Things ends at the arena end. */
|
|
uintptr_t tailOffset = (ArenaSize - thing) & ArenaMask;
|
|
return tailOffset % thingSize == 0;
|
|
}
|
|
|
|
uintptr_t address() const {
|
|
return aheader.address();
|
|
}
|
|
|
|
uintptr_t thingsStart(AllocKind thingKind) {
|
|
return address() | firstThingOffset(thingKind);
|
|
}
|
|
|
|
uintptr_t thingsEnd() {
|
|
return address() + ArenaSize;
|
|
}
|
|
|
|
template <typename T>
|
|
bool finalize(JSContext *cx, AllocKind thingKind, size_t thingSize, bool background);
|
|
};
|
|
|
|
/* The chunk header (located at the end of the chunk to preserve arena alignment). */
|
|
struct ChunkInfo {
|
|
Chunk *next;
|
|
Chunk **prevp;
|
|
|
|
/* Free arenas are linked together with aheader.next. */
|
|
ArenaHeader *freeArenasHead;
|
|
|
|
/*
|
|
* Decommitted arenas are tracked by a bitmap in the chunk header. We use
|
|
* this offset to start our search iteration close to a decommitted arena
|
|
* that we can allocate.
|
|
*/
|
|
uint32_t lastDecommittedArenaOffset;
|
|
|
|
/* Number of free arenas, either committed or decommitted. */
|
|
uint32_t numArenasFree;
|
|
|
|
/* Number of free, committed arenas. */
|
|
uint32_t numArenasFreeCommitted;
|
|
|
|
/* Number of GC cycles this chunk has survived. */
|
|
uint32_t age;
|
|
};
|
|
|
|
/*
|
|
* Calculating ArenasPerChunk:
|
|
*
|
|
* In order to figure out how many Arenas will fit in a chunk, we need to know
|
|
* how much extra space is available after we allocate the header data. This
|
|
* is a problem because the header size depends on the number of arenas in the
|
|
* chunk. The two dependent fields are bitmap and decommittedArenas.
|
|
*
|
|
* For the mark bitmap, we know that each arena will use a fixed number of full
|
|
* bytes: ArenaBitmapBytes. The full size of the header data is this number
|
|
* multiplied by the eventual number of arenas we have in the header. We,
|
|
* conceptually, distribute this header data among the individual arenas and do
|
|
* not include it in the header. This way we do not have to worry about its
|
|
* variable size: it gets attached to the variable number we are computing.
|
|
*
|
|
* For the decommitted arena bitmap, we only have 1 bit per arena, so this
|
|
* technique will not work. Instead, we observe that we do not have enough
|
|
* header info to fill 8 full arenas: it is currently 4 on 64bit, less on
|
|
* 32bit. Thus, with current numbers, we need 64 bytes for decommittedArenas.
|
|
* This will not become 63 bytes unless we double the data required in the
|
|
* header. Therefore, we just compute the number of bytes required to track
|
|
* every possible arena and do not worry about slop bits, since there are too
|
|
* few to usefully allocate.
|
|
*
|
|
* To actually compute the number of arenas we can allocate in a chunk, we
|
|
* divide the amount of available space less the header info (not including
|
|
* the mark bitmap which is distributed into the arena size) by the size of
|
|
* the arena (with the mark bitmap bytes it uses).
|
|
*/
|
|
const size_t BytesPerArenaWithHeader = ArenaSize + ArenaBitmapBytes;
|
|
const size_t ChunkDecommitBitmapBytes = ChunkSize / ArenaSize / JS_BITS_PER_BYTE;
|
|
const size_t ChunkBytesAvailable = ChunkSize - sizeof(ChunkInfo) - ChunkDecommitBitmapBytes;
|
|
const size_t ArenasPerChunk = ChunkBytesAvailable / BytesPerArenaWithHeader;
|
|
|
|
/* A chunk bitmap contains enough mark bits for all the cells in a chunk. */
|
|
struct ChunkBitmap {
|
|
uintptr_t bitmap[ArenaBitmapWords * ArenasPerChunk];
|
|
|
|
JS_ALWAYS_INLINE void getMarkWordAndMask(const Cell *cell, uint32_t color,
|
|
uintptr_t **wordp, uintptr_t *maskp);
|
|
|
|
JS_ALWAYS_INLINE bool isMarked(const Cell *cell, uint32_t color) {
|
|
uintptr_t *word, mask;
|
|
getMarkWordAndMask(cell, color, &word, &mask);
|
|
return *word & mask;
|
|
}
|
|
|
|
JS_ALWAYS_INLINE bool markIfUnmarked(const Cell *cell, uint32_t color) {
|
|
uintptr_t *word, mask;
|
|
getMarkWordAndMask(cell, BLACK, &word, &mask);
|
|
if (*word & mask)
|
|
return false;
|
|
*word |= mask;
|
|
if (color != BLACK) {
|
|
/*
|
|
* We use getMarkWordAndMask to recalculate both mask and word as
|
|
* doing just mask << color may overflow the mask.
|
|
*/
|
|
getMarkWordAndMask(cell, color, &word, &mask);
|
|
if (*word & mask)
|
|
return false;
|
|
*word |= mask;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
JS_ALWAYS_INLINE void unmark(const Cell *cell, uint32_t color) {
|
|
uintptr_t *word, mask;
|
|
getMarkWordAndMask(cell, color, &word, &mask);
|
|
*word &= ~mask;
|
|
}
|
|
|
|
void clear() {
|
|
PodArrayZero(bitmap);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool noBitsSet(ArenaHeader *aheader) {
|
|
/*
|
|
* We assume that the part of the bitmap corresponding to the arena
|
|
* has the exact number of words so we do not need to deal with a word
|
|
* that covers bits from two arenas.
|
|
*/
|
|
JS_STATIC_ASSERT(ArenaBitmapBits == ArenaBitmapWords * JS_BITS_PER_WORD);
|
|
|
|
uintptr_t *word, unused;
|
|
getMarkWordAndMask(reinterpret_cast<Cell *>(aheader->address()), BLACK, &word, &unused);
|
|
for (size_t i = 0; i != ArenaBitmapWords; i++) {
|
|
if (word[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
JS_STATIC_ASSERT(ArenaBitmapBytes * ArenasPerChunk == sizeof(ChunkBitmap));
|
|
|
|
typedef BitArray<ArenasPerChunk> PerArenaBitmap;
|
|
|
|
const size_t ChunkPadSize = ChunkSize
|
|
- (sizeof(Arena) * ArenasPerChunk)
|
|
- sizeof(ChunkBitmap)
|
|
- sizeof(PerArenaBitmap)
|
|
- sizeof(ChunkInfo);
|
|
JS_STATIC_ASSERT(ChunkPadSize < BytesPerArenaWithHeader);
|
|
|
|
/*
|
|
* Chunks contain arenas and associated data structures (mark bitmap, delayed
|
|
* marking state).
|
|
*/
|
|
struct Chunk {
|
|
Arena arenas[ArenasPerChunk];
|
|
|
|
/* Pad to full size to ensure cache alignment of ChunkInfo. */
|
|
uint8_t padding[ChunkPadSize];
|
|
|
|
ChunkBitmap bitmap;
|
|
PerArenaBitmap decommittedArenas;
|
|
ChunkInfo info;
|
|
|
|
static Chunk *fromAddress(uintptr_t addr) {
|
|
addr &= ~ChunkMask;
|
|
return reinterpret_cast<Chunk *>(addr);
|
|
}
|
|
|
|
static bool withinArenasRange(uintptr_t addr) {
|
|
uintptr_t offset = addr & ChunkMask;
|
|
return offset < ArenasPerChunk * ArenaSize;
|
|
}
|
|
|
|
static size_t arenaIndex(uintptr_t addr) {
|
|
JS_ASSERT(withinArenasRange(addr));
|
|
return (addr & ChunkMask) >> ArenaShift;
|
|
}
|
|
|
|
uintptr_t address() const {
|
|
uintptr_t addr = reinterpret_cast<uintptr_t>(this);
|
|
JS_ASSERT(!(addr & ChunkMask));
|
|
return addr;
|
|
}
|
|
|
|
bool unused() const {
|
|
return info.numArenasFree == ArenasPerChunk;
|
|
}
|
|
|
|
bool hasAvailableArenas() const {
|
|
return info.numArenasFree != 0;
|
|
}
|
|
|
|
inline void addToAvailableList(JSCompartment *compartment);
|
|
inline void insertToAvailableList(Chunk **insertPoint);
|
|
inline void removeFromAvailableList();
|
|
|
|
ArenaHeader *allocateArena(JSCompartment *comp, AllocKind kind);
|
|
|
|
void releaseArena(ArenaHeader *aheader);
|
|
|
|
static Chunk *allocate(JSRuntime *rt);
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
static inline void release(JSRuntime *rt, Chunk *chunk);
|
|
static inline void releaseList(JSRuntime *rt, Chunk *chunkListHead);
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
inline void prepareToBeFreed(JSRuntime *rt);
|
|
|
|
/*
|
|
* Assuming that the info.prevp points to the next field of the previous
|
|
* chunk in a doubly-linked list, get that chunk.
|
|
*/
|
|
Chunk *getPrevious() {
|
|
JS_ASSERT(info.prevp);
|
|
return fromPointerToNext(info.prevp);
|
|
}
|
|
|
|
/* Get the chunk from a pointer to its info.next field. */
|
|
static Chunk *fromPointerToNext(Chunk **nextFieldPtr) {
|
|
uintptr_t addr = reinterpret_cast<uintptr_t>(nextFieldPtr);
|
|
JS_ASSERT((addr & ChunkMask) == offsetof(Chunk, info.next));
|
|
return reinterpret_cast<Chunk *>(addr - offsetof(Chunk, info.next));
|
|
}
|
|
|
|
private:
|
|
inline void init();
|
|
|
|
/* Search for a decommitted arena to allocate. */
|
|
unsigned findDecommittedArenaOffset();
|
|
ArenaHeader* fetchNextDecommittedArena();
|
|
|
|
public:
|
|
/* Unlink and return the freeArenasHead. */
|
|
inline ArenaHeader* fetchNextFreeArena(JSRuntime *rt);
|
|
|
|
inline void addArenaToFreeList(JSRuntime *rt, ArenaHeader *aheader);
|
|
};
|
|
|
|
JS_STATIC_ASSERT(sizeof(Chunk) == ChunkSize);
|
|
|
|
class ChunkPool {
|
|
Chunk *emptyChunkListHead;
|
|
size_t emptyCount;
|
|
|
|
public:
|
|
ChunkPool()
|
|
: emptyChunkListHead(NULL),
|
|
emptyCount(0) { }
|
|
|
|
size_t getEmptyCount() const {
|
|
return emptyCount;
|
|
}
|
|
|
|
inline bool wantBackgroundAllocation(JSRuntime *rt) const;
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
inline Chunk *get(JSRuntime *rt);
|
|
|
|
/* Must be called either during the GC or with the GC lock taken. */
|
|
inline void put(Chunk *chunk);
|
|
|
|
/*
|
|
* Return the list of chunks that can be released outside the GC lock.
|
|
* Must be called either during the GC or with the GC lock taken.
|
|
*/
|
|
Chunk *expire(JSRuntime *rt, bool releaseAll);
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
void expireAndFree(JSRuntime *rt, bool releaseAll);
|
|
|
|
/* Must be called either during the GC or with the GC lock taken. */
|
|
JS_FRIEND_API(int64_t) countCleanDecommittedArenas(JSRuntime *rt);
|
|
};
|
|
|
|
inline uintptr_t
|
|
Cell::address() const
|
|
{
|
|
uintptr_t addr = uintptr_t(this);
|
|
JS_ASSERT(addr % Cell::CellSize == 0);
|
|
JS_ASSERT(Chunk::withinArenasRange(addr));
|
|
return addr;
|
|
}
|
|
|
|
inline ArenaHeader *
|
|
Cell::arenaHeader() const
|
|
{
|
|
uintptr_t addr = address();
|
|
addr &= ~ArenaMask;
|
|
return reinterpret_cast<ArenaHeader *>(addr);
|
|
}
|
|
|
|
Chunk *
|
|
Cell::chunk() const
|
|
{
|
|
uintptr_t addr = uintptr_t(this);
|
|
JS_ASSERT(addr % Cell::CellSize == 0);
|
|
addr &= ~(ChunkSize - 1);
|
|
return reinterpret_cast<Chunk *>(addr);
|
|
}
|
|
|
|
AllocKind
|
|
Cell::getAllocKind() const
|
|
{
|
|
return arenaHeader()->getAllocKind();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
inline bool
|
|
Cell::isAligned() const
|
|
{
|
|
return Arena::isAligned(address(), arenaHeader()->getThingSize());
|
|
}
|
|
#endif
|
|
|
|
inline uintptr_t
|
|
ArenaHeader::address() const
|
|
{
|
|
uintptr_t addr = reinterpret_cast<uintptr_t>(this);
|
|
JS_ASSERT(!(addr & ArenaMask));
|
|
JS_ASSERT(Chunk::withinArenasRange(addr));
|
|
return addr;
|
|
}
|
|
|
|
inline Chunk *
|
|
ArenaHeader::chunk() const
|
|
{
|
|
return Chunk::fromAddress(address());
|
|
}
|
|
|
|
inline bool
|
|
ArenaHeader::isEmpty() const
|
|
{
|
|
/* Arena is empty if its first span covers the whole arena. */
|
|
JS_ASSERT(allocated());
|
|
size_t firstThingOffset = Arena::firstThingOffset(getAllocKind());
|
|
return firstFreeSpanOffsets == FreeSpan::encodeOffsets(firstThingOffset, ArenaMask);
|
|
}
|
|
|
|
inline size_t
|
|
ArenaHeader::getThingSize() const
|
|
{
|
|
JS_ASSERT(allocated());
|
|
return Arena::thingSize(getAllocKind());
|
|
}
|
|
|
|
inline ArenaHeader *
|
|
ArenaHeader::getNextDelayedMarking() const
|
|
{
|
|
return &reinterpret_cast<Arena *>(nextDelayedMarking << ArenaShift)->aheader;
|
|
}
|
|
|
|
inline void
|
|
ArenaHeader::setNextDelayedMarking(ArenaHeader *aheader)
|
|
{
|
|
JS_ASSERT(!(uintptr_t(aheader) & ArenaMask));
|
|
hasDelayedMarking = 1;
|
|
nextDelayedMarking = aheader->arenaAddress() >> ArenaShift;
|
|
}
|
|
|
|
JS_ALWAYS_INLINE void
|
|
ChunkBitmap::getMarkWordAndMask(const Cell *cell, uint32_t color,
|
|
uintptr_t **wordp, uintptr_t *maskp)
|
|
{
|
|
size_t bit = (cell->address() & ChunkMask) / Cell::CellSize + color;
|
|
JS_ASSERT(bit < ArenaBitmapBits * ArenasPerChunk);
|
|
*maskp = uintptr_t(1) << (bit % JS_BITS_PER_WORD);
|
|
*wordp = &bitmap[bit / JS_BITS_PER_WORD];
|
|
}
|
|
|
|
static void
|
|
AssertValidColor(const void *thing, uint32_t color)
|
|
{
|
|
#ifdef DEBUG
|
|
ArenaHeader *aheader = reinterpret_cast<const js::gc::Cell *>(thing)->arenaHeader();
|
|
JS_ASSERT_IF(color, color < aheader->getThingSize() / Cell::CellSize);
|
|
#endif
|
|
}
|
|
|
|
inline bool
|
|
Cell::isMarked(uint32_t color) const
|
|
{
|
|
AssertValidColor(this, color);
|
|
return chunk()->bitmap.isMarked(this, color);
|
|
}
|
|
|
|
bool
|
|
Cell::markIfUnmarked(uint32_t color) const
|
|
{
|
|
AssertValidColor(this, color);
|
|
return chunk()->bitmap.markIfUnmarked(this, color);
|
|
}
|
|
|
|
void
|
|
Cell::unmark(uint32_t color) const
|
|
{
|
|
JS_ASSERT(color != BLACK);
|
|
AssertValidColor(this, color);
|
|
chunk()->bitmap.unmark(this, color);
|
|
}
|
|
|
|
JSCompartment *
|
|
Cell::compartment() const
|
|
{
|
|
return arenaHeader()->compartment;
|
|
}
|
|
|
|
static inline JSGCTraceKind
|
|
MapAllocToTraceKind(AllocKind thingKind)
|
|
{
|
|
static const JSGCTraceKind map[FINALIZE_LIMIT] = {
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT0 */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT0_BACKGROUND */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT2 */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT2_BACKGROUND */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT4 */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT4_BACKGROUND */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT8 */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT8_BACKGROUND */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT12 */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT12_BACKGROUND */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT16 */
|
|
JSTRACE_OBJECT, /* FINALIZE_OBJECT16_BACKGROUND */
|
|
JSTRACE_SCRIPT, /* FINALIZE_SCRIPT */
|
|
JSTRACE_SHAPE, /* FINALIZE_SHAPE */
|
|
JSTRACE_BASE_SHAPE, /* FINALIZE_BASE_SHAPE */
|
|
JSTRACE_TYPE_OBJECT,/* FINALIZE_TYPE_OBJECT */
|
|
#if JS_HAS_XML_SUPPORT /* FINALIZE_XML */
|
|
JSTRACE_XML,
|
|
#endif
|
|
JSTRACE_STRING, /* FINALIZE_SHORT_STRING */
|
|
JSTRACE_STRING, /* FINALIZE_STRING */
|
|
JSTRACE_STRING, /* FINALIZE_EXTERNAL_STRING */
|
|
};
|
|
return map[thingKind];
|
|
}
|
|
|
|
inline JSGCTraceKind
|
|
GetGCThingTraceKind(const void *thing);
|
|
|
|
struct ArenaLists {
|
|
|
|
/*
|
|
* ArenaList::head points to the start of the list. Normally cursor points
|
|
* to the first arena in the list with some free things and all arenas
|
|
* before cursor are fully allocated. However, as the arena currently being
|
|
* allocated from is considered full while its list of free spans is moved
|
|
* into the freeList, during the GC or cell enumeration, when an
|
|
* unallocated freeList is moved back to the arena, we can see an arena
|
|
* with some free cells before the cursor. The cursor is an indirect
|
|
* pointer to allow for efficient list insertion at the cursor point and
|
|
* other list manipulations.
|
|
*/
|
|
struct ArenaList {
|
|
ArenaHeader *head;
|
|
ArenaHeader **cursor;
|
|
|
|
ArenaList() {
|
|
clear();
|
|
}
|
|
|
|
void clear() {
|
|
head = NULL;
|
|
cursor = &head;
|
|
}
|
|
};
|
|
|
|
private:
|
|
/*
|
|
* For each arena kind its free list is represented as the first span with
|
|
* free things. Initially all the spans are initialized as empty. After we
|
|
* find a new arena with available things we move its first free span into
|
|
* the list and set the arena as fully allocated. way we do not need to
|
|
* update the arena header after the initial allocation. When starting the
|
|
* GC we only move the head of the of the list of spans back to the arena
|
|
* only for the arena that was not fully allocated.
|
|
*/
|
|
FreeSpan freeLists[FINALIZE_LIMIT];
|
|
|
|
ArenaList arenaLists[FINALIZE_LIMIT];
|
|
|
|
#ifdef JS_THREADSAFE
|
|
/*
|
|
* The background finalization adds the finalized arenas to the list at
|
|
* the *cursor position. backgroundFinalizeState controls the interaction
|
|
* between the GC lock and the access to the list from the allocation
|
|
* thread.
|
|
*
|
|
* BFS_DONE indicates that the finalizations is not running or cannot
|
|
* affect this arena list. The allocation thread can access the list
|
|
* outside the GC lock.
|
|
*
|
|
* In BFS_RUN and BFS_JUST_FINISHED the allocation thread must take the
|
|
* lock. The former indicates that the finalization still runs. The latter
|
|
* signals that finalization just added to the list finalized arenas. In
|
|
* that case the lock effectively serves as a read barrier to ensure that
|
|
* the allocation thread see all the writes done during finalization.
|
|
*/
|
|
enum BackgroundFinalizeState {
|
|
BFS_DONE,
|
|
BFS_RUN,
|
|
BFS_JUST_FINISHED
|
|
};
|
|
|
|
volatile uintptr_t backgroundFinalizeState[FINALIZE_LIMIT];
|
|
#endif
|
|
|
|
public:
|
|
ArenaLists() {
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i)
|
|
freeLists[i].initAsEmpty();
|
|
#ifdef JS_THREADSAFE
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i)
|
|
backgroundFinalizeState[i] = BFS_DONE;
|
|
#endif
|
|
}
|
|
|
|
~ArenaLists() {
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i) {
|
|
#ifdef JS_THREADSAFE
|
|
/*
|
|
* We can only call this during the shutdown after the last GC when
|
|
* the background finalization is disabled.
|
|
*/
|
|
JS_ASSERT(backgroundFinalizeState[i] == BFS_DONE);
|
|
#endif
|
|
ArenaHeader **headp = &arenaLists[i].head;
|
|
while (ArenaHeader *aheader = *headp) {
|
|
*headp = aheader->next;
|
|
aheader->chunk()->releaseArena(aheader);
|
|
}
|
|
}
|
|
}
|
|
|
|
const FreeSpan *getFreeList(AllocKind thingKind) const {
|
|
return &freeLists[thingKind];
|
|
}
|
|
|
|
ArenaHeader *getFirstArena(AllocKind thingKind) const {
|
|
return arenaLists[thingKind].head;
|
|
}
|
|
|
|
bool arenaListsAreEmpty() const {
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i) {
|
|
#ifdef JS_THREADSAFE
|
|
/*
|
|
* The arena cannot be empty if the background finalization is not yet
|
|
* done.
|
|
*/
|
|
if (backgroundFinalizeState[i] != BFS_DONE)
|
|
return false;
|
|
#endif
|
|
if (arenaLists[i].head)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool checkArenaListAllUnmarked() const {
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i) {
|
|
# ifdef JS_THREADSAFE
|
|
/* The background finalization must have stopped at this point. */
|
|
JS_ASSERT(backgroundFinalizeState[i] == BFS_DONE ||
|
|
backgroundFinalizeState[i] == BFS_JUST_FINISHED);
|
|
# endif
|
|
for (ArenaHeader *aheader = arenaLists[i].head; aheader; aheader = aheader->next) {
|
|
if (!aheader->chunk()->bitmap.noBitsSet(aheader))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef JS_THREADSAFE
|
|
bool doneBackgroundFinalize(AllocKind kind) const {
|
|
return backgroundFinalizeState[kind] == BFS_DONE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Return the free list back to the arena so the GC finalization will not
|
|
* run the finalizers over unitialized bytes from free things.
|
|
*/
|
|
void purge() {
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i) {
|
|
FreeSpan *headSpan = &freeLists[i];
|
|
if (!headSpan->isEmpty()) {
|
|
ArenaHeader *aheader = headSpan->arenaHeader();
|
|
aheader->setFirstFreeSpan(headSpan);
|
|
headSpan->initAsEmpty();
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void prepareForIncrementalGC(JSRuntime *rt);
|
|
|
|
/*
|
|
* Temporarily copy the free list heads to the arenas so the code can see
|
|
* the proper value in ArenaHeader::freeList when accessing the latter
|
|
* outside the GC.
|
|
*/
|
|
void copyFreeListsToArenas() {
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i)
|
|
copyFreeListToArena(AllocKind(i));
|
|
}
|
|
|
|
void copyFreeListToArena(AllocKind thingKind) {
|
|
FreeSpan *headSpan = &freeLists[thingKind];
|
|
if (!headSpan->isEmpty()) {
|
|
ArenaHeader *aheader = headSpan->arenaHeader();
|
|
JS_ASSERT(!aheader->hasFreeThings());
|
|
aheader->setFirstFreeSpan(headSpan);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear the free lists in arenas that were temporarily set there using
|
|
* copyToArenas.
|
|
*/
|
|
void clearFreeListsInArenas() {
|
|
for (size_t i = 0; i != FINALIZE_LIMIT; ++i)
|
|
clearFreeListInArena(AllocKind(i));
|
|
}
|
|
|
|
|
|
void clearFreeListInArena(AllocKind kind) {
|
|
FreeSpan *headSpan = &freeLists[kind];
|
|
if (!headSpan->isEmpty()) {
|
|
ArenaHeader *aheader = headSpan->arenaHeader();
|
|
JS_ASSERT(aheader->getFirstFreeSpan().isSameNonEmptySpan(headSpan));
|
|
aheader->setAsFullyUsed();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that the free list is either empty or were synchronized with the
|
|
* arena using copyToArena().
|
|
*/
|
|
bool isSynchronizedFreeList(AllocKind kind) {
|
|
FreeSpan *headSpan = &freeLists[kind];
|
|
if (headSpan->isEmpty())
|
|
return true;
|
|
ArenaHeader *aheader = headSpan->arenaHeader();
|
|
if (aheader->hasFreeThings()) {
|
|
/*
|
|
* If the arena has a free list, it must be the same as one in
|
|
* lists.
|
|
*/
|
|
JS_ASSERT(aheader->getFirstFreeSpan().isSameNonEmptySpan(headSpan));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
JS_ALWAYS_INLINE void *allocateFromFreeList(AllocKind thingKind, size_t thingSize) {
|
|
return freeLists[thingKind].allocate(thingSize);
|
|
}
|
|
|
|
static void *refillFreeList(JSContext *cx, AllocKind thingKind);
|
|
|
|
void checkEmptyFreeLists() {
|
|
#ifdef DEBUG
|
|
for (size_t i = 0; i < mozilla::ArrayLength(freeLists); ++i)
|
|
JS_ASSERT(freeLists[i].isEmpty());
|
|
#endif
|
|
}
|
|
|
|
void checkEmptyFreeList(AllocKind kind) {
|
|
JS_ASSERT(freeLists[kind].isEmpty());
|
|
}
|
|
|
|
void finalizeObjects(JSContext *cx);
|
|
void finalizeStrings(JSContext *cx);
|
|
void finalizeShapes(JSContext *cx);
|
|
void finalizeScripts(JSContext *cx);
|
|
|
|
#ifdef JS_THREADSAFE
|
|
static void backgroundFinalize(JSContext *cx, ArenaHeader *listHead);
|
|
#endif
|
|
|
|
private:
|
|
inline void finalizeNow(JSContext *cx, AllocKind thingKind);
|
|
inline void finalizeLater(JSContext *cx, AllocKind thingKind);
|
|
|
|
inline void *allocateFromArena(JSCompartment *comp, AllocKind thingKind);
|
|
};
|
|
|
|
/*
|
|
* Initial allocation size for data structures holding chunks is set to hold
|
|
* chunks with total capacity of 16MB to avoid buffer resizes during browser
|
|
* startup.
|
|
*/
|
|
const size_t INITIAL_CHUNK_CAPACITY = 16 * 1024 * 1024 / ChunkSize;
|
|
|
|
/* The number of GC cycles an empty chunk can survive before been released. */
|
|
const size_t MAX_EMPTY_CHUNK_AGE = 4;
|
|
|
|
inline Cell *
|
|
AsCell(JSObject *obj)
|
|
{
|
|
return reinterpret_cast<Cell *>(obj);
|
|
}
|
|
|
|
} /* namespace gc */
|
|
|
|
struct GCPtrHasher
|
|
{
|
|
typedef void *Lookup;
|
|
|
|
static HashNumber hash(void *key) {
|
|
return HashNumber(uintptr_t(key) >> JS_GCTHING_ZEROBITS);
|
|
}
|
|
|
|
static bool match(void *l, void *k) { return l == k; }
|
|
};
|
|
|
|
typedef HashMap<void *, uint32_t, GCPtrHasher, SystemAllocPolicy> GCLocks;
|
|
|
|
struct RootInfo {
|
|
RootInfo() {}
|
|
RootInfo(const char *name, JSGCRootType type) : name(name), type(type) {}
|
|
const char *name;
|
|
JSGCRootType type;
|
|
};
|
|
|
|
typedef js::HashMap<void *,
|
|
RootInfo,
|
|
js::DefaultHasher<void *>,
|
|
js::SystemAllocPolicy> RootedValueMap;
|
|
|
|
} /* namespace js */
|
|
|
|
extern JS_FRIEND_API(JSGCTraceKind)
|
|
js_GetGCThingTraceKind(void *thing);
|
|
|
|
extern JSBool
|
|
js_InitGC(JSRuntime *rt, uint32_t maxbytes);
|
|
|
|
extern void
|
|
js_FinishGC(JSRuntime *rt);
|
|
|
|
extern JSBool
|
|
js_AddRoot(JSContext *cx, js::Value *vp, const char *name);
|
|
|
|
extern JSBool
|
|
js_AddGCThingRoot(JSContext *cx, void **rp, const char *name);
|
|
|
|
#ifdef DEBUG
|
|
extern void
|
|
js_DumpNamedRoots(JSRuntime *rt,
|
|
void (*dump)(const char *name, void *rp, JSGCRootType type, void *data),
|
|
void *data);
|
|
#endif
|
|
|
|
extern uint32_t
|
|
js_MapGCRoots(JSRuntime *rt, JSGCRootMapFun map, void *data);
|
|
|
|
/* Table of pointers with count valid members. */
|
|
typedef struct JSPtrTable {
|
|
size_t count;
|
|
void **array;
|
|
} JSPtrTable;
|
|
|
|
extern JSBool
|
|
js_LockGCThingRT(JSRuntime *rt, void *thing);
|
|
|
|
extern void
|
|
js_UnlockGCThingRT(JSRuntime *rt, void *thing);
|
|
|
|
extern JS_FRIEND_API(bool)
|
|
IsAboutToBeFinalized(const js::gc::Cell *thing);
|
|
|
|
extern bool
|
|
IsAboutToBeFinalized(const js::Value &value);
|
|
|
|
extern bool
|
|
js_IsAddressableGCThing(JSRuntime *rt, uintptr_t w, js::gc::AllocKind *thingKind, void **thing);
|
|
|
|
namespace js {
|
|
|
|
extern void
|
|
MarkCompartmentActive(js::StackFrame *fp);
|
|
|
|
extern void
|
|
TraceRuntime(JSTracer *trc);
|
|
|
|
extern JS_FRIEND_API(void)
|
|
MarkContext(JSTracer *trc, JSContext *acx);
|
|
|
|
/* Must be called with GC lock taken. */
|
|
extern void
|
|
TriggerGC(JSRuntime *rt, js::gcreason::Reason reason);
|
|
|
|
/* Must be called with GC lock taken. */
|
|
extern void
|
|
TriggerCompartmentGC(JSCompartment *comp, js::gcreason::Reason reason);
|
|
|
|
extern void
|
|
MaybeGC(JSContext *cx);
|
|
|
|
extern void
|
|
ShrinkGCBuffers(JSRuntime *rt);
|
|
|
|
/*
|
|
* Kinds of js_GC invocation.
|
|
*/
|
|
typedef enum JSGCInvocationKind {
|
|
/* Normal invocation. */
|
|
GC_NORMAL = 0,
|
|
|
|
/* Minimize GC triggers and release empty GC chunks right away. */
|
|
GC_SHRINK = 1
|
|
} JSGCInvocationKind;
|
|
|
|
/* Pass NULL for |comp| to get a full GC. */
|
|
extern void
|
|
GC(JSContext *cx, JSCompartment *comp, JSGCInvocationKind gckind, js::gcreason::Reason reason);
|
|
|
|
extern void
|
|
GCSlice(JSContext *cx, JSCompartment *comp, JSGCInvocationKind gckind, js::gcreason::Reason reason);
|
|
|
|
extern void
|
|
GCDebugSlice(JSContext *cx, int64_t objCount);
|
|
|
|
} /* namespace js */
|
|
|
|
namespace js {
|
|
|
|
void
|
|
InitTracer(JSTracer *trc, JSRuntime *rt, JSTraceCallback callback);
|
|
|
|
#ifdef JS_THREADSAFE
|
|
|
|
class GCHelperThread {
|
|
enum State {
|
|
IDLE,
|
|
SWEEPING,
|
|
ALLOCATING,
|
|
CANCEL_ALLOCATION,
|
|
SHUTDOWN
|
|
};
|
|
|
|
/*
|
|
* During the finalization we do not free immediately. Rather we add the
|
|
* corresponding pointers to a buffer which we later release on a
|
|
* separated thread.
|
|
*
|
|
* The buffer is implemented as a vector of 64K arrays of pointers, not as
|
|
* a simple vector, to avoid realloc calls during the vector growth and to
|
|
* not bloat the binary size of the inlined freeLater method. Any OOM
|
|
* during buffer growth results in the pointer being freed immediately.
|
|
*/
|
|
static const size_t FREE_ARRAY_SIZE = size_t(1) << 16;
|
|
static const size_t FREE_ARRAY_LENGTH = FREE_ARRAY_SIZE / sizeof(void *);
|
|
|
|
JSRuntime *const rt;
|
|
PRThread *thread;
|
|
PRCondVar *wakeup;
|
|
PRCondVar *done;
|
|
volatile State state;
|
|
|
|
JSContext *finalizationContext;
|
|
bool shrinkFlag;
|
|
|
|
Vector<void **, 16, js::SystemAllocPolicy> freeVector;
|
|
void **freeCursor;
|
|
void **freeCursorEnd;
|
|
|
|
Vector<js::gc::ArenaHeader *, 64, js::SystemAllocPolicy> finalizeVector;
|
|
|
|
bool backgroundAllocation;
|
|
|
|
friend struct js::gc::ArenaLists;
|
|
|
|
JS_FRIEND_API(void)
|
|
replenishAndFreeLater(void *ptr);
|
|
|
|
static void freeElementsAndArray(void **array, void **end) {
|
|
JS_ASSERT(array <= end);
|
|
for (void **p = array; p != end; ++p)
|
|
js::Foreground::free_(*p);
|
|
js::Foreground::free_(array);
|
|
}
|
|
|
|
static void threadMain(void* arg);
|
|
void threadLoop();
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
void doSweep();
|
|
|
|
public:
|
|
GCHelperThread(JSRuntime *rt)
|
|
: rt(rt),
|
|
thread(NULL),
|
|
wakeup(NULL),
|
|
done(NULL),
|
|
state(IDLE),
|
|
finalizationContext(NULL),
|
|
shrinkFlag(false),
|
|
freeCursor(NULL),
|
|
freeCursorEnd(NULL),
|
|
backgroundAllocation(true)
|
|
{ }
|
|
|
|
bool init();
|
|
void finish();
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
void startBackgroundSweep(JSContext *cx, bool shouldShrink);
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
void startBackgroundShrink();
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
void waitBackgroundSweepEnd();
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
void waitBackgroundSweepOrAllocEnd();
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
inline void startBackgroundAllocationIfIdle();
|
|
|
|
bool canBackgroundAllocate() const {
|
|
return backgroundAllocation;
|
|
}
|
|
|
|
void disableBackgroundAllocation() {
|
|
backgroundAllocation = false;
|
|
}
|
|
|
|
PRThread *getThread() const {
|
|
return thread;
|
|
}
|
|
|
|
/*
|
|
* Outside the GC lock may give true answer when in fact the sweeping has
|
|
* been done.
|
|
*/
|
|
bool sweeping() const {
|
|
return state == SWEEPING;
|
|
}
|
|
|
|
bool shouldShrink() const {
|
|
JS_ASSERT(sweeping());
|
|
return shrinkFlag;
|
|
}
|
|
|
|
void freeLater(void *ptr) {
|
|
JS_ASSERT(!sweeping());
|
|
if (freeCursor != freeCursorEnd)
|
|
*freeCursor++ = ptr;
|
|
else
|
|
replenishAndFreeLater(ptr);
|
|
}
|
|
|
|
/* Must be called with the GC lock taken. */
|
|
bool prepareForBackgroundSweep();
|
|
};
|
|
|
|
#endif /* JS_THREADSAFE */
|
|
|
|
struct GCChunkHasher {
|
|
typedef gc::Chunk *Lookup;
|
|
|
|
/*
|
|
* Strip zeros for better distribution after multiplying by the golden
|
|
* ratio.
|
|
*/
|
|
static HashNumber hash(gc::Chunk *chunk) {
|
|
JS_ASSERT(!(uintptr_t(chunk) & gc::ChunkMask));
|
|
return HashNumber(uintptr_t(chunk) >> gc::ChunkShift);
|
|
}
|
|
|
|
static bool match(gc::Chunk *k, gc::Chunk *l) {
|
|
JS_ASSERT(!(uintptr_t(k) & gc::ChunkMask));
|
|
JS_ASSERT(!(uintptr_t(l) & gc::ChunkMask));
|
|
return k == l;
|
|
}
|
|
};
|
|
|
|
typedef HashSet<js::gc::Chunk *, GCChunkHasher, SystemAllocPolicy> GCChunkSet;
|
|
|
|
template<class T>
|
|
struct MarkStack {
|
|
T *stack;
|
|
T *tos;
|
|
T *limit;
|
|
|
|
T *ballast;
|
|
T *ballastLimit;
|
|
|
|
size_t sizeLimit;
|
|
|
|
MarkStack(size_t sizeLimit)
|
|
: stack(NULL),
|
|
tos(NULL),
|
|
limit(NULL),
|
|
ballast(NULL),
|
|
ballastLimit(NULL),
|
|
sizeLimit(sizeLimit) { }
|
|
|
|
~MarkStack() {
|
|
if (stack != ballast)
|
|
js_free(stack);
|
|
js_free(ballast);
|
|
}
|
|
|
|
bool init(size_t ballastcap) {
|
|
JS_ASSERT(!stack);
|
|
|
|
if (ballastcap == 0)
|
|
return true;
|
|
|
|
ballast = (T *)js_malloc(sizeof(T) * ballastcap);
|
|
if (!ballast)
|
|
return false;
|
|
ballastLimit = ballast + ballastcap;
|
|
initFromBallast();
|
|
return true;
|
|
}
|
|
|
|
void initFromBallast() {
|
|
stack = ballast;
|
|
limit = ballastLimit;
|
|
if (size_t(limit - stack) > sizeLimit)
|
|
limit = stack + sizeLimit;
|
|
tos = stack;
|
|
}
|
|
|
|
void setSizeLimit(size_t size) {
|
|
JS_ASSERT(isEmpty());
|
|
|
|
sizeLimit = size;
|
|
reset();
|
|
}
|
|
|
|
bool push(T item) {
|
|
if (tos == limit) {
|
|
if (!enlarge())
|
|
return false;
|
|
}
|
|
JS_ASSERT(tos < limit);
|
|
*tos++ = item;
|
|
return true;
|
|
}
|
|
|
|
bool push(T item1, T item2, T item3) {
|
|
T *nextTos = tos + 3;
|
|
if (nextTos > limit) {
|
|
if (!enlarge())
|
|
return false;
|
|
nextTos = tos + 3;
|
|
}
|
|
JS_ASSERT(nextTos <= limit);
|
|
tos[0] = item1;
|
|
tos[1] = item2;
|
|
tos[2] = item3;
|
|
tos = nextTos;
|
|
return true;
|
|
}
|
|
|
|
bool isEmpty() const {
|
|
return tos == stack;
|
|
}
|
|
|
|
T pop() {
|
|
JS_ASSERT(!isEmpty());
|
|
return *--tos;
|
|
}
|
|
|
|
ptrdiff_t position() const {
|
|
return tos - stack;
|
|
}
|
|
|
|
void reset() {
|
|
if (stack != ballast)
|
|
js_free(stack);
|
|
initFromBallast();
|
|
JS_ASSERT(stack == ballast);
|
|
}
|
|
|
|
bool enlarge() {
|
|
size_t tosIndex = tos - stack;
|
|
size_t cap = limit - stack;
|
|
if (cap == sizeLimit)
|
|
return false;
|
|
size_t newcap = cap * 2;
|
|
if (newcap == 0)
|
|
newcap = 32;
|
|
if (newcap > sizeLimit)
|
|
newcap = sizeLimit;
|
|
|
|
T *newStack;
|
|
if (stack == ballast) {
|
|
newStack = (T *)js_malloc(sizeof(T) * newcap);
|
|
if (!newStack)
|
|
return false;
|
|
for (T *src = stack, *dst = newStack; src < tos; )
|
|
*dst++ = *src++;
|
|
} else {
|
|
newStack = (T *)js_realloc(stack, sizeof(T) * newcap);
|
|
if (!newStack)
|
|
return false;
|
|
}
|
|
stack = newStack;
|
|
tos = stack + tosIndex;
|
|
limit = newStack + newcap;
|
|
return true;
|
|
}
|
|
|
|
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
|
|
size_t n = 0;
|
|
if (stack != ballast)
|
|
n += mallocSizeOf(stack);
|
|
n += mallocSizeOf(ballast);
|
|
return n;
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This class records how much work has been done in a given GC slice, so that
|
|
* we can return before pausing for too long. Some slices are allowed to run for
|
|
* unlimited time, and others are bounded. To reduce the number of gettimeofday
|
|
* calls, we only check the time every 1000 operations.
|
|
*/
|
|
struct SliceBudget {
|
|
int64_t deadline; /* in microseconds */
|
|
intptr_t counter;
|
|
|
|
static const intptr_t CounterReset = 1000;
|
|
|
|
static const int64_t Unlimited = 0;
|
|
static int64_t TimeBudget(int64_t millis);
|
|
static int64_t WorkBudget(int64_t work);
|
|
|
|
/* Equivalent to SliceBudget(UnlimitedBudget). */
|
|
SliceBudget();
|
|
|
|
/* Instantiate as SliceBudget(Time/WorkBudget(n)). */
|
|
SliceBudget(int64_t budget);
|
|
|
|
void reset() {
|
|
deadline = INT64_MAX;
|
|
counter = INTPTR_MAX;
|
|
}
|
|
|
|
void step() {
|
|
counter--;
|
|
}
|
|
|
|
bool checkOverBudget();
|
|
|
|
bool isOverBudget() {
|
|
if (counter > 0)
|
|
return false;
|
|
return checkOverBudget();
|
|
}
|
|
};
|
|
|
|
static const size_t MARK_STACK_LENGTH = 32768;
|
|
|
|
struct GCMarker : public JSTracer {
|
|
private:
|
|
/*
|
|
* We use a common mark stack to mark GC things of different types and use
|
|
* the explicit tags to distinguish them when it cannot be deduced from
|
|
* the context of push or pop operation.
|
|
*/
|
|
enum StackTag {
|
|
ValueArrayTag,
|
|
ObjectTag,
|
|
TypeTag,
|
|
XmlTag,
|
|
SavedValueArrayTag,
|
|
LastTag = SavedValueArrayTag
|
|
};
|
|
|
|
static const uintptr_t StackTagMask = 7;
|
|
|
|
static void staticAsserts() {
|
|
JS_STATIC_ASSERT(StackTagMask >= uintptr_t(LastTag));
|
|
JS_STATIC_ASSERT(StackTagMask <= gc::Cell::CellMask);
|
|
}
|
|
|
|
public:
|
|
explicit GCMarker();
|
|
bool init();
|
|
|
|
void setSizeLimit(size_t size) { stack.setSizeLimit(size); }
|
|
size_t sizeLimit() const { return stack.sizeLimit; }
|
|
|
|
void start(JSRuntime *rt);
|
|
void stop();
|
|
void reset();
|
|
|
|
void pushObject(JSObject *obj) {
|
|
pushTaggedPtr(ObjectTag, obj);
|
|
}
|
|
|
|
void pushType(types::TypeObject *type) {
|
|
pushTaggedPtr(TypeTag, type);
|
|
}
|
|
|
|
void pushXML(JSXML *xml) {
|
|
pushTaggedPtr(XmlTag, xml);
|
|
}
|
|
|
|
uint32_t getMarkColor() const {
|
|
return color;
|
|
}
|
|
|
|
/*
|
|
* The only valid color transition during a GC is from black to gray. It is
|
|
* wrong to switch the mark color from gray to black. The reason is that the
|
|
* cycle collector depends on the invariant that there are no black to gray
|
|
* edges in the GC heap. This invariant lets the CC not trace through black
|
|
* objects. If this invariant is violated, the cycle collector may free
|
|
* objects that are still reachable.
|
|
*/
|
|
void setMarkColorGray() {
|
|
JS_ASSERT(isDrained());
|
|
JS_ASSERT(color == gc::BLACK);
|
|
color = gc::GRAY;
|
|
}
|
|
|
|
inline void delayMarkingArena(gc::ArenaHeader *aheader);
|
|
void delayMarkingChildren(const void *thing);
|
|
void markDelayedChildren(gc::ArenaHeader *aheader);
|
|
bool markDelayedChildren(SliceBudget &budget);
|
|
bool hasDelayedChildren() const {
|
|
return !!unmarkedArenaStackTop;
|
|
}
|
|
|
|
bool isDrained() {
|
|
return isMarkStackEmpty() && !unmarkedArenaStackTop;
|
|
}
|
|
|
|
bool drainMarkStack(SliceBudget &budget);
|
|
|
|
/*
|
|
* Gray marking must be done after all black marking is complete. However,
|
|
* we do not have write barriers on XPConnect roots. Therefore, XPConnect
|
|
* roots must be accumulated in the first slice of incremental GC. We
|
|
* accumulate these roots in the GrayRootMarker and then mark them later,
|
|
* after black marking is complete. This accumulation can fail, but in that
|
|
* case we switch to non-incremental GC.
|
|
*/
|
|
bool hasBufferedGrayRoots() const;
|
|
void startBufferingGrayRoots();
|
|
void endBufferingGrayRoots();
|
|
void markBufferedGrayRoots();
|
|
|
|
static void GrayCallback(JSTracer *trc, void **thing, JSGCTraceKind kind);
|
|
|
|
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const;
|
|
|
|
MarkStack<uintptr_t> stack;
|
|
|
|
private:
|
|
#ifdef DEBUG
|
|
void checkCompartment(void *p);
|
|
#else
|
|
void checkCompartment(void *p) {}
|
|
#endif
|
|
|
|
void pushTaggedPtr(StackTag tag, void *ptr) {
|
|
checkCompartment(ptr);
|
|
uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
|
|
JS_ASSERT(!(addr & StackTagMask));
|
|
if (!stack.push(addr | uintptr_t(tag)))
|
|
delayMarkingChildren(ptr);
|
|
}
|
|
|
|
void pushValueArray(JSObject *obj, void *start, void *end) {
|
|
checkCompartment(obj);
|
|
|
|
if (start == end)
|
|
return;
|
|
|
|
JS_ASSERT(start <= end);
|
|
uintptr_t tagged = reinterpret_cast<uintptr_t>(obj) | GCMarker::ValueArrayTag;
|
|
uintptr_t startAddr = reinterpret_cast<uintptr_t>(start);
|
|
uintptr_t endAddr = reinterpret_cast<uintptr_t>(end);
|
|
|
|
/*
|
|
* Push in the reverse order so obj will be on top. If we cannot push
|
|
* the array, we trigger delay marking for the whole object.
|
|
*/
|
|
if (!stack.push(endAddr, startAddr, tagged))
|
|
delayMarkingChildren(obj);
|
|
}
|
|
|
|
bool isMarkStackEmpty() {
|
|
return stack.isEmpty();
|
|
}
|
|
|
|
bool restoreValueArray(JSObject *obj, void **vpp, void **endp);
|
|
void saveValueRanges();
|
|
inline void processMarkStackTop(SliceBudget &budget);
|
|
|
|
void appendGrayRoot(void *thing, JSGCTraceKind kind);
|
|
|
|
/* The color is only applied to objects, functions and xml. */
|
|
uint32_t color;
|
|
|
|
DebugOnly<bool> started;
|
|
|
|
/* Pointer to the top of the stack of arenas we are delaying marking on. */
|
|
js::gc::ArenaHeader *unmarkedArenaStackTop;
|
|
/* Count of arenas that are currently in the stack. */
|
|
DebugOnly<size_t> markLaterArenas;
|
|
|
|
struct GrayRoot {
|
|
void *thing;
|
|
JSGCTraceKind kind;
|
|
#ifdef DEBUG
|
|
JSTraceNamePrinter debugPrinter;
|
|
const void *debugPrintArg;
|
|
size_t debugPrintIndex;
|
|
#endif
|
|
|
|
GrayRoot(void *thing, JSGCTraceKind kind)
|
|
: thing(thing), kind(kind) {}
|
|
};
|
|
|
|
bool grayFailed;
|
|
Vector<GrayRoot, 0, SystemAllocPolicy> grayRoots;
|
|
};
|
|
|
|
void
|
|
SetMarkStackLimit(JSRuntime *rt, size_t limit);
|
|
|
|
void
|
|
MarkStackRangeConservatively(JSTracer *trc, Value *begin, Value *end);
|
|
|
|
typedef void (*IterateChunkCallback)(JSRuntime *rt, void *data, gc::Chunk *chunk);
|
|
typedef void (*IterateArenaCallback)(JSRuntime *rt, void *data, gc::Arena *arena,
|
|
JSGCTraceKind traceKind, size_t thingSize);
|
|
typedef void (*IterateCellCallback)(JSRuntime *rt, void *data, void *thing,
|
|
JSGCTraceKind traceKind, size_t thingSize);
|
|
|
|
/*
|
|
* This function calls |compartmentCallback| on every compartment,
|
|
* |arenaCallback| on every in-use arena, and |cellCallback| on every in-use
|
|
* cell in the GC heap.
|
|
*/
|
|
extern JS_FRIEND_API(void)
|
|
IterateCompartmentsArenasCells(JSRuntime *rt, void *data,
|
|
JSIterateCompartmentCallback compartmentCallback,
|
|
IterateArenaCallback arenaCallback,
|
|
IterateCellCallback cellCallback);
|
|
|
|
/*
|
|
* Invoke chunkCallback on every in-use chunk.
|
|
*/
|
|
extern JS_FRIEND_API(void)
|
|
IterateChunks(JSRuntime *rt, void *data, IterateChunkCallback chunkCallback);
|
|
|
|
/*
|
|
* Invoke cellCallback on every in-use object of the specified thing kind for
|
|
* the given compartment or for all compartments if it is null.
|
|
*/
|
|
extern JS_FRIEND_API(void)
|
|
IterateCells(JSRuntime *rt, JSCompartment *compartment, gc::AllocKind thingKind,
|
|
void *data, IterateCellCallback cellCallback);
|
|
|
|
} /* namespace js */
|
|
|
|
extern void
|
|
js_FinalizeStringRT(JSRuntime *rt, JSString *str);
|
|
|
|
/*
|
|
* Macro to test if a traversal is the marking phase of the GC.
|
|
*/
|
|
#define IS_GC_MARKING_TRACER(trc) \
|
|
((trc)->callback == NULL || (trc)->callback == GCMarker::GrayCallback)
|
|
|
|
namespace js {
|
|
namespace gc {
|
|
|
|
JSCompartment *
|
|
NewCompartment(JSContext *cx, JSPrincipals *principals);
|
|
|
|
/* Tries to run a GC no matter what (used for GC zeal). */
|
|
void
|
|
RunDebugGC(JSContext *cx);
|
|
|
|
void
|
|
SetDeterministicGC(JSContext *cx, bool enabled);
|
|
|
|
#if defined(JSGC_ROOT_ANALYSIS) && defined(DEBUG) && !defined(JS_THREADSAFE)
|
|
/* Overwrites stack references to GC things which have not been rooted. */
|
|
void CheckStackRoots(JSContext *cx);
|
|
|
|
inline void MaybeCheckStackRoots(JSContext *cx) { CheckStackRoots(cx); }
|
|
#else
|
|
inline void MaybeCheckStackRoots(JSContext *cx) {}
|
|
#endif
|
|
|
|
const int ZealPokeValue = 1;
|
|
const int ZealAllocValue = 2;
|
|
const int ZealFrameGCValue = 3;
|
|
const int ZealVerifierValue = 4;
|
|
const int ZealFrameVerifierValue = 5;
|
|
|
|
#ifdef JS_GC_ZEAL
|
|
|
|
/* Check that write barriers have been used correctly. See jsgc.cpp. */
|
|
void
|
|
VerifyBarriers(JSContext *cx);
|
|
|
|
void
|
|
MaybeVerifyBarriers(JSContext *cx, bool always = false);
|
|
|
|
#else
|
|
|
|
static inline void
|
|
VerifyBarriers(JSContext *cx)
|
|
{
|
|
}
|
|
|
|
static inline void
|
|
MaybeVerifyBarriers(JSContext *cx, bool always = false)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
} /* namespace gc */
|
|
|
|
static inline JSCompartment *
|
|
GetObjectCompartment(JSObject *obj) { return reinterpret_cast<js::gc::Cell *>(obj)->compartment(); }
|
|
|
|
} /* namespace js */
|
|
|
|
#endif /* jsgc_h___ */
|