axmol/Box2D/Dynamics/Contacts/b2ContactSolver.cpp

624 lines
18 KiB
C++

/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Dynamics/Contacts/b2ContactSolver.h>
#include <Box2D/Dynamics/Contacts/b2Contact.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2Fixture.h>
#include <Box2D/Dynamics/b2World.h>
#include <Box2D/Common/b2StackAllocator.h>
#define B2_DEBUG_SOLVER 0
b2ContactSolver::b2ContactSolver(b2Contact** contacts, int32 contactCount,
b2StackAllocator* allocator, float32 impulseRatio)
{
m_allocator = allocator;
m_constraintCount = contactCount;
m_constraints = (b2ContactConstraint*)m_allocator->Allocate(m_constraintCount * sizeof(b2ContactConstraint));
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2Contact* contact = contacts[i];
b2Fixture* fixtureA = contact->m_fixtureA;
b2Fixture* fixtureB = contact->m_fixtureB;
b2Shape* shapeA = fixtureA->GetShape();
b2Shape* shapeB = fixtureB->GetShape();
float32 radiusA = shapeA->m_radius;
float32 radiusB = shapeB->m_radius;
b2Body* bodyA = fixtureA->GetBody();
b2Body* bodyB = fixtureB->GetBody();
b2Manifold* manifold = contact->GetManifold();
float32 friction = b2MixFriction(fixtureA->GetFriction(), fixtureB->GetFriction());
float32 restitution = b2MixRestitution(fixtureA->GetRestitution(), fixtureB->GetRestitution());
b2Vec2 vA = bodyA->m_linearVelocity;
b2Vec2 vB = bodyB->m_linearVelocity;
float32 wA = bodyA->m_angularVelocity;
float32 wB = bodyB->m_angularVelocity;
b2Assert(manifold->pointCount > 0);
b2WorldManifold worldManifold;
worldManifold.Initialize(manifold, bodyA->m_xf, radiusA, bodyB->m_xf, radiusB);
b2ContactConstraint* cc = m_constraints + i;
cc->bodyA = bodyA;
cc->bodyB = bodyB;
cc->manifold = manifold;
cc->normal = worldManifold.normal;
cc->pointCount = manifold->pointCount;
cc->friction = friction;
cc->localNormal = manifold->localNormal;
cc->localPoint = manifold->localPoint;
cc->radius = radiusA + radiusB;
cc->type = manifold->type;
for (int32 j = 0; j < cc->pointCount; ++j)
{
b2ManifoldPoint* cp = manifold->points + j;
b2ContactConstraintPoint* ccp = cc->points + j;
ccp->normalImpulse = impulseRatio * cp->normalImpulse;
ccp->tangentImpulse = impulseRatio * cp->tangentImpulse;
ccp->localPoint = cp->localPoint;
ccp->rA = worldManifold.points[j] - bodyA->m_sweep.c;
ccp->rB = worldManifold.points[j] - bodyB->m_sweep.c;
float32 rnA = b2Cross(ccp->rA, cc->normal);
float32 rnB = b2Cross(ccp->rB, cc->normal);
rnA *= rnA;
rnB *= rnB;
float32 kNormal = bodyA->m_invMass + bodyB->m_invMass + bodyA->m_invI * rnA + bodyB->m_invI * rnB;
b2Assert(kNormal > b2_epsilon);
ccp->normalMass = 1.0f / kNormal;
b2Vec2 tangent = b2Cross(cc->normal, 1.0f);
float32 rtA = b2Cross(ccp->rA, tangent);
float32 rtB = b2Cross(ccp->rB, tangent);
rtA *= rtA;
rtB *= rtB;
float32 kTangent = bodyA->m_invMass + bodyB->m_invMass + bodyA->m_invI * rtA + bodyB->m_invI * rtB;
b2Assert(kTangent > b2_epsilon);
ccp->tangentMass = 1.0f / kTangent;
// Setup a velocity bias for restitution.
ccp->velocityBias = 0.0f;
float32 vRel = b2Dot(cc->normal, vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA));
if (vRel < -b2_velocityThreshold)
{
ccp->velocityBias = -restitution * vRel;
}
}
// If we have two points, then prepare the block solver.
if (cc->pointCount == 2)
{
b2ContactConstraintPoint* ccp1 = cc->points + 0;
b2ContactConstraintPoint* ccp2 = cc->points + 1;
float32 invMassA = bodyA->m_invMass;
float32 invIA = bodyA->m_invI;
float32 invMassB = bodyB->m_invMass;
float32 invIB = bodyB->m_invI;
float32 rn1A = b2Cross(ccp1->rA, cc->normal);
float32 rn1B = b2Cross(ccp1->rB, cc->normal);
float32 rn2A = b2Cross(ccp2->rA, cc->normal);
float32 rn2B = b2Cross(ccp2->rB, cc->normal);
float32 k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
float32 k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
float32 k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;
// Ensure a reasonable condition number.
const float32 k_maxConditionNumber = 100.0f;
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
{
// K is safe to invert.
cc->K.col1.Set(k11, k12);
cc->K.col2.Set(k12, k22);
cc->normalMass = cc->K.GetInverse();
}
else
{
// The constraints are redundant, just use one.
// TODO_ERIN use deepest?
cc->pointCount = 1;
}
}
}
}
b2ContactSolver::~b2ContactSolver()
{
m_allocator->Free(m_constraints);
}
void b2ContactSolver::WarmStart()
{
// Warm start.
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* bodyA = c->bodyA;
b2Body* bodyB = c->bodyB;
float32 invMassA = bodyA->m_invMass;
float32 invIA = bodyA->m_invI;
float32 invMassB = bodyB->m_invMass;
float32 invIB = bodyB->m_invI;
b2Vec2 normal = c->normal;
b2Vec2 tangent = b2Cross(normal, 1.0f);
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
b2Vec2 P = ccp->normalImpulse * normal + ccp->tangentImpulse * tangent;
bodyA->m_angularVelocity -= invIA * b2Cross(ccp->rA, P);
bodyA->m_linearVelocity -= invMassA * P;
bodyB->m_angularVelocity += invIB * b2Cross(ccp->rB, P);
bodyB->m_linearVelocity += invMassB * P;
}
}
}
void b2ContactSolver::SolveVelocityConstraints()
{
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* bodyA = c->bodyA;
b2Body* bodyB = c->bodyB;
float32 wA = bodyA->m_angularVelocity;
float32 wB = bodyB->m_angularVelocity;
b2Vec2 vA = bodyA->m_linearVelocity;
b2Vec2 vB = bodyB->m_linearVelocity;
float32 invMassA = bodyA->m_invMass;
float32 invIA = bodyA->m_invI;
float32 invMassB = bodyB->m_invMass;
float32 invIB = bodyB->m_invI;
b2Vec2 normal = c->normal;
b2Vec2 tangent = b2Cross(normal, 1.0f);
float32 friction = c->friction;
b2Assert(c->pointCount == 1 || c->pointCount == 2);
// Solve tangent constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
// Relative velocity at contact
b2Vec2 dv = vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA);
// Compute tangent force
float32 vt = b2Dot(dv, tangent);
float32 lambda = ccp->tangentMass * (-vt);
// b2Clamp the accumulated force
float32 maxFriction = friction * ccp->normalImpulse;
float32 newImpulse = b2Clamp(ccp->tangentImpulse + lambda, -maxFriction, maxFriction);
lambda = newImpulse - ccp->tangentImpulse;
// Apply contact impulse
b2Vec2 P = lambda * tangent;
vA -= invMassA * P;
wA -= invIA * b2Cross(ccp->rA, P);
vB += invMassB * P;
wB += invIB * b2Cross(ccp->rB, P);
ccp->tangentImpulse = newImpulse;
}
// Solve normal constraints
if (c->pointCount == 1)
{
b2ContactConstraintPoint* ccp = c->points + 0;
// Relative velocity at contact
b2Vec2 dv = vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA);
// Compute normal impulse
float32 vn = b2Dot(dv, normal);
float32 lambda = -ccp->normalMass * (vn - ccp->velocityBias);
// b2Clamp the accumulated impulse
float32 newImpulse = b2Max(ccp->normalImpulse + lambda, 0.0f);
lambda = newImpulse - ccp->normalImpulse;
// Apply contact impulse
b2Vec2 P = lambda * normal;
vA -= invMassA * P;
wA -= invIA * b2Cross(ccp->rA, P);
vB += invMassB * P;
wB += invIB * b2Cross(ccp->rB, P);
ccp->normalImpulse = newImpulse;
}
else
{
// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
// Build the mini LCP for this contact patch
//
// vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
//
// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
// b = vn_0 - velocityBias
//
// The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
// solution that satisfies the problem is chosen.
//
// In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
// that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
//
// Substitute:
//
// x = x' - a
//
// Plug into above equation:
//
// vn = A * x + b
// = A * (x' - a) + b
// = A * x' + b - A * a
// = A * x' + b'
// b' = b - A * a;
b2ContactConstraintPoint* cp1 = c->points + 0;
b2ContactConstraintPoint* cp2 = c->points + 1;
b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse);
b2Assert(a.x >= 0.0f && a.y >= 0.0f);
// Relative velocity at contact
b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
// Compute normal velocity
float32 vn1 = b2Dot(dv1, normal);
float32 vn2 = b2Dot(dv2, normal);
b2Vec2 b;
b.x = vn1 - cp1->velocityBias;
b.y = vn2 - cp2->velocityBias;
b -= b2Mul(c->K, a);
const float32 k_errorTol = 1e-3f;
B2_NOT_USED(k_errorTol);
for (;;)
{
//
// Case 1: vn = 0
//
// 0 = A * x' + b'
//
// Solve for x':
//
// x' = - inv(A) * b'
//
b2Vec2 x = - b2Mul(c->normalMass, b);
if (x.x >= 0.0f && x.y >= 0.0f)
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
vA -= invMassA * (P1 + P2);
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
vB += invMassB * (P1 + P2);
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
#if B2_DEBUG_SOLVER == 1
// Postconditions
dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
// Compute normal velocity
vn1 = b2Dot(dv1, normal);
vn2 = b2Dot(dv2, normal);
b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
#endif
break;
}
//
// Case 2: vn1 = 0 and x2 = 0
//
// 0 = a11 * x1' + a12 * 0 + b1'
// vn2 = a21 * x1' + a22 * 0 + b2'
//
x.x = - cp1->normalMass * b.x;
x.y = 0.0f;
vn1 = 0.0f;
vn2 = c->K.col1.y * x.x + b.y;
if (x.x >= 0.0f && vn2 >= 0.0f)
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
vA -= invMassA * (P1 + P2);
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
vB += invMassB * (P1 + P2);
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
#if B2_DEBUG_SOLVER == 1
// Postconditions
dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
// Compute normal velocity
vn1 = b2Dot(dv1, normal);
b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
#endif
break;
}
//
// Case 3: vn2 = 0 and x1 = 0
//
// vn1 = a11 * 0 + a12 * x2' + b1'
// 0 = a21 * 0 + a22 * x2' + b2'
//
x.x = 0.0f;
x.y = - cp2->normalMass * b.y;
vn1 = c->K.col2.x * x.y + b.x;
vn2 = 0.0f;
if (x.y >= 0.0f && vn1 >= 0.0f)
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
vA -= invMassA * (P1 + P2);
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
vB += invMassB * (P1 + P2);
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
#if B2_DEBUG_SOLVER == 1
// Postconditions
dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
// Compute normal velocity
vn2 = b2Dot(dv2, normal);
b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
#endif
break;
}
//
// Case 4: x1 = 0 and x2 = 0
//
// vn1 = b1
// vn2 = b2;
x.x = 0.0f;
x.y = 0.0f;
vn1 = b.x;
vn2 = b.y;
if (vn1 >= 0.0f && vn2 >= 0.0f )
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
vA -= invMassA * (P1 + P2);
wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
vB += invMassB * (P1 + P2);
wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
break;
}
// No solution, give up. This is hit sometimes, but it doesn't seem to matter.
break;
}
}
bodyA->m_linearVelocity = vA;
bodyA->m_angularVelocity = wA;
bodyB->m_linearVelocity = vB;
bodyB->m_angularVelocity = wB;
}
}
void b2ContactSolver::StoreImpulses()
{
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Manifold* m = c->manifold;
for (int32 j = 0; j < c->pointCount; ++j)
{
m->points[j].normalImpulse = c->points[j].normalImpulse;
m->points[j].tangentImpulse = c->points[j].tangentImpulse;
}
}
}
struct b2PositionSolverManifold
{
void Initialize(b2ContactConstraint* cc, int32 index)
{
b2Assert(cc->pointCount > 0);
switch (cc->type)
{
case b2Manifold::e_circles:
{
b2Vec2 pointA = cc->bodyA->GetWorldPoint(cc->localPoint);
b2Vec2 pointB = cc->bodyB->GetWorldPoint(cc->points[0].localPoint);
if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
{
normal = pointB - pointA;
normal.Normalize();
}
else
{
normal.Set(1.0f, 0.0f);
}
point = 0.5f * (pointA + pointB);
separation = b2Dot(pointB - pointA, normal) - cc->radius;
}
break;
case b2Manifold::e_faceA:
{
normal = cc->bodyA->GetWorldVector(cc->localNormal);
b2Vec2 planePoint = cc->bodyA->GetWorldPoint(cc->localPoint);
b2Vec2 clipPoint = cc->bodyB->GetWorldPoint(cc->points[index].localPoint);
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
point = clipPoint;
}
break;
case b2Manifold::e_faceB:
{
normal = cc->bodyB->GetWorldVector(cc->localNormal);
b2Vec2 planePoint = cc->bodyB->GetWorldPoint(cc->localPoint);
b2Vec2 clipPoint = cc->bodyA->GetWorldPoint(cc->points[index].localPoint);
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
point = clipPoint;
// Ensure normal points from A to B
normal = -normal;
}
break;
}
}
b2Vec2 normal;
b2Vec2 point;
float32 separation;
};
// Sequential solver.
bool b2ContactSolver::SolvePositionConstraints(float32 baumgarte)
{
float32 minSeparation = 0.0f;
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* bodyA = c->bodyA;
b2Body* bodyB = c->bodyB;
float32 invMassA = bodyA->m_mass * bodyA->m_invMass;
float32 invIA = bodyA->m_mass * bodyA->m_invI;
float32 invMassB = bodyB->m_mass * bodyB->m_invMass;
float32 invIB = bodyB->m_mass * bodyB->m_invI;
// Solve normal constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2PositionSolverManifold psm;
psm.Initialize(c, j);
b2Vec2 normal = psm.normal;
b2Vec2 point = psm.point;
float32 separation = psm.separation;
b2Vec2 rA = point - bodyA->m_sweep.c;
b2Vec2 rB = point - bodyB->m_sweep.c;
// Track max constraint error.
minSeparation = b2Min(minSeparation, separation);
// Prevent large corrections and allow slop.
float32 C = b2Clamp(baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f);
// Compute the effective mass.
float32 rnA = b2Cross(rA, normal);
float32 rnB = b2Cross(rB, normal);
float32 K = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;
// Compute normal impulse
float32 impulse = K > 0.0f ? - C / K : 0.0f;
b2Vec2 P = impulse * normal;
bodyA->m_sweep.c -= invMassA * P;
bodyA->m_sweep.a -= invIA * b2Cross(rA, P);
bodyA->SynchronizeTransform();
bodyB->m_sweep.c += invMassB * P;
bodyB->m_sweep.a += invIB * b2Cross(rB, P);
bodyB->SynchronizeTransform();
}
}
// We can't expect minSpeparation >= -b2_linearSlop because we don't
// push the separation above -b2_linearSlop.
return minSeparation >= -1.5f * b2_linearSlop;
}