axmol/Box2D/Collision/b2DynamicTree.cpp

776 lines
19 KiB
C++

/*
* Copyright (c) 2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Collision/b2DynamicTree.h>
#include <cstring>
#ifndef SHP
#include <cfloat>
#else
#include <float.h>
#endif
using namespace std;
b2DynamicTree::b2DynamicTree()
{
m_root = b2_nullNode;
m_nodeCapacity = 16;
m_nodeCount = 0;
m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode));
memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode));
// Build a linked list for the free list.
for (int32 i = 0; i < m_nodeCapacity - 1; ++i)
{
m_nodes[i].next = i + 1;
m_nodes[i].height = -1;
}
m_nodes[m_nodeCapacity-1].next = b2_nullNode;
m_nodes[m_nodeCapacity-1].height = -1;
m_freeList = 0;
m_path = 0;
m_insertionCount = 0;
}
b2DynamicTree::~b2DynamicTree()
{
// This frees the entire tree in one shot.
b2Free(m_nodes);
}
// Allocate a node from the pool. Grow the pool if necessary.
int32 b2DynamicTree::AllocateNode()
{
// Expand the node pool as needed.
if (m_freeList == b2_nullNode)
{
b2Assert(m_nodeCount == m_nodeCapacity);
// The free list is empty. Rebuild a bigger pool.
b2TreeNode* oldNodes = m_nodes;
m_nodeCapacity *= 2;
m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode));
memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode));
b2Free(oldNodes);
// Build a linked list for the free list. The parent
// pointer becomes the "next" pointer.
for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i)
{
m_nodes[i].next = i + 1;
m_nodes[i].height = -1;
}
m_nodes[m_nodeCapacity-1].next = b2_nullNode;
m_nodes[m_nodeCapacity-1].height = -1;
m_freeList = m_nodeCount;
}
// Peel a node off the free list.
int32 nodeId = m_freeList;
m_freeList = m_nodes[nodeId].next;
m_nodes[nodeId].parent = b2_nullNode;
m_nodes[nodeId].child1 = b2_nullNode;
m_nodes[nodeId].child2 = b2_nullNode;
m_nodes[nodeId].height = 0;
m_nodes[nodeId].userData = NULL;
++m_nodeCount;
return nodeId;
}
// Return a node to the pool.
void b2DynamicTree::FreeNode(int32 nodeId)
{
b2Assert(0 <= nodeId && nodeId < m_nodeCapacity);
b2Assert(0 < m_nodeCount);
m_nodes[nodeId].next = m_freeList;
m_nodes[nodeId].height = -1;
m_freeList = nodeId;
--m_nodeCount;
}
// Create a proxy in the tree as a leaf node. We return the index
// of the node instead of a pointer so that we can grow
// the node pool.
int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData)
{
int32 proxyId = AllocateNode();
// Fatten the aabb.
b2Vec2 r(b2_aabbExtension, b2_aabbExtension);
m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r;
m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r;
m_nodes[proxyId].userData = userData;
m_nodes[proxyId].height = 0;
InsertLeaf(proxyId);
return proxyId;
}
void b2DynamicTree::DestroyProxy(int32 proxyId)
{
b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
b2Assert(m_nodes[proxyId].IsLeaf());
RemoveLeaf(proxyId);
FreeNode(proxyId);
}
bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement)
{
b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
b2Assert(m_nodes[proxyId].IsLeaf());
if (m_nodes[proxyId].aabb.Contains(aabb))
{
return false;
}
RemoveLeaf(proxyId);
// Extend AABB.
b2AABB b = aabb;
b2Vec2 r(b2_aabbExtension, b2_aabbExtension);
b.lowerBound = b.lowerBound - r;
b.upperBound = b.upperBound + r;
// Predict AABB displacement.
b2Vec2 d = b2_aabbMultiplier * displacement;
if (d.x < 0.0f)
{
b.lowerBound.x += d.x;
}
else
{
b.upperBound.x += d.x;
}
if (d.y < 0.0f)
{
b.lowerBound.y += d.y;
}
else
{
b.upperBound.y += d.y;
}
m_nodes[proxyId].aabb = b;
InsertLeaf(proxyId);
return true;
}
void b2DynamicTree::InsertLeaf(int32 leaf)
{
++m_insertionCount;
if (m_root == b2_nullNode)
{
m_root = leaf;
m_nodes[m_root].parent = b2_nullNode;
return;
}
// Find the best sibling for this node
b2AABB leafAABB = m_nodes[leaf].aabb;
int32 index = m_root;
while (m_nodes[index].IsLeaf() == false)
{
int32 child1 = m_nodes[index].child1;
int32 child2 = m_nodes[index].child2;
float32 area = m_nodes[index].aabb.GetPerimeter();
b2AABB combinedAABB;
combinedAABB.Combine(m_nodes[index].aabb, leafAABB);
float32 combinedArea = combinedAABB.GetPerimeter();
// Cost of creating a new parent for this node and the new leaf
float32 cost = 2.0f * combinedArea;
// Minimum cost of pushing the leaf further down the tree
float32 inheritanceCost = 2.0f * (combinedArea - area);
// Cost of descending into child1
float32 cost1;
if (m_nodes[child1].IsLeaf())
{
b2AABB aabb;
aabb.Combine(leafAABB, m_nodes[child1].aabb);
cost1 = aabb.GetPerimeter() + inheritanceCost;
}
else
{
b2AABB aabb;
aabb.Combine(leafAABB, m_nodes[child1].aabb);
float32 oldArea = m_nodes[child1].aabb.GetPerimeter();
float32 newArea = aabb.GetPerimeter();
cost1 = (newArea - oldArea) + inheritanceCost;
}
// Cost of descending into child2
float32 cost2;
if (m_nodes[child2].IsLeaf())
{
b2AABB aabb;
aabb.Combine(leafAABB, m_nodes[child2].aabb);
cost2 = aabb.GetPerimeter() + inheritanceCost;
}
else
{
b2AABB aabb;
aabb.Combine(leafAABB, m_nodes[child2].aabb);
float32 oldArea = m_nodes[child2].aabb.GetPerimeter();
float32 newArea = aabb.GetPerimeter();
cost2 = newArea - oldArea + inheritanceCost;
}
// Descend according to the minimum cost.
if (cost < cost1 && cost < cost2)
{
break;
}
// Descend
if (cost1 < cost2)
{
index = child1;
}
else
{
index = child2;
}
}
int32 sibling = index;
// Create a new parent.
int32 oldParent = m_nodes[sibling].parent;
int32 newParent = AllocateNode();
m_nodes[newParent].parent = oldParent;
m_nodes[newParent].userData = NULL;
m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb);
m_nodes[newParent].height = m_nodes[sibling].height + 1;
if (oldParent != b2_nullNode)
{
// The sibling was not the root.
if (m_nodes[oldParent].child1 == sibling)
{
m_nodes[oldParent].child1 = newParent;
}
else
{
m_nodes[oldParent].child2 = newParent;
}
m_nodes[newParent].child1 = sibling;
m_nodes[newParent].child2 = leaf;
m_nodes[sibling].parent = newParent;
m_nodes[leaf].parent = newParent;
}
else
{
// The sibling was the root.
m_nodes[newParent].child1 = sibling;
m_nodes[newParent].child2 = leaf;
m_nodes[sibling].parent = newParent;
m_nodes[leaf].parent = newParent;
m_root = newParent;
}
// Walk back up the tree fixing heights and AABBs
index = m_nodes[leaf].parent;
while (index != b2_nullNode)
{
index = Balance(index);
int32 child1 = m_nodes[index].child1;
int32 child2 = m_nodes[index].child2;
b2Assert(child1 != b2_nullNode);
b2Assert(child2 != b2_nullNode);
m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height);
m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb);
index = m_nodes[index].parent;
}
//Validate();
}
void b2DynamicTree::RemoveLeaf(int32 leaf)
{
if (leaf == m_root)
{
m_root = b2_nullNode;
return;
}
int32 parent = m_nodes[leaf].parent;
int32 grandParent = m_nodes[parent].parent;
int32 sibling;
if (m_nodes[parent].child1 == leaf)
{
sibling = m_nodes[parent].child2;
}
else
{
sibling = m_nodes[parent].child1;
}
if (grandParent != b2_nullNode)
{
// Destroy parent and connect sibling to grandParent.
if (m_nodes[grandParent].child1 == parent)
{
m_nodes[grandParent].child1 = sibling;
}
else
{
m_nodes[grandParent].child2 = sibling;
}
m_nodes[sibling].parent = grandParent;
FreeNode(parent);
// Adjust ancestor bounds.
int32 index = grandParent;
while (index != b2_nullNode)
{
index = Balance(index);
int32 child1 = m_nodes[index].child1;
int32 child2 = m_nodes[index].child2;
m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb);
m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height);
index = m_nodes[index].parent;
}
}
else
{
m_root = sibling;
m_nodes[sibling].parent = b2_nullNode;
FreeNode(parent);
}
//Validate();
}
// Perform a left or right rotation if node A is imbalanced.
// Returns the new root index.
int32 b2DynamicTree::Balance(int32 iA)
{
b2Assert(iA != b2_nullNode);
b2TreeNode* A = m_nodes + iA;
if (A->IsLeaf() || A->height < 2)
{
return iA;
}
int32 iB = A->child1;
int32 iC = A->child2;
b2Assert(0 <= iB && iB < m_nodeCapacity);
b2Assert(0 <= iC && iC < m_nodeCapacity);
b2TreeNode* B = m_nodes + iB;
b2TreeNode* C = m_nodes + iC;
int32 balance = C->height - B->height;
// Rotate C up
if (balance > 1)
{
int32 iF = C->child1;
int32 iG = C->child2;
b2TreeNode* F = m_nodes + iF;
b2TreeNode* G = m_nodes + iG;
b2Assert(0 <= iF && iF < m_nodeCapacity);
b2Assert(0 <= iG && iG < m_nodeCapacity);
// Swap A and C
C->child1 = iA;
C->parent = A->parent;
A->parent = iC;
// A's old parent should point to C
if (C->parent != b2_nullNode)
{
if (m_nodes[C->parent].child1 == iA)
{
m_nodes[C->parent].child1 = iC;
}
else
{
b2Assert(m_nodes[C->parent].child2 == iA);
m_nodes[C->parent].child2 = iC;
}
}
else
{
m_root = iC;
}
// Rotate
if (F->height > G->height)
{
C->child2 = iF;
A->child2 = iG;
G->parent = iA;
A->aabb.Combine(B->aabb, G->aabb);
C->aabb.Combine(A->aabb, F->aabb);
A->height = 1 + b2Max(B->height, G->height);
C->height = 1 + b2Max(A->height, F->height);
}
else
{
C->child2 = iG;
A->child2 = iF;
F->parent = iA;
A->aabb.Combine(B->aabb, F->aabb);
C->aabb.Combine(A->aabb, G->aabb);
A->height = 1 + b2Max(B->height, F->height);
C->height = 1 + b2Max(A->height, G->height);
}
return iC;
}
// Rotate B up
if (balance < -1)
{
int32 iD = B->child1;
int32 iE = B->child2;
b2TreeNode* D = m_nodes + iD;
b2TreeNode* E = m_nodes + iE;
b2Assert(0 <= iD && iD < m_nodeCapacity);
b2Assert(0 <= iE && iE < m_nodeCapacity);
// Swap A and B
B->child1 = iA;
B->parent = A->parent;
A->parent = iB;
// A's old parent should point to B
if (B->parent != b2_nullNode)
{
if (m_nodes[B->parent].child1 == iA)
{
m_nodes[B->parent].child1 = iB;
}
else
{
b2Assert(m_nodes[B->parent].child2 == iA);
m_nodes[B->parent].child2 = iB;
}
}
else
{
m_root = iB;
}
// Rotate
if (D->height > E->height)
{
B->child2 = iD;
A->child1 = iE;
E->parent = iA;
A->aabb.Combine(C->aabb, E->aabb);
B->aabb.Combine(A->aabb, D->aabb);
A->height = 1 + b2Max(C->height, E->height);
B->height = 1 + b2Max(A->height, D->height);
}
else
{
B->child2 = iE;
A->child1 = iD;
D->parent = iA;
A->aabb.Combine(C->aabb, D->aabb);
B->aabb.Combine(A->aabb, E->aabb);
A->height = 1 + b2Max(C->height, D->height);
B->height = 1 + b2Max(A->height, E->height);
}
return iB;
}
return iA;
}
int32 b2DynamicTree::GetHeight() const
{
if (m_root == b2_nullNode)
{
return 0;
}
return m_nodes[m_root].height;
}
//
float32 b2DynamicTree::GetAreaRatio() const
{
if (m_root == b2_nullNode)
{
return 0.0f;
}
const b2TreeNode* root = m_nodes + m_root;
float32 rootArea = root->aabb.GetPerimeter();
float32 totalArea = 0.0f;
for (int32 i = 0; i < m_nodeCapacity; ++i)
{
const b2TreeNode* node = m_nodes + i;
if (node->height < 0)
{
// Free node in pool
continue;
}
totalArea += node->aabb.GetPerimeter();
}
return totalArea / rootArea;
}
// Compute the height of a sub-tree.
int32 b2DynamicTree::ComputeHeight(int32 nodeId) const
{
b2Assert(0 <= nodeId && nodeId < m_nodeCapacity);
b2TreeNode* node = m_nodes + nodeId;
if (node->IsLeaf())
{
return 0;
}
int32 height1 = ComputeHeight(node->child1);
int32 height2 = ComputeHeight(node->child2);
return 1 + b2Max(height1, height2);
}
int32 b2DynamicTree::ComputeHeight() const
{
int32 height = ComputeHeight(m_root);
return height;
}
void b2DynamicTree::ValidateStructure(int32 index) const
{
if (index == b2_nullNode)
{
return;
}
if (index == m_root)
{
b2Assert(m_nodes[index].parent == b2_nullNode);
}
const b2TreeNode* node = m_nodes + index;
int32 child1 = node->child1;
int32 child2 = node->child2;
if (node->IsLeaf())
{
b2Assert(child1 == b2_nullNode);
b2Assert(child2 == b2_nullNode);
b2Assert(node->height == 0);
return;
}
b2Assert(0 <= child1 && child1 < m_nodeCapacity);
b2Assert(0 <= child2 && child2 < m_nodeCapacity);
b2Assert(m_nodes[child1].parent == index);
b2Assert(m_nodes[child2].parent == index);
ValidateStructure(child1);
ValidateStructure(child2);
}
void b2DynamicTree::ValidateMetrics(int32 index) const
{
if (index == b2_nullNode)
{
return;
}
const b2TreeNode* node = m_nodes + index;
int32 child1 = node->child1;
int32 child2 = node->child2;
if (node->IsLeaf())
{
b2Assert(child1 == b2_nullNode);
b2Assert(child2 == b2_nullNode);
b2Assert(node->height == 0);
return;
}
b2Assert(0 <= child1 && child1 < m_nodeCapacity);
b2Assert(0 <= child2 && child2 < m_nodeCapacity);
int32 height1 = m_nodes[child1].height;
int32 height2 = m_nodes[child2].height;
int32 height;
height = 1 + b2Max(height1, height2);
b2Assert(node->height == height);
b2AABB aabb;
aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb);
b2Assert(aabb.lowerBound == node->aabb.lowerBound);
b2Assert(aabb.upperBound == node->aabb.upperBound);
ValidateMetrics(child1);
ValidateMetrics(child2);
}
void b2DynamicTree::Validate() const
{
ValidateStructure(m_root);
ValidateMetrics(m_root);
int32 freeCount = 0;
int32 freeIndex = m_freeList;
while (freeIndex != b2_nullNode)
{
b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity);
freeIndex = m_nodes[freeIndex].next;
++freeCount;
}
b2Assert(GetHeight() == ComputeHeight());
b2Assert(m_nodeCount + freeCount == m_nodeCapacity);
}
int32 b2DynamicTree::GetMaxBalance() const
{
int32 maxBalance = 0;
for (int32 i = 0; i < m_nodeCapacity; ++i)
{
const b2TreeNode* node = m_nodes + i;
if (node->height <= 1)
{
continue;
}
b2Assert(node->IsLeaf() == false);
int32 child1 = node->child1;
int32 child2 = node->child2;
int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height);
maxBalance = b2Max(maxBalance, balance);
}
return maxBalance;
}
void b2DynamicTree::RebuildBottomUp()
{
int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32));
int32 count = 0;
// Build array of leaves. Free the rest.
for (int32 i = 0; i < m_nodeCapacity; ++i)
{
if (m_nodes[i].height < 0)
{
// free node in pool
continue;
}
if (m_nodes[i].IsLeaf())
{
m_nodes[i].parent = b2_nullNode;
nodes[count] = i;
++count;
}
else
{
FreeNode(i);
}
}
while (count > 1)
{
float32 minCost = b2_maxFloat;
int32 iMin = -1, jMin = -1;
for (int32 i = 0; i < count; ++i)
{
b2AABB aabbi = m_nodes[nodes[i]].aabb;
for (int32 j = i + 1; j < count; ++j)
{
b2AABB aabbj = m_nodes[nodes[j]].aabb;
b2AABB b;
b.Combine(aabbi, aabbj);
float32 cost = b.GetPerimeter();
if (cost < minCost)
{
iMin = i;
jMin = j;
minCost = cost;
}
}
}
int32 index1 = nodes[iMin];
int32 index2 = nodes[jMin];
b2TreeNode* child1 = m_nodes + index1;
b2TreeNode* child2 = m_nodes + index2;
int32 parentIndex = AllocateNode();
b2TreeNode* parent = m_nodes + parentIndex;
parent->child1 = index1;
parent->child2 = index2;
parent->height = 1 + b2Max(child1->height, child2->height);
parent->aabb.Combine(child1->aabb, child2->aabb);
parent->parent = b2_nullNode;
child1->parent = parentIndex;
child2->parent = parentIndex;
nodes[jMin] = nodes[count-1];
nodes[iMin] = parentIndex;
--count;
}
m_root = nodes[0];
b2Free(nodes);
Validate();
}