mirror of https://github.com/axmolengine/axmol.git
475 lines
9.8 KiB
C++
475 lines
9.8 KiB
C++
#include "Vector2.h"
|
|
#include "2d/ccMacros.h"
|
|
#include "MathUtil.h"
|
|
|
|
NS_CC_MATH_BEGIN
|
|
|
|
// returns true if segment A-B intersects with segment C-D. S->E is the ovderlap part
|
|
bool isOneDimensionSegmentOverlap(float A, float B, float C, float D, float *S, float * E)
|
|
{
|
|
float ABmin = MIN(A, B);
|
|
float ABmax = MAX(A, B);
|
|
float CDmin = MIN(C, D);
|
|
float CDmax = MAX(C, D);
|
|
|
|
if (ABmax < CDmin || CDmax < ABmin)
|
|
{
|
|
// ABmin->ABmax->CDmin->CDmax or CDmin->CDmax->ABmin->ABmax
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (ABmin >= CDmin && ABmin <= CDmax)
|
|
{
|
|
// CDmin->ABmin->CDmax->ABmax or CDmin->ABmin->ABmax->CDmax
|
|
if (S != nullptr) *S = ABmin;
|
|
if (E != nullptr) *E = CDmax < ABmax ? CDmax : ABmax;
|
|
}
|
|
else if (ABmax >= CDmin && ABmax <= CDmax)
|
|
{
|
|
// ABmin->CDmin->ABmax->CDmax
|
|
if (S != nullptr) *S = CDmin;
|
|
if (E != nullptr) *E = ABmax;
|
|
}
|
|
else
|
|
{
|
|
// ABmin->CDmin->CDmax->ABmax
|
|
if (S != nullptr) *S = CDmin;
|
|
if (E != nullptr) *E = CDmax;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// cross procuct of 2 vector. A->B X C->D
|
|
float crossProduct2Vector(const Vector2& A, const Vector2& B, const Vector2& C, const Vector2& D)
|
|
{
|
|
return (D.y - C.y) * (B.x - A.x) - (D.x - C.x) * (B.y - A.y);
|
|
}
|
|
|
|
Vector2::Vector2()
|
|
: x(0.0f), y(0.0f)
|
|
{
|
|
}
|
|
|
|
Vector2::Vector2(float xx, float yy)
|
|
: x(xx), y(yy)
|
|
{
|
|
}
|
|
|
|
Vector2::Vector2(const float* array)
|
|
{
|
|
set(array);
|
|
}
|
|
|
|
Vector2::Vector2(const Vector2& p1, const Vector2& p2)
|
|
{
|
|
set(p1, p2);
|
|
}
|
|
|
|
Vector2::Vector2(const Vector2& copy)
|
|
{
|
|
set(copy);
|
|
}
|
|
|
|
Vector2::~Vector2()
|
|
{
|
|
}
|
|
|
|
const Vector2& Vector2::zero()
|
|
{
|
|
static Vector2 value(0.0f, 0.0f);
|
|
return value;
|
|
}
|
|
|
|
const Vector2& Vector2::one()
|
|
{
|
|
static Vector2 value(1.0f, 1.0f);
|
|
return value;
|
|
}
|
|
|
|
const Vector2& Vector2::unitX()
|
|
{
|
|
static Vector2 value(1.0f, 0.0f);
|
|
return value;
|
|
}
|
|
|
|
const Vector2& Vector2::unitY()
|
|
{
|
|
static Vector2 value(0.0f, 1.0f);
|
|
return value;
|
|
}
|
|
|
|
bool Vector2::isZero() const
|
|
{
|
|
return x == 0.0f && y == 0.0f;
|
|
}
|
|
|
|
bool Vector2::isOne() const
|
|
{
|
|
return x == 1.0f && y == 1.0f;
|
|
}
|
|
|
|
float Vector2::angle(const Vector2& v1, const Vector2& v2)
|
|
{
|
|
float dz = v1.x * v2.y - v1.y * v2.x;
|
|
return atan2f(fabsf(dz) + MATH_FLOAT_SMALL, dot(v1, v2));
|
|
}
|
|
|
|
void Vector2::add(const Vector2& v)
|
|
{
|
|
x += v.x;
|
|
y += v.y;
|
|
}
|
|
|
|
void Vector2::add(const Vector2& v1, const Vector2& v2, Vector2* dst)
|
|
{
|
|
GP_ASSERT(dst);
|
|
|
|
dst->x = v1.x + v2.x;
|
|
dst->y = v1.y + v2.y;
|
|
}
|
|
|
|
void Vector2::clamp(const Vector2& min, const Vector2& max)
|
|
{
|
|
GP_ASSERT(!(min.x > max.x || min.y > max.y ));
|
|
|
|
// Clamp the x value.
|
|
if (x < min.x)
|
|
x = min.x;
|
|
if (x > max.x)
|
|
x = max.x;
|
|
|
|
// Clamp the y value.
|
|
if (y < min.y)
|
|
y = min.y;
|
|
if (y > max.y)
|
|
y = max.y;
|
|
}
|
|
|
|
void Vector2::clamp(const Vector2& v, const Vector2& min, const Vector2& max, Vector2* dst)
|
|
{
|
|
GP_ASSERT(dst);
|
|
GP_ASSERT(!(min.x > max.x || min.y > max.y ));
|
|
|
|
// Clamp the x value.
|
|
dst->x = v.x;
|
|
if (dst->x < min.x)
|
|
dst->x = min.x;
|
|
if (dst->x > max.x)
|
|
dst->x = max.x;
|
|
|
|
// Clamp the y value.
|
|
dst->y = v.y;
|
|
if (dst->y < min.y)
|
|
dst->y = min.y;
|
|
if (dst->y > max.y)
|
|
dst->y = max.y;
|
|
}
|
|
|
|
float Vector2::distance(const Vector2& v) const
|
|
{
|
|
float dx = v.x - x;
|
|
float dy = v.y - y;
|
|
|
|
return sqrt(dx * dx + dy * dy);
|
|
}
|
|
|
|
float Vector2::distanceSquared(const Vector2& v) const
|
|
{
|
|
float dx = v.x - x;
|
|
float dy = v.y - y;
|
|
return (dx * dx + dy * dy);
|
|
}
|
|
|
|
float Vector2::dot(const Vector2& v) const
|
|
{
|
|
return (x * v.x + y * v.y);
|
|
}
|
|
|
|
float Vector2::dot(const Vector2& v1, const Vector2& v2)
|
|
{
|
|
return (v1.x * v2.x + v1.y * v2.y);
|
|
}
|
|
|
|
float Vector2::length() const
|
|
{
|
|
return sqrt(x * x + y * y);
|
|
}
|
|
|
|
float Vector2::lengthSquared() const
|
|
{
|
|
return (x * x + y * y);
|
|
}
|
|
|
|
void Vector2::negate()
|
|
{
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
|
|
Vector2& Vector2::normalize()
|
|
{
|
|
normalize(this);
|
|
return *this;
|
|
}
|
|
|
|
void Vector2::normalize(Vector2* dst) const
|
|
{
|
|
GP_ASSERT(dst);
|
|
|
|
if (dst != this)
|
|
{
|
|
dst->x = x;
|
|
dst->y = y;
|
|
}
|
|
|
|
float n = x * x + y * y;
|
|
// Already normalized.
|
|
if (n == 1.0f)
|
|
return;
|
|
|
|
n = sqrt(n);
|
|
// Too close to zero.
|
|
if (n < MATH_TOLERANCE)
|
|
return;
|
|
|
|
n = 1.0f / n;
|
|
dst->x *= n;
|
|
dst->y *= n;
|
|
}
|
|
|
|
void Vector2::scale(float scalar)
|
|
{
|
|
x *= scalar;
|
|
y *= scalar;
|
|
}
|
|
|
|
void Vector2::scale(const Vector2& scale)
|
|
{
|
|
x *= scale.x;
|
|
y *= scale.y;
|
|
}
|
|
|
|
void Vector2::rotate(const Vector2& point, float angle)
|
|
{
|
|
double sinAngle = sin(angle);
|
|
double cosAngle = cos(angle);
|
|
|
|
if (point.isZero())
|
|
{
|
|
float tempX = x * cosAngle - y * sinAngle;
|
|
y = y * cosAngle + x * sinAngle;
|
|
x = tempX;
|
|
}
|
|
else
|
|
{
|
|
float tempX = x - point.x;
|
|
float tempY = y - point.y;
|
|
|
|
x = tempX * cosAngle - tempY * sinAngle + point.x;
|
|
y = tempY * cosAngle + tempX * sinAngle + point.y;
|
|
}
|
|
}
|
|
|
|
void Vector2::set(float xx, float yy)
|
|
{
|
|
this->x = xx;
|
|
this->y = yy;
|
|
}
|
|
|
|
void Vector2::set(const float* array)
|
|
{
|
|
GP_ASSERT(array);
|
|
|
|
x = array[0];
|
|
y = array[1];
|
|
}
|
|
|
|
void Vector2::set(const Vector2& v)
|
|
{
|
|
this->x = v.x;
|
|
this->y = v.y;
|
|
}
|
|
|
|
void Vector2::set(const Vector2& p1, const Vector2& p2)
|
|
{
|
|
x = p2.x - p1.x;
|
|
y = p2.y - p1.y;
|
|
}
|
|
|
|
void Vector2::subtract(const Vector2& v)
|
|
{
|
|
x -= v.x;
|
|
y -= v.y;
|
|
}
|
|
|
|
void Vector2::subtract(const Vector2& v1, const Vector2& v2, Vector2* dst)
|
|
{
|
|
GP_ASSERT(dst);
|
|
|
|
dst->x = v1.x - v2.x;
|
|
dst->y = v1.y - v2.y;
|
|
}
|
|
|
|
void Vector2::smooth(const Vector2& target, float elapsedTime, float responseTime)
|
|
{
|
|
if (elapsedTime > 0)
|
|
{
|
|
*this += (target - *this) * (elapsedTime / (elapsedTime + responseTime));
|
|
}
|
|
}
|
|
|
|
void Vector2::setPoint(float xx, float yy)
|
|
{
|
|
this->x = xx;
|
|
this->y = yy;
|
|
}
|
|
|
|
bool Vector2::equals(const Vector2& target) const
|
|
{
|
|
return (fabs(this->x - target.x) < FLT_EPSILON)
|
|
&& (fabs(this->y - target.y) < FLT_EPSILON);
|
|
}
|
|
|
|
bool Vector2::fuzzyEquals(const Vector2& b, float var) const
|
|
{
|
|
if(x - var <= b.x && b.x <= x + var)
|
|
if(y - var <= b.y && b.y <= y + var)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
float Vector2::getAngle(const Vector2& other) const
|
|
{
|
|
Vector2 a2 = normalize();
|
|
Vector2 b2 = other.normalize();
|
|
float angle = atan2f(a2.cross(b2), a2.dot(b2));
|
|
if( fabs(angle) < FLT_EPSILON ) return 0.f;
|
|
return angle;
|
|
}
|
|
|
|
Vector2 Vector2::rotateByAngle(const Vector2& pivot, float angle) const
|
|
{
|
|
return pivot + (*this - pivot).rotate(Vector2::forAngle(angle));
|
|
}
|
|
|
|
bool Vector2::isLineIntersect(const Vector2& A, const Vector2& B,
|
|
const Vector2& C, const Vector2& D,
|
|
float *S, float *T)
|
|
{
|
|
// FAIL: Line undefined
|
|
if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const float denom = crossProduct2Vector(A, B, C, D);
|
|
|
|
if (denom == 0)
|
|
{
|
|
// Lines parallel or overlap
|
|
return false;
|
|
}
|
|
|
|
if (S != nullptr) *S = crossProduct2Vector(C, D, C, A) / denom;
|
|
if (T != nullptr) *T = crossProduct2Vector(A, B, C, A) / denom;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Vector2::isLineParallel(const Vector2& A, const Vector2& B,
|
|
const Vector2& C, const Vector2& D)
|
|
{
|
|
// FAIL: Line undefined
|
|
if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (crossProduct2Vector(A, B, C, D) == 0)
|
|
{
|
|
// line overlap
|
|
if (crossProduct2Vector(C, D, C, A) == 0 || crossProduct2Vector(A, B, C, A) == 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Vector2::isLineOverlap(const Vector2& A, const Vector2& B,
|
|
const Vector2& C, const Vector2& D)
|
|
{
|
|
// FAIL: Line undefined
|
|
if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (crossProduct2Vector(A, B, C, D) == 0 &&
|
|
(crossProduct2Vector(C, D, C, A) == 0 || crossProduct2Vector(A, B, C, A) == 0))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Vector2::isSegmentOverlap(const Vector2& A, const Vector2& B, const Vector2& C, const Vector2& D, Vector2* S, Vector2* E)
|
|
{
|
|
|
|
if (isLineOverlap(A, B, C, D))
|
|
{
|
|
return isOneDimensionSegmentOverlap(A.x, B.x, C.x, D.x, &S->x, &E->x) &&
|
|
isOneDimensionSegmentOverlap(A.y, B.y, C.y, D.y, &S->y, &E->y);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Vector2::isSegmentIntersect(const Vector2& A, const Vector2& B, const Vector2& C, const Vector2& D)
|
|
{
|
|
float S, T;
|
|
|
|
if (isLineIntersect(A, B, C, D, &S, &T )&&
|
|
(S >= 0.0f && S <= 1.0f && T >= 0.0f && T <= 1.0f))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Vector2 Vector2::getIntersectPoint(const Vector2& A, const Vector2& B, const Vector2& C, const Vector2& D)
|
|
{
|
|
float S, T;
|
|
|
|
if (isLineIntersect(A, B, C, D, &S, &T))
|
|
{
|
|
// Vector2 of intersection
|
|
Vector2 P;
|
|
P.x = A.x + S * (B.x - A.x);
|
|
P.y = A.y + S * (B.y - A.y);
|
|
return P;
|
|
}
|
|
|
|
return Vector2::ZERO;
|
|
}
|
|
|
|
const Vector2 Vector2::ZERO = Vector2(0.0f, 0.0f);
|
|
const Vector2 Vector2::ANCHOR_MIDDLE = Vector2(0.5f, 0.5f);
|
|
const Vector2 Vector2::ANCHOR_BOTTOM_LEFT = Vector2(0.0f, 0.0f);
|
|
const Vector2 Vector2::ANCHOR_TOP_LEFT = Vector2(0.0f, 1.0f);
|
|
const Vector2 Vector2::ANCHOR_BOTTOM_RIGHT = Vector2(1.0f, 0.0f);
|
|
const Vector2 Vector2::ANCHOR_TOP_RIGHT = Vector2(1.0f, 1.0f);
|
|
const Vector2 Vector2::ANCHOR_MIDDLE_RIGHT = Vector2(1.0f, 0.5f);
|
|
const Vector2 Vector2::ANCHOR_MIDDLE_LEFT = Vector2(0.0f, 0.5f);
|
|
const Vector2 Vector2::ANCHOR_MIDDLE_TOP = Vector2(0.5f, 1.0f);
|
|
const Vector2 Vector2::ANCHOR_MIDDLE_BOTTOM = Vector2(0.5f, 0.0f);
|
|
|
|
NS_CC_MATH_END
|