mirror of https://github.com/axmolengine/axmol.git
212 lines
6.0 KiB
C++
212 lines
6.0 KiB
C++
/*
|
|
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include <Box2D/Dynamics/Joints/b2DistanceJoint.h>
|
|
#include <Box2D/Dynamics/b2Body.h>
|
|
#include <Box2D/Dynamics/b2TimeStep.h>
|
|
|
|
// 1-D constrained system
|
|
// m (v2 - v1) = lambda
|
|
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
|
|
// x2 = x1 + h * v2
|
|
|
|
// 1-D mass-damper-spring system
|
|
// m (v2 - v1) + h * d * v2 + h * k *
|
|
|
|
// C = norm(p2 - p1) - L
|
|
// u = (p2 - p1) / norm(p2 - p1)
|
|
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
|
// J = [-u -cross(r1, u) u cross(r2, u)]
|
|
// K = J * invM * JT
|
|
// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
|
|
|
|
void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2,
|
|
const b2Vec2& anchor1, const b2Vec2& anchor2)
|
|
{
|
|
bodyA = b1;
|
|
bodyB = b2;
|
|
localAnchorA = bodyA->GetLocalPoint(anchor1);
|
|
localAnchorB = bodyB->GetLocalPoint(anchor2);
|
|
b2Vec2 d = anchor2 - anchor1;
|
|
length = d.Length();
|
|
}
|
|
|
|
|
|
b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def)
|
|
: b2Joint(def)
|
|
{
|
|
m_localAnchor1 = def->localAnchorA;
|
|
m_localAnchor2 = def->localAnchorB;
|
|
m_length = def->length;
|
|
m_frequencyHz = def->frequencyHz;
|
|
m_dampingRatio = def->dampingRatio;
|
|
m_impulse = 0.0f;
|
|
m_gamma = 0.0f;
|
|
m_bias = 0.0f;
|
|
}
|
|
|
|
void b2DistanceJoint::InitVelocityConstraints(const b2TimeStep& step)
|
|
{
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
// Compute the effective mass matrix.
|
|
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
|
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
|
m_u = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
|
|
|
// Handle singularity.
|
|
float32 length = m_u.Length();
|
|
if (length > b2_linearSlop)
|
|
{
|
|
m_u *= 1.0f / length;
|
|
}
|
|
else
|
|
{
|
|
m_u.Set(0.0f, 0.0f);
|
|
}
|
|
|
|
float32 cr1u = b2Cross(r1, m_u);
|
|
float32 cr2u = b2Cross(r2, m_u);
|
|
float32 invMass = b1->m_invMass + b1->m_invI * cr1u * cr1u + b2->m_invMass + b2->m_invI * cr2u * cr2u;
|
|
|
|
m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
|
|
|
|
if (m_frequencyHz > 0.0f)
|
|
{
|
|
float32 C = length - m_length;
|
|
|
|
// Frequency
|
|
float32 omega = 2.0f * b2_pi * m_frequencyHz;
|
|
|
|
// Damping coefficient
|
|
float32 d = 2.0f * m_mass * m_dampingRatio * omega;
|
|
|
|
// Spring stiffness
|
|
float32 k = m_mass * omega * omega;
|
|
|
|
// magic formulas
|
|
m_gamma = step.dt * (d + step.dt * k);
|
|
m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
|
|
m_bias = C * step.dt * k * m_gamma;
|
|
|
|
m_mass = invMass + m_gamma;
|
|
m_mass = m_mass != 0.0f ? 1.0f / m_mass : 0.0f;
|
|
}
|
|
|
|
if (step.warmStarting)
|
|
{
|
|
// Scale the impulse to support a variable time step.
|
|
m_impulse *= step.dtRatio;
|
|
|
|
b2Vec2 P = m_impulse * m_u;
|
|
b1->m_linearVelocity -= b1->m_invMass * P;
|
|
b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
|
|
b2->m_linearVelocity += b2->m_invMass * P;
|
|
b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
|
|
}
|
|
else
|
|
{
|
|
m_impulse = 0.0f;
|
|
}
|
|
}
|
|
|
|
void b2DistanceJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
|
{
|
|
B2_NOT_USED(step);
|
|
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
|
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
|
|
|
// Cdot = dot(u, v + cross(w, r))
|
|
b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
|
|
b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
|
|
float32 Cdot = b2Dot(m_u, v2 - v1);
|
|
|
|
float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse);
|
|
m_impulse += impulse;
|
|
|
|
b2Vec2 P = impulse * m_u;
|
|
b1->m_linearVelocity -= b1->m_invMass * P;
|
|
b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
|
|
b2->m_linearVelocity += b2->m_invMass * P;
|
|
b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
|
|
}
|
|
|
|
bool b2DistanceJoint::SolvePositionConstraints(float32 baumgarte)
|
|
{
|
|
B2_NOT_USED(baumgarte);
|
|
|
|
if (m_frequencyHz > 0.0f)
|
|
{
|
|
// There is no position correction for soft distance constraints.
|
|
return true;
|
|
}
|
|
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
|
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
|
|
|
b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
|
|
|
float32 length = d.Normalize();
|
|
float32 C = length - m_length;
|
|
C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection);
|
|
|
|
float32 impulse = -m_mass * C;
|
|
m_u = d;
|
|
b2Vec2 P = impulse * m_u;
|
|
|
|
b1->m_sweep.c -= b1->m_invMass * P;
|
|
b1->m_sweep.a -= b1->m_invI * b2Cross(r1, P);
|
|
b2->m_sweep.c += b2->m_invMass * P;
|
|
b2->m_sweep.a += b2->m_invI * b2Cross(r2, P);
|
|
|
|
b1->SynchronizeTransform();
|
|
b2->SynchronizeTransform();
|
|
|
|
return b2Abs(C) < b2_linearSlop;
|
|
}
|
|
|
|
b2Vec2 b2DistanceJoint::GetAnchorA() const
|
|
{
|
|
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
|
}
|
|
|
|
b2Vec2 b2DistanceJoint::GetAnchorB() const
|
|
{
|
|
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
|
}
|
|
|
|
b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const
|
|
{
|
|
b2Vec2 F = (inv_dt * m_impulse) * m_u;
|
|
return F;
|
|
}
|
|
|
|
float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const
|
|
{
|
|
B2_NOT_USED(inv_dt);
|
|
return 0.0f;
|
|
}
|