mirror of https://github.com/axmolengine/axmol.git
592 lines
15 KiB
C++
592 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include <Box2D/Dynamics/Joints/b2LineJoint.h>
|
|
#include <Box2D/Dynamics/b2Body.h>
|
|
#include <Box2D/Dynamics/b2TimeStep.h>
|
|
|
|
// Linear constraint (point-to-line)
|
|
// d = p2 - p1 = x2 + r2 - x1 - r1
|
|
// C = dot(perp, d)
|
|
// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
|
// = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
|
|
// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
|
|
//
|
|
// K = J * invM * JT
|
|
//
|
|
// J = [-a -s1 a s2]
|
|
// a = perp
|
|
// s1 = cross(d + r1, a) = cross(p2 - x1, a)
|
|
// s2 = cross(r2, a) = cross(p2 - x2, a)
|
|
|
|
|
|
// Motor/Limit linear constraint
|
|
// C = dot(ax1, d)
|
|
// Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
|
|
// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
|
|
|
|
// Block Solver
|
|
// We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even
|
|
// when the mass has poor distribution (leading to large torques about the joint anchor points).
|
|
//
|
|
// The Jacobian has 3 rows:
|
|
// J = [-uT -s1 uT s2] // linear
|
|
// [-vT -a1 vT a2] // limit
|
|
//
|
|
// u = perp
|
|
// v = axis
|
|
// s1 = cross(d + r1, u), s2 = cross(r2, u)
|
|
// a1 = cross(d + r1, v), a2 = cross(r2, v)
|
|
|
|
// M * (v2 - v1) = JT * df
|
|
// J * v2 = bias
|
|
//
|
|
// v2 = v1 + invM * JT * df
|
|
// J * (v1 + invM * JT * df) = bias
|
|
// K * df = bias - J * v1 = -Cdot
|
|
// K = J * invM * JT
|
|
// Cdot = J * v1 - bias
|
|
//
|
|
// Now solve for f2.
|
|
// df = f2 - f1
|
|
// K * (f2 - f1) = -Cdot
|
|
// f2 = invK * (-Cdot) + f1
|
|
//
|
|
// Clamp accumulated limit impulse.
|
|
// lower: f2(2) = max(f2(2), 0)
|
|
// upper: f2(2) = min(f2(2), 0)
|
|
//
|
|
// Solve for correct f2(1)
|
|
// K(1,1) * f2(1) = -Cdot(1) - K(1,2) * f2(2) + K(1,1:2) * f1
|
|
// = -Cdot(1) - K(1,2) * f2(2) + K(1,1) * f1(1) + K(1,2) * f1(2)
|
|
// K(1,1) * f2(1) = -Cdot(1) - K(1,2) * (f2(2) - f1(2)) + K(1,1) * f1(1)
|
|
// f2(1) = invK(1,1) * (-Cdot(1) - K(1,2) * (f2(2) - f1(2))) + f1(1)
|
|
//
|
|
// Now compute impulse to be applied:
|
|
// df = f2 - f1
|
|
|
|
void b2LineJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor, const b2Vec2& axis)
|
|
{
|
|
bodyA = b1;
|
|
bodyB = b2;
|
|
localAnchorA = bodyA->GetLocalPoint(anchor);
|
|
localAnchorB = bodyB->GetLocalPoint(anchor);
|
|
localAxisA = bodyA->GetLocalVector(axis);
|
|
}
|
|
|
|
b2LineJoint::b2LineJoint(const b2LineJointDef* def)
|
|
: b2Joint(def)
|
|
{
|
|
m_localAnchor1 = def->localAnchorA;
|
|
m_localAnchor2 = def->localAnchorB;
|
|
m_localXAxis1 = def->localAxisA;
|
|
m_localYAxis1 = b2Cross(1.0f, m_localXAxis1);
|
|
|
|
m_impulse.SetZero();
|
|
m_motorMass = 0.0;
|
|
m_motorImpulse = 0.0f;
|
|
|
|
m_lowerTranslation = def->lowerTranslation;
|
|
m_upperTranslation = def->upperTranslation;
|
|
m_maxMotorForce = def->maxMotorForce;
|
|
m_motorSpeed = def->motorSpeed;
|
|
m_enableLimit = def->enableLimit;
|
|
m_enableMotor = def->enableMotor;
|
|
m_limitState = e_inactiveLimit;
|
|
|
|
m_axis.SetZero();
|
|
m_perp.SetZero();
|
|
}
|
|
|
|
void b2LineJoint::InitVelocityConstraints(const b2TimeStep& step)
|
|
{
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
m_localCenterA = b1->GetLocalCenter();
|
|
m_localCenterB = b2->GetLocalCenter();
|
|
|
|
b2Transform xf1 = b1->GetTransform();
|
|
b2Transform xf2 = b2->GetTransform();
|
|
|
|
// Compute the effective masses.
|
|
b2Vec2 r1 = b2Mul(xf1.R, m_localAnchor1 - m_localCenterA);
|
|
b2Vec2 r2 = b2Mul(xf2.R, m_localAnchor2 - m_localCenterB);
|
|
b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
|
|
|
|
m_invMassA = b1->m_invMass;
|
|
m_invIA = b1->m_invI;
|
|
m_invMassB = b2->m_invMass;
|
|
m_invIB = b2->m_invI;
|
|
|
|
// Compute motor Jacobian and effective mass.
|
|
{
|
|
m_axis = b2Mul(xf1.R, m_localXAxis1);
|
|
m_a1 = b2Cross(d + r1, m_axis);
|
|
m_a2 = b2Cross(r2, m_axis);
|
|
|
|
m_motorMass = m_invMassA + m_invMassB + m_invIA * m_a1 * m_a1 + m_invIB * m_a2 * m_a2;
|
|
if (m_motorMass > b2_epsilon)
|
|
{
|
|
m_motorMass = 1.0f / m_motorMass;
|
|
}
|
|
else
|
|
{
|
|
m_motorMass = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Prismatic constraint.
|
|
{
|
|
m_perp = b2Mul(xf1.R, m_localYAxis1);
|
|
|
|
m_s1 = b2Cross(d + r1, m_perp);
|
|
m_s2 = b2Cross(r2, m_perp);
|
|
|
|
float32 m1 = m_invMassA, m2 = m_invMassB;
|
|
float32 i1 = m_invIA, i2 = m_invIB;
|
|
|
|
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
|
float32 k12 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
|
|
float32 k22 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
|
|
|
|
m_K.col1.Set(k11, k12);
|
|
m_K.col2.Set(k12, k22);
|
|
}
|
|
|
|
// Compute motor and limit terms.
|
|
if (m_enableLimit)
|
|
{
|
|
float32 jointTranslation = b2Dot(m_axis, d);
|
|
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
|
|
{
|
|
m_limitState = e_equalLimits;
|
|
}
|
|
else if (jointTranslation <= m_lowerTranslation)
|
|
{
|
|
if (m_limitState != e_atLowerLimit)
|
|
{
|
|
m_limitState = e_atLowerLimit;
|
|
m_impulse.y = 0.0f;
|
|
}
|
|
}
|
|
else if (jointTranslation >= m_upperTranslation)
|
|
{
|
|
if (m_limitState != e_atUpperLimit)
|
|
{
|
|
m_limitState = e_atUpperLimit;
|
|
m_impulse.y = 0.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_limitState = e_inactiveLimit;
|
|
m_impulse.y = 0.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_limitState = e_inactiveLimit;
|
|
}
|
|
|
|
if (m_enableMotor == false)
|
|
{
|
|
m_motorImpulse = 0.0f;
|
|
}
|
|
|
|
if (step.warmStarting)
|
|
{
|
|
// Account for variable time step.
|
|
m_impulse *= step.dtRatio;
|
|
m_motorImpulse *= step.dtRatio;
|
|
|
|
b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.y) * m_axis;
|
|
float32 L1 = m_impulse.x * m_s1 + (m_motorImpulse + m_impulse.y) * m_a1;
|
|
float32 L2 = m_impulse.x * m_s2 + (m_motorImpulse + m_impulse.y) * m_a2;
|
|
|
|
b1->m_linearVelocity -= m_invMassA * P;
|
|
b1->m_angularVelocity -= m_invIA * L1;
|
|
|
|
b2->m_linearVelocity += m_invMassB * P;
|
|
b2->m_angularVelocity += m_invIB * L2;
|
|
}
|
|
else
|
|
{
|
|
m_impulse.SetZero();
|
|
m_motorImpulse = 0.0f;
|
|
}
|
|
}
|
|
|
|
void b2LineJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
|
{
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
b2Vec2 v1 = b1->m_linearVelocity;
|
|
float32 w1 = b1->m_angularVelocity;
|
|
b2Vec2 v2 = b2->m_linearVelocity;
|
|
float32 w2 = b2->m_angularVelocity;
|
|
|
|
// Solve linear motor constraint.
|
|
if (m_enableMotor && m_limitState != e_equalLimits)
|
|
{
|
|
float32 Cdot = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
|
|
float32 impulse = m_motorMass * (m_motorSpeed - Cdot);
|
|
float32 oldImpulse = m_motorImpulse;
|
|
float32 maxImpulse = step.dt * m_maxMotorForce;
|
|
m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
|
|
impulse = m_motorImpulse - oldImpulse;
|
|
|
|
b2Vec2 P = impulse * m_axis;
|
|
float32 L1 = impulse * m_a1;
|
|
float32 L2 = impulse * m_a2;
|
|
|
|
v1 -= m_invMassA * P;
|
|
w1 -= m_invIA * L1;
|
|
|
|
v2 += m_invMassB * P;
|
|
w2 += m_invIB * L2;
|
|
}
|
|
|
|
float32 Cdot1 = b2Dot(m_perp, v2 - v1) + m_s2 * w2 - m_s1 * w1;
|
|
|
|
if (m_enableLimit && m_limitState != e_inactiveLimit)
|
|
{
|
|
// Solve prismatic and limit constraint in block form.
|
|
float32 Cdot2 = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
|
|
b2Vec2 Cdot(Cdot1, Cdot2);
|
|
|
|
b2Vec2 f1 = m_impulse;
|
|
b2Vec2 df = m_K.Solve(-Cdot);
|
|
m_impulse += df;
|
|
|
|
if (m_limitState == e_atLowerLimit)
|
|
{
|
|
m_impulse.y = b2Max(m_impulse.y, 0.0f);
|
|
}
|
|
else if (m_limitState == e_atUpperLimit)
|
|
{
|
|
m_impulse.y = b2Min(m_impulse.y, 0.0f);
|
|
}
|
|
|
|
// f2(1) = invK(1,1) * (-Cdot(1) - K(1,2) * (f2(2) - f1(2))) + f1(1)
|
|
float32 b = -Cdot1 - (m_impulse.y - f1.y) * m_K.col2.x;
|
|
float32 f2r;
|
|
if (m_K.col1.x != 0.0f)
|
|
{
|
|
f2r = b / m_K.col1.x + f1.x;
|
|
}
|
|
else
|
|
{
|
|
f2r = f1.x;
|
|
}
|
|
|
|
m_impulse.x = f2r;
|
|
|
|
df = m_impulse - f1;
|
|
|
|
b2Vec2 P = df.x * m_perp + df.y * m_axis;
|
|
float32 L1 = df.x * m_s1 + df.y * m_a1;
|
|
float32 L2 = df.x * m_s2 + df.y * m_a2;
|
|
|
|
v1 -= m_invMassA * P;
|
|
w1 -= m_invIA * L1;
|
|
|
|
v2 += m_invMassB * P;
|
|
w2 += m_invIB * L2;
|
|
}
|
|
else
|
|
{
|
|
// Limit is inactive, just solve the prismatic constraint in block form.
|
|
float32 df;
|
|
if (m_K.col1.x != 0.0f)
|
|
{
|
|
df = - Cdot1 / m_K.col1.x;
|
|
}
|
|
else
|
|
{
|
|
df = 0.0f;
|
|
}
|
|
m_impulse.x += df;
|
|
|
|
b2Vec2 P = df * m_perp;
|
|
float32 L1 = df * m_s1;
|
|
float32 L2 = df * m_s2;
|
|
|
|
v1 -= m_invMassA * P;
|
|
w1 -= m_invIA * L1;
|
|
|
|
v2 += m_invMassB * P;
|
|
w2 += m_invIB * L2;
|
|
}
|
|
|
|
b1->m_linearVelocity = v1;
|
|
b1->m_angularVelocity = w1;
|
|
b2->m_linearVelocity = v2;
|
|
b2->m_angularVelocity = w2;
|
|
}
|
|
|
|
bool b2LineJoint::SolvePositionConstraints(float32 baumgarte)
|
|
{
|
|
B2_NOT_USED(baumgarte);
|
|
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
b2Vec2 c1 = b1->m_sweep.c;
|
|
float32 a1 = b1->m_sweep.a;
|
|
|
|
b2Vec2 c2 = b2->m_sweep.c;
|
|
float32 a2 = b2->m_sweep.a;
|
|
|
|
// Solve linear limit constraint.
|
|
float32 linearError = 0.0f, angularError = 0.0f;
|
|
bool active = false;
|
|
float32 C2 = 0.0f;
|
|
|
|
b2Mat22 R1(a1), R2(a2);
|
|
|
|
b2Vec2 r1 = b2Mul(R1, m_localAnchor1 - m_localCenterA);
|
|
b2Vec2 r2 = b2Mul(R2, m_localAnchor2 - m_localCenterB);
|
|
b2Vec2 d = c2 + r2 - c1 - r1;
|
|
|
|
if (m_enableLimit)
|
|
{
|
|
m_axis = b2Mul(R1, m_localXAxis1);
|
|
|
|
m_a1 = b2Cross(d + r1, m_axis);
|
|
m_a2 = b2Cross(r2, m_axis);
|
|
|
|
float32 translation = b2Dot(m_axis, d);
|
|
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
|
|
{
|
|
// Prevent large angular corrections
|
|
C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection);
|
|
linearError = b2Abs(translation);
|
|
active = true;
|
|
}
|
|
else if (translation <= m_lowerTranslation)
|
|
{
|
|
// Prevent large linear corrections and allow some slop.
|
|
C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
|
|
linearError = m_lowerTranslation - translation;
|
|
active = true;
|
|
}
|
|
else if (translation >= m_upperTranslation)
|
|
{
|
|
// Prevent large linear corrections and allow some slop.
|
|
C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection);
|
|
linearError = translation - m_upperTranslation;
|
|
active = true;
|
|
}
|
|
}
|
|
|
|
m_perp = b2Mul(R1, m_localYAxis1);
|
|
|
|
m_s1 = b2Cross(d + r1, m_perp);
|
|
m_s2 = b2Cross(r2, m_perp);
|
|
|
|
b2Vec2 impulse;
|
|
float32 C1;
|
|
C1 = b2Dot(m_perp, d);
|
|
|
|
linearError = b2Max(linearError, b2Abs(C1));
|
|
angularError = 0.0f;
|
|
|
|
if (active)
|
|
{
|
|
float32 m1 = m_invMassA, m2 = m_invMassB;
|
|
float32 i1 = m_invIA, i2 = m_invIB;
|
|
|
|
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
|
float32 k12 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
|
|
float32 k22 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
|
|
|
|
m_K.col1.Set(k11, k12);
|
|
m_K.col2.Set(k12, k22);
|
|
|
|
b2Vec2 C;
|
|
C.x = C1;
|
|
C.y = C2;
|
|
|
|
impulse = m_K.Solve(-C);
|
|
}
|
|
else
|
|
{
|
|
float32 m1 = m_invMassA, m2 = m_invMassB;
|
|
float32 i1 = m_invIA, i2 = m_invIB;
|
|
|
|
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
|
|
|
|
float32 impulse1;
|
|
if (k11 != 0.0f)
|
|
{
|
|
impulse1 = - C1 / k11;
|
|
}
|
|
else
|
|
{
|
|
impulse1 = 0.0f;
|
|
}
|
|
|
|
impulse.x = impulse1;
|
|
impulse.y = 0.0f;
|
|
}
|
|
|
|
b2Vec2 P = impulse.x * m_perp + impulse.y * m_axis;
|
|
float32 L1 = impulse.x * m_s1 + impulse.y * m_a1;
|
|
float32 L2 = impulse.x * m_s2 + impulse.y * m_a2;
|
|
|
|
c1 -= m_invMassA * P;
|
|
a1 -= m_invIA * L1;
|
|
c2 += m_invMassB * P;
|
|
a2 += m_invIB * L2;
|
|
|
|
// TODO_ERIN remove need for this.
|
|
b1->m_sweep.c = c1;
|
|
b1->m_sweep.a = a1;
|
|
b2->m_sweep.c = c2;
|
|
b2->m_sweep.a = a2;
|
|
b1->SynchronizeTransform();
|
|
b2->SynchronizeTransform();
|
|
|
|
return linearError <= b2_linearSlop && angularError <= b2_angularSlop;
|
|
}
|
|
|
|
b2Vec2 b2LineJoint::GetAnchorA() const
|
|
{
|
|
return m_bodyA->GetWorldPoint(m_localAnchor1);
|
|
}
|
|
|
|
b2Vec2 b2LineJoint::GetAnchorB() const
|
|
{
|
|
return m_bodyB->GetWorldPoint(m_localAnchor2);
|
|
}
|
|
|
|
b2Vec2 b2LineJoint::GetReactionForce(float32 inv_dt) const
|
|
{
|
|
return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.y) * m_axis);
|
|
}
|
|
|
|
float32 b2LineJoint::GetReactionTorque(float32 inv_dt) const
|
|
{
|
|
B2_NOT_USED(inv_dt);
|
|
return 0.0f;
|
|
}
|
|
|
|
float32 b2LineJoint::GetJointTranslation() const
|
|
{
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
b2Vec2 p1 = b1->GetWorldPoint(m_localAnchor1);
|
|
b2Vec2 p2 = b2->GetWorldPoint(m_localAnchor2);
|
|
b2Vec2 d = p2 - p1;
|
|
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
|
|
|
|
float32 translation = b2Dot(d, axis);
|
|
return translation;
|
|
}
|
|
|
|
float32 b2LineJoint::GetJointSpeed() const
|
|
{
|
|
b2Body* b1 = m_bodyA;
|
|
b2Body* b2 = m_bodyB;
|
|
|
|
b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
|
|
b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
|
|
b2Vec2 p1 = b1->m_sweep.c + r1;
|
|
b2Vec2 p2 = b2->m_sweep.c + r2;
|
|
b2Vec2 d = p2 - p1;
|
|
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
|
|
|
|
b2Vec2 v1 = b1->m_linearVelocity;
|
|
b2Vec2 v2 = b2->m_linearVelocity;
|
|
float32 w1 = b1->m_angularVelocity;
|
|
float32 w2 = b2->m_angularVelocity;
|
|
|
|
float32 speed = b2Dot(d, b2Cross(w1, axis)) + b2Dot(axis, v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1));
|
|
return speed;
|
|
}
|
|
|
|
bool b2LineJoint::IsLimitEnabled() const
|
|
{
|
|
return m_enableLimit;
|
|
}
|
|
|
|
void b2LineJoint::EnableLimit(bool flag)
|
|
{
|
|
m_bodyA->SetAwake(true);
|
|
m_bodyB->SetAwake(true);
|
|
m_enableLimit = flag;
|
|
}
|
|
|
|
float32 b2LineJoint::GetLowerLimit() const
|
|
{
|
|
return m_lowerTranslation;
|
|
}
|
|
|
|
float32 b2LineJoint::GetUpperLimit() const
|
|
{
|
|
return m_upperTranslation;
|
|
}
|
|
|
|
void b2LineJoint::SetLimits(float32 lower, float32 upper)
|
|
{
|
|
b2Assert(lower <= upper);
|
|
m_bodyA->SetAwake(true);
|
|
m_bodyB->SetAwake(true);
|
|
m_lowerTranslation = lower;
|
|
m_upperTranslation = upper;
|
|
}
|
|
|
|
bool b2LineJoint::IsMotorEnabled() const
|
|
{
|
|
return m_enableMotor;
|
|
}
|
|
|
|
void b2LineJoint::EnableMotor(bool flag)
|
|
{
|
|
m_bodyA->SetAwake(true);
|
|
m_bodyB->SetAwake(true);
|
|
m_enableMotor = flag;
|
|
}
|
|
|
|
void b2LineJoint::SetMotorSpeed(float32 speed)
|
|
{
|
|
m_bodyA->SetAwake(true);
|
|
m_bodyB->SetAwake(true);
|
|
m_motorSpeed = speed;
|
|
}
|
|
|
|
void b2LineJoint::SetMaxMotorForce(float32 force)
|
|
{
|
|
m_bodyA->SetAwake(true);
|
|
m_bodyB->SetAwake(true);
|
|
m_maxMotorForce = force;
|
|
}
|
|
|
|
float32 b2LineJoint::GetMotorForce() const
|
|
{
|
|
return m_motorImpulse;
|
|
}
|
|
|
|
|
|
|
|
|
|
|