axmol/thirdparty/openal/alc/alu.cpp

2206 lines
82 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "alu.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <chrono>
#include <climits>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <stdint.h>
#include <utility>
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "alstring.h"
#include "atomic.h"
#include "core/ambidefs.h"
#include "core/async_event.h"
#include "core/bformatdec.h"
#include "core/bs2b.h"
#include "core/bsinc_defs.h"
#include "core/bsinc_tables.h"
#include "core/bufferline.h"
#include "core/buffer_storage.h"
#include "core/context.h"
#include "core/cpu_caps.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effects/base.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/filters/nfc.h"
#include "core/fpu_ctrl.h"
#include "core/hrtf.h"
#include "core/mastering.h"
#include "core/mixer.h"
#include "core/mixer/defs.h"
#include "core/mixer/hrtfdefs.h"
#include "core/resampler_limits.h"
#include "core/uhjfilter.h"
#include "core/voice.h"
#include "core/voice_change.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
#include "ringbuffer.h"
#include "strutils.h"
#include "threads.h"
#include "vecmat.h"
#include "vector.h"
struct CTag;
#ifdef HAVE_SSE
struct SSETag;
#endif
#ifdef HAVE_SSE2
struct SSE2Tag;
#endif
#ifdef HAVE_SSE4_1
struct SSE4Tag;
#endif
#ifdef HAVE_NEON
struct NEONTag;
#endif
struct PointTag;
struct LerpTag;
struct CubicTag;
struct BSincTag;
struct FastBSincTag;
static_assert(!(MaxResamplerPadding&1), "MaxResamplerPadding is not a multiple of two");
namespace {
using uint = unsigned int;
using namespace std::chrono;
constexpr uint MaxPitch{10};
static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!");
static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize,
"MaxPitch and/or BufferLineSize are too large for MixerFracBits!");
using namespace std::placeholders;
float InitConeScale()
{
float ret{1.0f};
if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
{
if(al::strcasecmp(optval->c_str(), "true") == 0
|| strtol(optval->c_str(), nullptr, 0) == 1)
ret *= 0.5f;
}
return ret;
}
/* Cone scalar */
const float ConeScale{InitConeScale()};
/* Localized scalars for mono sources (initialized in aluInit, after
* configuration is loaded).
*/
float XScale{1.0f};
float YScale{1.0f};
float ZScale{1.0f};
/* Source distance scale for NFC filters. */
float NfcScale{1.0f};
struct ChanMap {
Channel channel;
float angle;
float elevation;
};
using HrtfDirectMixerFunc = void(*)(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, float *TempBuf,
HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);
HrtfDirectMixerFunc MixDirectHrtf{MixDirectHrtf_<CTag>};
inline HrtfDirectMixerFunc SelectHrtfMixer(void)
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixDirectHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixDirectHrtf_<SSETag>;
#endif
return MixDirectHrtf_<CTag>;
}
inline void BsincPrepare(const uint increment, BsincState *state, const BSincTable *table)
{
size_t si{BSincScaleCount - 1};
float sf{0.0f};
if(increment > MixerFracOne)
{
sf = MixerFracOne/static_cast<float>(increment) - table->scaleBase;
sf = maxf(0.0f, BSincScaleCount*sf*table->scaleRange - 1.0f);
si = float2uint(sf);
/* The interpolation factor is fit to this diagonally-symmetric curve
* to reduce the transition ripple caused by interpolating different
* scales of the sinc function.
*/
sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
}
state->sf = sf;
state->m = table->m[si];
state->l = (state->m/2) - 1;
state->filter = table->Tab + table->filterOffset[si];
}
inline ResamplerFunc SelectResampler(Resampler resampler, uint increment)
{
switch(resampler)
{
case Resampler::Point:
return Resample_<PointTag,CTag>;
case Resampler::Linear:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<LerpTag,NEONTag>;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_<LerpTag,SSE4Tag>;
#endif
#ifdef HAVE_SSE2
if((CPUCapFlags&CPU_CAP_SSE2))
return Resample_<LerpTag,SSE2Tag>;
#endif
return Resample_<LerpTag,CTag>;
case Resampler::Cubic:
return Resample_<CubicTag,CTag>;
case Resampler::BSinc12:
case Resampler::BSinc24:
if(increment > MixerFracOne)
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<BSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<BSincTag,SSETag>;
#endif
return Resample_<BSincTag,CTag>;
}
/* fall-through */
case Resampler::FastBSinc12:
case Resampler::FastBSinc24:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<FastBSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<FastBSincTag,SSETag>;
#endif
return Resample_<FastBSincTag,CTag>;
}
return Resample_<PointTag,CTag>;
}
} // namespace
void aluInit(CompatFlagBitset flags, const float nfcscale)
{
MixDirectHrtf = SelectHrtfMixer();
XScale = flags.test(CompatFlags::ReverseX) ? -1.0f : 1.0f;
YScale = flags.test(CompatFlags::ReverseY) ? -1.0f : 1.0f;
ZScale = flags.test(CompatFlags::ReverseZ) ? -1.0f : 1.0f;
NfcScale = clampf(nfcscale, 0.0001f, 10000.0f);
}
ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state)
{
switch(resampler)
{
case Resampler::Point:
case Resampler::Linear:
case Resampler::Cubic:
break;
case Resampler::FastBSinc12:
case Resampler::BSinc12:
BsincPrepare(increment, &state->bsinc, &bsinc12);
break;
case Resampler::FastBSinc24:
case Resampler::BSinc24:
BsincPrepare(increment, &state->bsinc, &bsinc24);
break;
}
return SelectResampler(resampler, increment);
}
void DeviceBase::ProcessHrtf(const size_t SamplesToDo)
{
/* HRTF is stereo output only. */
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
const uint ridx{RealOut.ChannelIndex[FrontRight]};
MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
mHrtfState->mTemp.data(), mHrtfState->mChannels.data(), mHrtfState->mIrSize, SamplesToDo);
}
void DeviceBase::ProcessAmbiDec(const size_t SamplesToDo)
{
AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
}
void DeviceBase::ProcessAmbiDecStablized(const size_t SamplesToDo)
{
/* Decode with front image stablization. */
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
const uint ridx{RealOut.ChannelIndex[FrontRight]};
const uint cidx{RealOut.ChannelIndex[FrontCenter]};
AmbiDecoder->processStablize(RealOut.Buffer, Dry.Buffer.data(), lidx, ridx, cidx,
SamplesToDo);
}
void DeviceBase::ProcessUhj(const size_t SamplesToDo)
{
/* UHJ is stereo output only. */
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
const uint ridx{RealOut.ChannelIndex[FrontRight]};
/* Encode to stereo-compatible 2-channel UHJ output. */
mUhjEncoder->encode(RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
{{Dry.Buffer[0].data(), Dry.Buffer[1].data(), Dry.Buffer[2].data()}}, SamplesToDo);
}
void DeviceBase::ProcessBs2b(const size_t SamplesToDo)
{
/* First, decode the ambisonic mix to the "real" output. */
AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
/* BS2B is stereo output only. */
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
const uint ridx{RealOut.ChannelIndex[FrontRight]};
/* Now apply the BS2B binaural/crossfeed filter. */
bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
SamplesToDo);
}
namespace {
/* This RNG method was created based on the math found in opusdec. It's quick,
* and starting with a seed value of 22222, is suitable for generating
* whitenoise.
*/
inline uint dither_rng(uint *seed) noexcept
{
*seed = (*seed * 96314165) + 907633515;
return *seed;
}
/* Ambisonic upsampler function. It's effectively a matrix multiply. It takes
* an 'upsampler' and 'rotator' as the input matrices, and creates a matrix
* that behaves as if the B-Format input was first decoded to a speaker array
* at its input order, encoded back into the higher order mix, then finally
* rotated.
*/
void UpsampleBFormatTransform(
const al::span<std::array<float,MaxAmbiChannels>,MaxAmbiChannels> output,
const al::span<const std::array<float,MaxAmbiChannels>> upsampler,
const al::span<std::array<float,MaxAmbiChannels>,MaxAmbiChannels> rotator, size_t coeffs_order)
{
const size_t num_chans{AmbiChannelsFromOrder(coeffs_order)};
for(size_t i{0};i < upsampler.size();++i)
output[i].fill(0.0f);
for(size_t i{0};i < upsampler.size();++i)
{
for(size_t k{0};k < num_chans;++k)
{
float *RESTRICT out{output[i].data()};
/* Write the full number of channels. The compiler will have an
* easier time optimizing if it has a fixed length.
*/
for(size_t j{0};j < MaxAmbiChannels;++j)
out[j] += upsampler[i][k] * rotator[k][j];
}
}
}
inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
{
switch(scaletype)
{
case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
case AmbiScaling::N3D: break;
}
return AmbiScale::FromN3D();
}
inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
{
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
return AmbiIndex::FromACN();
}
inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
{
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
return AmbiIndex::FromACN2D();
}
bool CalcContextParams(ContextBase *ctx)
{
ContextProps *props{ctx->mParams.ContextUpdate.exchange(nullptr, std::memory_order_acq_rel)};
if(!props) return false;
const alu::Vector pos{props->Position[0], props->Position[1], props->Position[2], 1.0f};
ctx->mParams.Position = pos;
/* AT then UP */
alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
N.normalize();
alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
V.normalize();
/* Build and normalize right-vector */
alu::Vector U{N.cross_product(V)};
U.normalize();
const alu::Matrix rot{
U[0], V[0], -N[0], 0.0,
U[1], V[1], -N[1], 0.0,
U[2], V[2], -N[2], 0.0,
0.0, 0.0, 0.0, 1.0};
const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0};
ctx->mParams.Matrix = rot;
ctx->mParams.Velocity = rot * vel;
ctx->mParams.Gain = props->Gain * ctx->mGainBoost;
ctx->mParams.MetersPerUnit = props->MetersPerUnit;
ctx->mParams.AirAbsorptionGainHF = props->AirAbsorptionGainHF;
ctx->mParams.DopplerFactor = props->DopplerFactor;
ctx->mParams.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
ctx->mParams.SourceDistanceModel = props->SourceDistanceModel;
ctx->mParams.mDistanceModel = props->mDistanceModel;
AtomicReplaceHead(ctx->mFreeContextProps, props);
return true;
}
bool CalcEffectSlotParams(EffectSlot *slot, EffectSlot **sorted_slots, ContextBase *context)
{
EffectSlotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)};
if(!props) return false;
/* If the effect slot target changed, clear the first sorted entry to force
* a re-sort.
*/
if(slot->Target != props->Target)
*sorted_slots = nullptr;
slot->Gain = props->Gain;
slot->AuxSendAuto = props->AuxSendAuto;
slot->Target = props->Target;
slot->EffectType = props->Type;
slot->mEffectProps = props->Props;
if(props->Type == EffectSlotType::Reverb || props->Type == EffectSlotType::EAXReverb)
{
slot->RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
slot->DecayTime = props->Props.Reverb.DecayTime;
slot->DecayLFRatio = props->Props.Reverb.DecayLFRatio;
slot->DecayHFRatio = props->Props.Reverb.DecayHFRatio;
slot->DecayHFLimit = props->Props.Reverb.DecayHFLimit;
slot->AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
}
else
{
slot->RoomRolloff = 0.0f;
slot->DecayTime = 0.0f;
slot->DecayLFRatio = 0.0f;
slot->DecayHFRatio = 0.0f;
slot->DecayHFLimit = false;
slot->AirAbsorptionGainHF = 1.0f;
}
EffectState *state{props->State.release()};
EffectState *oldstate{slot->mEffectState.release()};
slot->mEffectState.reset(state);
/* Only release the old state if it won't get deleted, since we can't be
* deleting/freeing anything in the mixer.
*/
if(!oldstate->releaseIfNoDelete())
{
/* Otherwise, if it would be deleted send it off with a release event. */
RingBuffer *ring{context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len > 0) [[likely]]
{
AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
AsyncEvent::ReleaseEffectState)};
evt->u.mEffectState = oldstate;
ring->writeAdvance(1);
}
else
{
/* If writing the event failed, the queue was probably full. Store
* the old state in the property object where it can eventually be
* cleaned up sometime later (not ideal, but better than blocking
* or leaking).
*/
props->State.reset(oldstate);
}
}
AtomicReplaceHead(context->mFreeEffectslotProps, props);
EffectTarget output;
if(EffectSlot *target{slot->Target})
output = EffectTarget{&target->Wet, nullptr};
else
{
DeviceBase *device{context->mDevice};
output = EffectTarget{&device->Dry, &device->RealOut};
}
state->update(context, slot, &slot->mEffectProps, output);
return true;
}
/* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
* front.
*/
inline float ScaleAzimuthFront(float azimuth, float scale)
{
const float abs_azi{std::fabs(azimuth)};
if(!(abs_azi >= al::numbers::pi_v<float>*0.5f))
return std::copysign(minf(abs_azi*scale, al::numbers::pi_v<float>*0.5f), azimuth);
return azimuth;
}
/* Wraps the given value in radians to stay between [-pi,+pi] */
inline float WrapRadians(float r)
{
static constexpr float Pi{al::numbers::pi_v<float>};
static constexpr float Pi2{Pi*2.0f};
if(r > Pi) return std::fmod(Pi+r, Pi2) - Pi;
if(r < -Pi) return Pi - std::fmod(Pi-r, Pi2);
return r;
}
/* Begin ambisonic rotation helpers.
*
* Rotating first-order B-Format just needs a straight-forward X/Y/Z rotation
* matrix. Higher orders, however, are more complicated. The method implemented
* here is a recursive algorithm (the rotation for first-order is used to help
* generate the second-order rotation, which helps generate the third-order
* rotation, etc).
*
* Adapted from
* <https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSHrotMtx.m>,
* provided under the BSD 3-Clause license.
*
* Copyright (c) 2015, Archontis Politis
* Copyright (c) 2019, Christopher Robinson
*
* The u, v, and w coefficients used for generating higher-order rotations are
* precomputed since they're constant. The second-order coefficients are
* followed by the third-order coefficients, etc.
*/
template<size_t L>
constexpr size_t CalcRotatorSize()
{ return (L*2 + 1)*(L*2 + 1) + CalcRotatorSize<L-1>(); }
template<> constexpr size_t CalcRotatorSize<0>() = delete;
template<> constexpr size_t CalcRotatorSize<1>() = delete;
template<> constexpr size_t CalcRotatorSize<2>() { return 5*5; }
struct RotatorCoeffs {
struct CoeffValues {
float u, v, w;
};
std::array<CoeffValues,CalcRotatorSize<MaxAmbiOrder>()> mCoeffs{};
RotatorCoeffs()
{
auto coeffs = mCoeffs.begin();
for(int l=2;l <= MaxAmbiOrder;++l)
{
for(int n{-l};n <= l;++n)
{
for(int m{-l};m <= l;++m)
{
// compute u,v,w terms of Eq.8.1 (Table I)
const bool d{m == 0}; // the delta function d_m0
const float denom{static_cast<float>((std::abs(n) == l) ?
(2*l) * (2*l - 1) : (l*l - n*n))};
const int abs_m{std::abs(m)};
coeffs->u = std::sqrt(static_cast<float>(l*l - m*m)/denom);
coeffs->v = std::sqrt(static_cast<float>(l+abs_m-1) *
static_cast<float>(l+abs_m) / denom) * (1.0f+d) * (1.0f - 2.0f*d) * 0.5f;
coeffs->w = std::sqrt(static_cast<float>(l-abs_m-1) *
static_cast<float>(l-abs_m) / denom) * (1.0f-d) * -0.5f;
++coeffs;
}
}
}
}
};
const RotatorCoeffs RotatorCoeffArray{};
/**
* Given the matrix, pre-filled with the (zeroth- and) first-order rotation
* coefficients, this fills in the coefficients for the higher orders up to and
* including the given order. The matrix is in ACN layout.
*/
void AmbiRotator(AmbiRotateMatrix &matrix, const int order)
{
/* Don't do anything for < 2nd order. */
if(order < 2) return;
auto P = [](const int i, const int l, const int a, const int n, const size_t last_band,
const AmbiRotateMatrix &R)
{
const float ri1{ R[ 1+2][static_cast<size_t>(i+2)]};
const float rim1{R[-1+2][static_cast<size_t>(i+2)]};
const float ri0{ R[ 0+2][static_cast<size_t>(i+2)]};
const size_t y{last_band + static_cast<size_t>(a+l-1)};
if(n == -l)
return ri1*R[last_band][y] + rim1*R[last_band + static_cast<size_t>(l-1)*2][y];
if(n == l)
return ri1*R[last_band + static_cast<size_t>(l-1)*2][y] - rim1*R[last_band][y];
return ri0*R[last_band + static_cast<size_t>(n+l-1)][y];
};
auto U = [P](const int l, const int m, const int n, const size_t last_band,
const AmbiRotateMatrix &R)
{
return P(0, l, m, n, last_band, R);
};
auto V = [P](const int l, const int m, const int n, const size_t last_band,
const AmbiRotateMatrix &R)
{
using namespace al::numbers;
if(m > 0)
{
const bool d{m == 1};
const float p0{P( 1, l, m-1, n, last_band, R)};
const float p1{P(-1, l, -m+1, n, last_band, R)};
return d ? p0*sqrt2_v<float> : (p0 - p1);
}
const bool d{m == -1};
const float p0{P( 1, l, m+1, n, last_band, R)};
const float p1{P(-1, l, -m-1, n, last_band, R)};
return d ? p1*sqrt2_v<float> : (p0 + p1);
};
auto W = [P](const int l, const int m, const int n, const size_t last_band,
const AmbiRotateMatrix &R)
{
assert(m != 0);
if(m > 0)
{
const float p0{P( 1, l, m+1, n, last_band, R)};
const float p1{P(-1, l, -m-1, n, last_band, R)};
return p0 + p1;
}
const float p0{P( 1, l, m-1, n, last_band, R)};
const float p1{P(-1, l, -m+1, n, last_band, R)};
return p0 - p1;
};
// compute rotation matrix of each subsequent band recursively
auto coeffs = RotatorCoeffArray.mCoeffs.cbegin();
size_t band_idx{4}, last_band{1};
for(int l{2};l <= order;++l)
{
size_t y{band_idx};
for(int n{-l};n <= l;++n,++y)
{
size_t x{band_idx};
for(int m{-l};m <= l;++m,++x)
{
float r{0.0f};
// computes Eq.8.1
const float u{coeffs->u};
if(u != 0.0f) r += u * U(l, m, n, last_band, matrix);
const float v{coeffs->v};
if(v != 0.0f) r += v * V(l, m, n, last_band, matrix);
const float w{coeffs->w};
if(w != 0.0f) r += w * W(l, m, n, last_band, matrix);
matrix[y][x] = r;
++coeffs;
}
}
last_band = band_idx;
band_idx += static_cast<uint>(l)*size_t{2} + 1;
}
}
/* End ambisonic rotation helpers. */
constexpr float Deg2Rad(float x) noexcept
{ return static_cast<float>(al::numbers::pi / 180.0 * x); }
struct GainTriplet { float Base, HF, LF; };
void CalcPanningAndFilters(Voice *voice, const float xpos, const float ypos, const float zpos,
const float Distance, const float Spread, const GainTriplet &DryGain,
const al::span<const GainTriplet,MAX_SENDS> WetGain, EffectSlot *(&SendSlots)[MAX_SENDS],
const VoiceProps *props, const ContextParams &Context, DeviceBase *Device)
{
static constexpr ChanMap MonoMap[1]{
{ FrontCenter, 0.0f, 0.0f }
}, RearMap[2]{
{ BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
{ BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
}, QuadMap[4]{
{ FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
{ FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
{ BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
{ BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
}, X51Map[6]{
{ FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
{ LFE, 0.0f, 0.0f },
{ SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
{ SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
}, X61Map[7]{
{ FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
{ LFE, 0.0f, 0.0f },
{ BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
{ SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
{ SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
}, X71Map[8]{
{ FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
{ LFE, 0.0f, 0.0f },
{ BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
{ BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
{ SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
{ SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
};
ChanMap StereoMap[2]{
{ FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
};
const auto Frequency = static_cast<float>(Device->Frequency);
const uint NumSends{Device->NumAuxSends};
const size_t num_channels{voice->mChans.size()};
ASSUME(num_channels > 0);
for(auto &chandata : voice->mChans)
{
chandata.mDryParams.Hrtf.Target = HrtfFilter{};
chandata.mDryParams.Gains.Target.fill(0.0f);
std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
[](SendParams &params) -> void { params.Gains.Target.fill(0.0f); });
}
DirectMode DirectChannels{props->DirectChannels};
const ChanMap *chans{nullptr};
switch(voice->mFmtChannels)
{
case FmtMono:
chans = MonoMap;
/* Mono buffers are never played direct. */
DirectChannels = DirectMode::Off;
break;
case FmtStereo:
if(DirectChannels == DirectMode::Off)
{
/* Convert counter-clockwise to clock-wise, and wrap between
* [-pi,+pi].
*/
StereoMap[0].angle = WrapRadians(-props->StereoPan[0]);
StereoMap[1].angle = WrapRadians(-props->StereoPan[1]);
}
chans = StereoMap;
break;
case FmtRear: chans = RearMap; break;
case FmtQuad: chans = QuadMap; break;
case FmtX51: chans = X51Map; break;
case FmtX61: chans = X61Map; break;
case FmtX71: chans = X71Map; break;
case FmtBFormat2D:
case FmtBFormat3D:
case FmtUHJ2:
case FmtUHJ3:
case FmtUHJ4:
case FmtSuperStereo:
DirectChannels = DirectMode::Off;
break;
}
voice->mFlags.reset(VoiceHasHrtf).reset(VoiceHasNfc);
if(auto *decoder{voice->mDecoder.get()})
decoder->mWidthControl = minf(props->EnhWidth, 0.7f);
if(IsAmbisonic(voice->mFmtChannels))
{
/* Special handling for B-Format and UHJ sources. */
if(Device->AvgSpeakerDist > 0.0f && voice->mFmtChannels != FmtUHJ2
&& voice->mFmtChannels != FmtSuperStereo)
{
if(!(Distance > std::numeric_limits<float>::epsilon()))
{
/* NOTE: The NFCtrlFilters were created with a w0 of 0, which
* is what we want for FOA input. The first channel may have
* been previously re-adjusted if panned, so reset it.
*/
voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
}
else
{
/* Clamp the distance for really close sources, to prevent
* excessive bass.
*/
const float mdist{maxf(Distance*NfcScale, Device->AvgSpeakerDist/4.0f)};
const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
/* Only need to adjust the first channel of a B-Format source. */
voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
}
voice->mFlags.set(VoiceHasNfc);
}
/* Panning a B-Format sound toward some direction is easy. Just pan the
* first (W) channel as a normal mono sound. The angular spread is used
* as a directional scalar to blend between full coverage and full
* panning.
*/
const float coverage{!(Distance > std::numeric_limits<float>::epsilon()) ? 1.0f :
(al::numbers::inv_pi_v<float>/2.0f * Spread)};
auto calc_coeffs = [xpos,ypos,zpos](RenderMode mode)
{
if(mode != RenderMode::Pairwise)
return CalcDirectionCoeffs({xpos, ypos, zpos});
/* Clamp Y, in case rounding errors caused it to end up outside
* of -1...+1.
*/
const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
/* Negate Z for right-handed coords with -Z in front. */
const float az{std::atan2(xpos, -zpos)};
/* A scalar of 1.5 for plain stereo results in +/-60 degrees
* being moved to +/-90 degrees for direct right and left
* speaker responses.
*/
return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, 0.0f);
};
auto&& scales = GetAmbiScales(voice->mAmbiScaling);
auto coeffs = calc_coeffs(Device->mRenderMode);
/* Scale the panned W signal based on the coverage (full coverage means
* no panned signal). Scale the panned W signal according to channel
* scaling.
*/
std::transform(coeffs.begin(), coeffs.end(), coeffs.begin(),
[scale=(1.0f-coverage)*scales[0]](const float c){ return c * scale; });
if(!(coverage > 0.0f))
{
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
voice->mChans[0].mDryParams.Gains.Target);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base*scales[0],
voice->mChans[0].mWetParams[i].Gains.Target);
}
}
else
{
/* Local B-Format sources have their XYZ channels rotated according
* to the orientation.
*/
/* AT then UP */
alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
N.normalize();
alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
V.normalize();
if(!props->HeadRelative)
{
N = Context.Matrix * N;
V = Context.Matrix * V;
}
/* Build and normalize right-vector */
alu::Vector U{N.cross_product(V)};
U.normalize();
/* Build a rotation matrix. Manually fill the zeroth- and first-
* order elements, then construct the rotation for the higher
* orders.
*/
AmbiRotateMatrix &shrot = Device->mAmbiRotateMatrix;
shrot.fill(AmbiRotateMatrix::value_type{});
shrot[0][0] = 1.0f;
shrot[1][1] = U[0]; shrot[1][2] = -U[1]; shrot[1][3] = U[2];
shrot[2][1] = -V[0]; shrot[2][2] = V[1]; shrot[2][3] = -V[2];
shrot[3][1] = -N[0]; shrot[3][2] = N[1]; shrot[3][3] = -N[2];
AmbiRotator(shrot, static_cast<int>(Device->mAmbiOrder));
/* If the device is higher order than the voice, "upsample" the
* matrix.
*
* NOTE: Starting with second-order, a 2D upsample needs to be
* applied with a 2D source and 3D output, even when they're the
* same order. This is because higher orders have a height offset
* on various channels (i.e. when elevation=0, those height-related
* channels should be non-0).
*/
AmbiRotateMatrix &mixmatrix = Device->mAmbiRotateMatrix2;
if(Device->mAmbiOrder > voice->mAmbiOrder
|| (Device->mAmbiOrder >= 2 && !Device->m2DMixing
&& Is2DAmbisonic(voice->mFmtChannels)))
{
if(voice->mAmbiOrder == 1)
{
auto&& upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
AmbiScale::FirstOrder2DUp : AmbiScale::FirstOrderUp;
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
}
else if(voice->mAmbiOrder == 2)
{
auto&& upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
AmbiScale::SecondOrder2DUp : AmbiScale::SecondOrderUp;
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
}
else if(voice->mAmbiOrder == 3)
{
auto&& upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
AmbiScale::ThirdOrder2DUp : AmbiScale::ThirdOrderUp;
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
}
else if(voice->mAmbiOrder == 4)
{
auto&& upsampler = AmbiScale::FourthOrder2DUp;
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
}
else
al::unreachable();
}
else
mixmatrix = shrot;
/* Convert the rotation matrix for input ordering and scaling, and
* whether input is 2D or 3D.
*/
const uint8_t *index_map{Is2DAmbisonic(voice->mFmtChannels) ?
GetAmbi2DLayout(voice->mAmbiLayout).data() :
GetAmbiLayout(voice->mAmbiLayout).data()};
for(size_t c{0};c < num_channels;c++)
{
const size_t acn{index_map[c]};
const float scale{scales[acn] * coverage};
/* For channel 0, combine the B-Format signal (scaled according
* to the coverage amount) with the directional pan. For all
* other channels, use just the (scaled) B-Format signal.
*/
for(size_t x{0};x < MaxAmbiChannels;++x)
coeffs[x] += mixmatrix[acn][x] * scale;
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
voice->mChans[c].mDryParams.Gains.Target);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[c].mWetParams[i].Gains.Target);
}
coeffs = std::array<float,MaxAmbiChannels>{};
}
}
}
else if(DirectChannels != DirectMode::Off && !Device->RealOut.RemixMap.empty())
{
/* Direct source channels always play local. Skip the virtual channels
* and write inputs to the matching real outputs.
*/
voice->mDirect.Buffer = Device->RealOut.Buffer;
for(size_t c{0};c < num_channels;c++)
{
uint idx{Device->channelIdxByName(chans[c].channel)};
if(idx != InvalidChannelIndex)
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
else if(DirectChannels == DirectMode::RemixMismatch)
{
auto match_channel = [chans,c](const InputRemixMap &map) noexcept -> bool
{ return chans[c].channel == map.channel; };
auto remap = std::find_if(Device->RealOut.RemixMap.cbegin(),
Device->RealOut.RemixMap.cend(), match_channel);
if(remap != Device->RealOut.RemixMap.cend())
{
for(const auto &target : remap->targets)
{
idx = Device->channelIdxByName(target.channel);
if(idx != InvalidChannelIndex)
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base *
target.mix;
}
}
}
}
/* Auxiliary sends still use normal channel panning since they mix to
* B-Format, which can't channel-match.
*/
for(size_t c{0};c < num_channels;c++)
{
/* Skip LFE */
if(chans[c].channel == LFE)
continue;
const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[c].mWetParams[i].Gains.Target);
}
}
}
else if(Device->mRenderMode == RenderMode::Hrtf)
{
/* Full HRTF rendering. Skip the virtual channels and render to the
* real outputs.
*/
voice->mDirect.Buffer = Device->RealOut.Buffer;
if(Distance > std::numeric_limits<float>::epsilon())
{
const float src_ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
const float src_az{std::atan2(xpos, -zpos)};
if(voice->mFmtChannels == FmtMono)
{
Device->mHrtf->getCoeffs(src_ev, src_az, Distance*NfcScale, Spread,
voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
voice->mChans[0].mDryParams.Hrtf.Target.Delay);
voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain.Base;
const auto coeffs = CalcAngleCoeffs(src_az, src_ev, Spread);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[0].mWetParams[i].Gains.Target);
}
}
else for(size_t c{0};c < num_channels;c++)
{
using namespace al::numbers;
/* Skip LFE */
if(chans[c].channel == LFE) continue;
/* Warp the channel position toward the source position as the
* source spread decreases. With no spread, all channels are at
* the source position, at full spread (pi*2), each channel is
* left unchanged.
*/
const float ev{lerpf(src_ev, chans[c].elevation, inv_pi_v<float>/2.0f * Spread)};
float az{chans[c].angle - src_az};
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
az *= inv_pi_v<float>/2.0f * Spread;
az += src_az;
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
Device->mHrtf->getCoeffs(ev, az, Distance*NfcScale, 0.0f,
voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
voice->mChans[c].mDryParams.Hrtf.Target.Delay);
voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;
const auto coeffs = CalcAngleCoeffs(az, ev, 0.0f);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[c].mWetParams[i].Gains.Target);
}
}
}
else
{
/* With no distance, spread is only meaningful for mono sources
* where it can be 0 or full (non-mono sources are always full
* spread here).
*/
const float spread{Spread * (voice->mFmtChannels == FmtMono)};
/* Local sources on HRTF play with each channel panned to its
* relative location around the listener, providing "virtual
* speaker" responses.
*/
for(size_t c{0};c < num_channels;c++)
{
/* Skip LFE */
if(chans[c].channel == LFE)
continue;
/* Get the HRIR coefficients and delays for this channel
* position.
*/
Device->mHrtf->getCoeffs(chans[c].elevation, chans[c].angle,
std::numeric_limits<float>::infinity(), spread,
voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
voice->mChans[c].mDryParams.Hrtf.Target.Delay);
voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;
/* Normal panning for auxiliary sends. */
const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, spread);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[c].mWetParams[i].Gains.Target);
}
}
}
voice->mFlags.set(VoiceHasHrtf);
}
else
{
/* Non-HRTF rendering. Use normal panning to the output. */
if(Distance > std::numeric_limits<float>::epsilon())
{
/* Calculate NFC filter coefficient if needed. */
if(Device->AvgSpeakerDist > 0.0f)
{
/* Clamp the distance for really close sources, to prevent
* excessive bass.
*/
const float mdist{maxf(Distance*NfcScale, Device->AvgSpeakerDist/4.0f)};
const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
/* Adjust NFC filters. */
for(size_t c{0};c < num_channels;c++)
voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
voice->mFlags.set(VoiceHasNfc);
}
if(voice->mFmtChannels == FmtMono)
{
auto calc_coeffs = [xpos,ypos,zpos,Spread](RenderMode mode)
{
if(mode != RenderMode::Pairwise)
return CalcDirectionCoeffs({xpos, ypos, zpos}, Spread);
const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
const float az{std::atan2(xpos, -zpos)};
return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread);
};
const auto coeffs = calc_coeffs(Device->mRenderMode);
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
voice->mChans[0].mDryParams.Gains.Target);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[0].mWetParams[i].Gains.Target);
}
}
else
{
using namespace al::numbers;
const float src_ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
const float src_az{std::atan2(xpos, -zpos)};
for(size_t c{0};c < num_channels;c++)
{
/* Special-case LFE */
if(chans[c].channel == LFE)
{
if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
{
const uint idx{Device->channelIdxByName(chans[c].channel)};
if(idx != InvalidChannelIndex)
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
}
continue;
}
/* Warp the channel position toward the source position as
* the spread decreases. With no spread, all channels are
* at the source position, at full spread (pi*2), each
* channel position is left unchanged.
*/
const float ev{lerpf(src_ev, chans[c].elevation,
inv_pi_v<float>/2.0f * Spread)};
float az{chans[c].angle - src_az};
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
az *= inv_pi_v<float>/2.0f * Spread;
az += src_az;
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
if(Device->mRenderMode == RenderMode::Pairwise)
az = ScaleAzimuthFront(az, 3.0f);
const auto coeffs = CalcAngleCoeffs(az, ev, 0.0f);
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
voice->mChans[c].mDryParams.Gains.Target);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[c].mWetParams[i].Gains.Target);
}
}
}
}
else
{
if(Device->AvgSpeakerDist > 0.0f)
{
/* If the source distance is 0, simulate a plane-wave by using
* infinite distance, which results in a w0 of 0.
*/
static constexpr float w0{0.0f};
for(size_t c{0};c < num_channels;c++)
voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
voice->mFlags.set(VoiceHasNfc);
}
/* With no distance, spread is only meaningful for mono sources
* where it can be 0 or full (non-mono sources are always full
* spread here).
*/
const float spread{Spread * (voice->mFmtChannels == FmtMono)};
for(size_t c{0};c < num_channels;c++)
{
/* Special-case LFE */
if(chans[c].channel == LFE)
{
if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
{
const uint idx{Device->channelIdxByName(chans[c].channel)};
if(idx != InvalidChannelIndex)
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
}
continue;
}
const auto coeffs = CalcAngleCoeffs((Device->mRenderMode == RenderMode::Pairwise)
? ScaleAzimuthFront(chans[c].angle, 3.0f) : chans[c].angle,
chans[c].elevation, spread);
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
voice->mChans[c].mDryParams.Gains.Target);
for(uint i{0};i < NumSends;i++)
{
if(const EffectSlot *Slot{SendSlots[i]})
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
voice->mChans[c].mWetParams[i].Gains.Target);
}
}
}
}
{
const float hfNorm{props->Direct.HFReference / Frequency};
const float lfNorm{props->Direct.LFReference / Frequency};
voice->mDirect.FilterType = AF_None;
if(DryGain.HF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
if(DryGain.LF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
auto &lowpass = voice->mChans[0].mDryParams.LowPass;
auto &highpass = voice->mChans[0].mDryParams.HighPass;
lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, DryGain.HF, 1.0f);
highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, DryGain.LF, 1.0f);
for(size_t c{1};c < num_channels;c++)
{
voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
}
}
for(uint i{0};i < NumSends;i++)
{
const float hfNorm{props->Send[i].HFReference / Frequency};
const float lfNorm{props->Send[i].LFReference / Frequency};
voice->mSend[i].FilterType = AF_None;
if(WetGain[i].HF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
if(WetGain[i].LF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, WetGain[i].HF, 1.0f);
highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, WetGain[i].LF, 1.0f);
for(size_t c{1};c < num_channels;c++)
{
voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
}
}
}
void CalcNonAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
{
DeviceBase *Device{context->mDevice};
EffectSlot *SendSlots[MAX_SENDS];
voice->mDirect.Buffer = Device->Dry.Buffer;
for(uint i{0};i < Device->NumAuxSends;i++)
{
SendSlots[i] = props->Send[i].Slot;
if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
{
SendSlots[i] = nullptr;
voice->mSend[i].Buffer = {};
}
else
voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
}
/* Calculate the stepping value */
const auto Pitch = static_cast<float>(voice->mFrequency) /
static_cast<float>(Device->Frequency) * props->Pitch;
if(Pitch > float{MaxPitch})
voice->mStep = MaxPitch<<MixerFracBits;
else
voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
/* Calculate gains */
GainTriplet DryGain;
DryGain.Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) * props->Direct.Gain *
context->mParams.Gain, GainMixMax);
DryGain.HF = props->Direct.GainHF;
DryGain.LF = props->Direct.GainLF;
GainTriplet WetGain[MAX_SENDS];
for(uint i{0};i < Device->NumAuxSends;i++)
{
WetGain[i].Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) *
props->Send[i].Gain * context->mParams.Gain, GainMixMax);
WetGain[i].HF = props->Send[i].GainHF;
WetGain[i].LF = props->Send[i].GainLF;
}
CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, WetGain, SendSlots, props,
context->mParams, Device);
}
void CalcAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
{
DeviceBase *Device{context->mDevice};
const uint NumSends{Device->NumAuxSends};
/* Set mixing buffers and get send parameters. */
voice->mDirect.Buffer = Device->Dry.Buffer;
EffectSlot *SendSlots[MAX_SENDS];
uint UseDryAttnForRoom{0};
for(uint i{0};i < NumSends;i++)
{
SendSlots[i] = props->Send[i].Slot;
if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
SendSlots[i] = nullptr;
else if(!SendSlots[i]->AuxSendAuto)
{
/* If the slot's auxiliary send auto is off, the data sent to the
* effect slot is the same as the dry path, sans filter effects.
*/
UseDryAttnForRoom |= 1u<<i;
}
if(!SendSlots[i])
voice->mSend[i].Buffer = {};
else
voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
}
/* Transform source to listener space (convert to head relative) */
alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
if(!props->HeadRelative)
{
/* Transform source vectors */
Position = context->mParams.Matrix * (Position - context->mParams.Position);
Velocity = context->mParams.Matrix * Velocity;
Direction = context->mParams.Matrix * Direction;
}
else
{
/* Offset the source velocity to be relative of the listener velocity */
Velocity += context->mParams.Velocity;
}
const bool directional{Direction.normalize() > 0.0f};
alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
const float Distance{ToSource.normalize()};
/* Calculate distance attenuation */
float ClampedDist{Distance};
float DryGainBase{props->Gain};
float WetGainBase{props->Gain};
switch(context->mParams.SourceDistanceModel ? props->mDistanceModel
: context->mParams.mDistanceModel)
{
case DistanceModel::InverseClamped:
if(props->MaxDistance < props->RefDistance) break;
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
/*fall-through*/
case DistanceModel::Inverse:
if(props->RefDistance > 0.0f)
{
float dist{lerpf(props->RefDistance, ClampedDist, props->RolloffFactor)};
if(dist > 0.0f) DryGainBase *= props->RefDistance / dist;
dist = lerpf(props->RefDistance, ClampedDist, props->RoomRolloffFactor);
if(dist > 0.0f) WetGainBase *= props->RefDistance / dist;
}
break;
case DistanceModel::LinearClamped:
if(props->MaxDistance < props->RefDistance) break;
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
/*fall-through*/
case DistanceModel::Linear:
if(props->MaxDistance != props->RefDistance)
{
float attn{(ClampedDist-props->RefDistance) /
(props->MaxDistance-props->RefDistance) * props->RolloffFactor};
DryGainBase *= maxf(1.0f - attn, 0.0f);
attn = (ClampedDist-props->RefDistance) /
(props->MaxDistance-props->RefDistance) * props->RoomRolloffFactor;
WetGainBase *= maxf(1.0f - attn, 0.0f);
}
break;
case DistanceModel::ExponentClamped:
if(props->MaxDistance < props->RefDistance) break;
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
/*fall-through*/
case DistanceModel::Exponent:
if(ClampedDist > 0.0f && props->RefDistance > 0.0f)
{
const float dist_ratio{ClampedDist/props->RefDistance};
DryGainBase *= std::pow(dist_ratio, -props->RolloffFactor);
WetGainBase *= std::pow(dist_ratio, -props->RoomRolloffFactor);
}
break;
case DistanceModel::Disable:
break;
}
/* Calculate directional soundcones */
float ConeHF{1.0f}, WetConeHF{1.0f};
if(directional && props->InnerAngle < 360.0f)
{
static constexpr float Rad2Deg{static_cast<float>(180.0 / al::numbers::pi)};
const float Angle{Rad2Deg*2.0f * std::acos(-Direction.dot_product(ToSource)) * ConeScale};
float ConeGain{1.0f};
if(Angle >= props->OuterAngle)
{
ConeGain = props->OuterGain;
ConeHF = lerpf(1.0f, props->OuterGainHF, props->DryGainHFAuto);
}
else if(Angle >= props->InnerAngle)
{
const float scale{(Angle-props->InnerAngle) / (props->OuterAngle-props->InnerAngle)};
ConeGain = lerpf(1.0f, props->OuterGain, scale);
ConeHF = lerpf(1.0f, props->OuterGainHF, scale * props->DryGainHFAuto);
}
DryGainBase *= ConeGain;
WetGainBase *= lerpf(1.0f, ConeGain, props->WetGainAuto);
WetConeHF = lerpf(1.0f, ConeHF, props->WetGainHFAuto);
}
/* Apply gain and frequency filters */
DryGainBase = clampf(DryGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
WetGainBase = clampf(WetGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
GainTriplet DryGain{};
DryGain.Base = minf(DryGainBase * props->Direct.Gain, GainMixMax);
DryGain.HF = ConeHF * props->Direct.GainHF;
DryGain.LF = props->Direct.GainLF;
GainTriplet WetGain[MAX_SENDS]{};
for(uint i{0};i < NumSends;i++)
{
/* If this effect slot's Auxiliary Send Auto is off, then use the dry
* path distance and cone attenuation, otherwise use the wet (room)
* path distance and cone attenuation. The send filter is used instead
* of the direct filter, regardless.
*/
const bool use_room{!(UseDryAttnForRoom&(1u<<i))};
const float gain{use_room ? WetGainBase : DryGainBase};
WetGain[i].Base = minf(gain * props->Send[i].Gain, GainMixMax);
WetGain[i].HF = (use_room ? WetConeHF : ConeHF) * props->Send[i].GainHF;
WetGain[i].LF = props->Send[i].GainLF;
}
/* Distance-based air absorption and initial send decay. */
if(Distance > props->RefDistance) [[likely]]
{
const float distance_base{(Distance-props->RefDistance) * props->RolloffFactor};
const float distance_meters{distance_base * context->mParams.MetersPerUnit};
const float dryabsorb{distance_meters * props->AirAbsorptionFactor};
if(dryabsorb > std::numeric_limits<float>::epsilon())
DryGain.HF *= std::pow(context->mParams.AirAbsorptionGainHF, dryabsorb);
/* If the source's Auxiliary Send Filter Gain Auto is off, no extra
* adjustment is applied to the send gains.
*/
for(uint i{props->WetGainAuto ? 0u : NumSends};i < NumSends;++i)
{
if(!SendSlots[i] || !(SendSlots[i]->DecayTime > 0.0f))
continue;
auto calc_attenuation = [](float distance, float refdist, float rolloff) noexcept
{
const float dist{lerpf(refdist, distance, rolloff)};
if(dist > refdist) return refdist / dist;
return 1.0f;
};
/* The reverb effect's room rolloff factor always applies to an
* inverse distance rolloff model.
*/
WetGain[i].Base *= calc_attenuation(Distance, props->RefDistance,
SendSlots[i]->RoomRolloff);
if(distance_meters > std::numeric_limits<float>::epsilon())
WetGain[i].HF *= std::pow(SendSlots[i]->AirAbsorptionGainHF, distance_meters);
/* If this effect slot's Auxiliary Send Auto is off, don't apply
* the automatic initial reverb decay (should the reverb's room
* rolloff still apply?).
*/
if(!SendSlots[i]->AuxSendAuto)
continue;
GainTriplet DecayDistance;
/* Calculate the distances to where this effect's decay reaches
* -60dB.
*/
DecayDistance.Base = SendSlots[i]->DecayTime * SpeedOfSoundMetersPerSec;
DecayDistance.LF = DecayDistance.Base * SendSlots[i]->DecayLFRatio;
DecayDistance.HF = DecayDistance.Base * SendSlots[i]->DecayHFRatio;
if(SendSlots[i]->DecayHFLimit)
{
const float airAbsorption{SendSlots[i]->AirAbsorptionGainHF};
if(airAbsorption < 1.0f)
{
/* Calculate the distance to where this effect's air
* absorption reaches -60dB, and limit the effect's HF
* decay distance (so it doesn't take any longer to decay
* than the air would allow).
*/
static constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
const float absorb_dist{log10_decaygain / std::log10(airAbsorption)};
DecayDistance.HF = minf(absorb_dist, DecayDistance.HF);
}
}
const float baseAttn = calc_attenuation(Distance, props->RefDistance,
props->RolloffFactor);
/* Apply a decay-time transformation to the wet path, based on the
* source distance. The initial decay of the reverb effect is
* calculated and applied to the wet path.
*/
const float fact{distance_base / DecayDistance.Base};
const float gain{std::pow(ReverbDecayGain, fact)*(1.0f-baseAttn) + baseAttn};
WetGain[i].Base *= gain;
if(gain > 0.0f)
{
const float hffact{distance_base / DecayDistance.HF};
const float gainhf{std::pow(ReverbDecayGain, hffact)*(1.0f-baseAttn) + baseAttn};
WetGain[i].HF *= minf(gainhf/gain, 1.0f);
const float lffact{distance_base / DecayDistance.LF};
const float gainlf{std::pow(ReverbDecayGain, lffact)*(1.0f-baseAttn) + baseAttn};
WetGain[i].LF *= minf(gainlf/gain, 1.0f);
}
}
}
/* Initial source pitch */
float Pitch{props->Pitch};
/* Calculate velocity-based doppler effect */
float DopplerFactor{props->DopplerFactor * context->mParams.DopplerFactor};
if(DopplerFactor > 0.0f)
{
const alu::Vector &lvelocity = context->mParams.Velocity;
float vss{Velocity.dot_product(ToSource) * -DopplerFactor};
float vls{lvelocity.dot_product(ToSource) * -DopplerFactor};
const float SpeedOfSound{context->mParams.SpeedOfSound};
if(!(vls < SpeedOfSound))
{
/* Listener moving away from the source at the speed of sound.
* Sound waves can't catch it.
*/
Pitch = 0.0f;
}
else if(!(vss < SpeedOfSound))
{
/* Source moving toward the listener at the speed of sound. Sound
* waves bunch up to extreme frequencies.
*/
Pitch = std::numeric_limits<float>::infinity();
}
else
{
/* Source and listener movement is nominal. Calculate the proper
* doppler shift.
*/
Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
}
}
/* Adjust pitch based on the buffer and output frequencies, and calculate
* fixed-point stepping value.
*/
Pitch *= static_cast<float>(voice->mFrequency) / static_cast<float>(Device->Frequency);
if(Pitch > float{MaxPitch})
voice->mStep = MaxPitch<<MixerFracBits;
else
voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
float spread{0.0f};
if(props->Radius > Distance)
spread = al::numbers::pi_v<float>*2.0f - Distance/props->Radius*al::numbers::pi_v<float>;
else if(Distance > 0.0f)
spread = std::asin(props->Radius/Distance) * 2.0f;
CalcPanningAndFilters(voice, ToSource[0]*XScale, ToSource[1]*YScale, ToSource[2]*ZScale,
Distance, spread, DryGain, WetGain, SendSlots, props, context->mParams, Device);
}
void CalcSourceParams(Voice *voice, ContextBase *context, bool force)
{
VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
if(!props && !force) return;
if(props)
{
voice->mProps = *props;
AtomicReplaceHead(context->mFreeVoiceProps, props);
}
if((voice->mProps.DirectChannels != DirectMode::Off && voice->mFmtChannels != FmtMono
&& !IsAmbisonic(voice->mFmtChannels))
|| voice->mProps.mSpatializeMode == SpatializeMode::Off
|| (voice->mProps.mSpatializeMode==SpatializeMode::Auto && voice->mFmtChannels != FmtMono))
CalcNonAttnSourceParams(voice, &voice->mProps, context);
else
CalcAttnSourceParams(voice, &voice->mProps, context);
}
void SendSourceStateEvent(ContextBase *context, uint id, VChangeState state)
{
RingBuffer *ring{context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len < 1) return;
AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
AsyncEvent::SourceStateChange)};
evt->u.srcstate.id = id;
switch(state)
{
case VChangeState::Reset:
evt->u.srcstate.state = AsyncEvent::SrcState::Reset;
break;
case VChangeState::Stop:
evt->u.srcstate.state = AsyncEvent::SrcState::Stop;
break;
case VChangeState::Play:
evt->u.srcstate.state = AsyncEvent::SrcState::Play;
break;
case VChangeState::Pause:
evt->u.srcstate.state = AsyncEvent::SrcState::Pause;
break;
/* Shouldn't happen. */
case VChangeState::Restart:
al::unreachable();
}
ring->writeAdvance(1);
}
void ProcessVoiceChanges(ContextBase *ctx)
{
VoiceChange *cur{ctx->mCurrentVoiceChange.load(std::memory_order_acquire)};
VoiceChange *next{cur->mNext.load(std::memory_order_acquire)};
if(!next) return;
const auto enabledevt = ctx->mEnabledEvts.load(std::memory_order_acquire);
do {
cur = next;
bool sendevt{false};
if(cur->mState == VChangeState::Reset || cur->mState == VChangeState::Stop)
{
if(Voice *voice{cur->mVoice})
{
voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
/* A source ID indicates the voice was playing or paused, which
* gets a reset/stop event.
*/
sendevt = voice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u;
Voice::State oldvstate{Voice::Playing};
voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
std::memory_order_relaxed, std::memory_order_acquire);
voice->mPendingChange.store(false, std::memory_order_release);
}
/* Reset state change events are always sent, even if the voice is
* already stopped or even if there is no voice.
*/
sendevt |= (cur->mState == VChangeState::Reset);
}
else if(cur->mState == VChangeState::Pause)
{
Voice *voice{cur->mVoice};
Voice::State oldvstate{Voice::Playing};
sendevt = voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
std::memory_order_release, std::memory_order_acquire);
}
else if(cur->mState == VChangeState::Play)
{
/* NOTE: When playing a voice, sending a source state change event
* depends if there's an old voice to stop and if that stop is
* successful. If there is no old voice, a playing event is always
* sent. If there is an old voice, an event is sent only if the
* voice is already stopped.
*/
if(Voice *oldvoice{cur->mOldVoice})
{
oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
oldvoice->mSourceID.store(0u, std::memory_order_relaxed);
Voice::State oldvstate{Voice::Playing};
sendevt = !oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
std::memory_order_relaxed, std::memory_order_acquire);
oldvoice->mPendingChange.store(false, std::memory_order_release);
}
else
sendevt = true;
Voice *voice{cur->mVoice};
voice->mPlayState.store(Voice::Playing, std::memory_order_release);
}
else if(cur->mState == VChangeState::Restart)
{
/* Restarting a voice never sends a source change event. */
Voice *oldvoice{cur->mOldVoice};
oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
/* If there's no sourceID, the old voice finished so don't start
* the new one at its new offset.
*/
if(oldvoice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u)
{
/* Otherwise, set the voice to stopping if it's not already (it
* might already be, if paused), and play the new voice as
* appropriate.
*/
Voice::State oldvstate{Voice::Playing};
oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
std::memory_order_relaxed, std::memory_order_acquire);
Voice *voice{cur->mVoice};
voice->mPlayState.store((oldvstate == Voice::Playing) ? Voice::Playing
: Voice::Stopped, std::memory_order_release);
}
oldvoice->mPendingChange.store(false, std::memory_order_release);
}
if(sendevt && enabledevt.test(AsyncEvent::SourceStateChange))
SendSourceStateEvent(ctx, cur->mSourceID, cur->mState);
next = cur->mNext.load(std::memory_order_acquire);
} while(next);
ctx->mCurrentVoiceChange.store(cur, std::memory_order_release);
}
void ProcessParamUpdates(ContextBase *ctx, const EffectSlotArray &slots,
const al::span<Voice*> voices)
{
ProcessVoiceChanges(ctx);
IncrementRef(ctx->mUpdateCount);
if(!ctx->mHoldUpdates.load(std::memory_order_acquire)) [[likely]]
{
bool force{CalcContextParams(ctx)};
auto sorted_slots = const_cast<EffectSlot**>(slots.data() + slots.size());
for(EffectSlot *slot : slots)
force |= CalcEffectSlotParams(slot, sorted_slots, ctx);
for(Voice *voice : voices)
{
/* Only update voices that have a source. */
if(voice->mSourceID.load(std::memory_order_relaxed) != 0)
CalcSourceParams(voice, ctx, force);
}
}
IncrementRef(ctx->mUpdateCount);
}
void ProcessContexts(DeviceBase *device, const uint SamplesToDo)
{
ASSUME(SamplesToDo > 0);
const nanoseconds curtime{device->ClockBase +
nanoseconds{seconds{device->SamplesDone}}/device->Frequency};
for(ContextBase *ctx : *device->mContexts.load(std::memory_order_acquire))
{
const EffectSlotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
const al::span<Voice*> voices{ctx->getVoicesSpanAcquired()};
/* Process pending propery updates for objects on the context. */
ProcessParamUpdates(ctx, auxslots, voices);
/* Clear auxiliary effect slot mixing buffers. */
for(EffectSlot *slot : auxslots)
{
for(auto &buffer : slot->Wet.Buffer)
buffer.fill(0.0f);
}
/* Process voices that have a playing source. */
for(Voice *voice : voices)
{
const Voice::State vstate{voice->mPlayState.load(std::memory_order_acquire)};
if(vstate != Voice::Stopped && vstate != Voice::Pending)
voice->mix(vstate, ctx, curtime, SamplesToDo);
}
/* Process effects. */
if(const size_t num_slots{auxslots.size()})
{
auto slots = auxslots.data();
auto slots_end = slots + num_slots;
/* Sort the slots into extra storage, so that effect slots come
* before their effect slot target (or their targets' target).
*/
const al::span<EffectSlot*> sorted_slots{const_cast<EffectSlot**>(slots_end),
num_slots};
/* Skip sorting if it has already been done. */
if(!sorted_slots[0])
{
/* First, copy the slots to the sorted list, then partition the
* sorted list so that all slots without a target slot go to
* the end.
*/
std::copy(slots, slots_end, sorted_slots.begin());
auto split_point = std::partition(sorted_slots.begin(), sorted_slots.end(),
[](const EffectSlot *slot) noexcept -> bool
{ return slot->Target != nullptr; });
/* There must be at least one slot without a slot target. */
assert(split_point != sorted_slots.end());
/* Simple case: no more than 1 slot has a target slot. Either
* all slots go right to the output, or the remaining one must
* target an already-partitioned slot.
*/
if(split_point - sorted_slots.begin() > 1)
{
/* At least two slots target other slots. Starting from the
* back of the sorted list, continue partitioning the front
* of the list given each target until all targets are
* accounted for. This ensures all slots without a target
* go last, all slots directly targeting those last slots
* go second-to-last, all slots directly targeting those
* second-last slots go third-to-last, etc.
*/
auto next_target = sorted_slots.end();
do {
/* This shouldn't happen, but if there's unsorted slots
* left that don't target any sorted slots, they can't
* contribute to the output, so leave them.
*/
if(next_target == split_point) [[unlikely]]
break;
--next_target;
split_point = std::partition(sorted_slots.begin(), split_point,
[next_target](const EffectSlot *slot) noexcept -> bool
{ return slot->Target != *next_target; });
} while(split_point - sorted_slots.begin() > 1);
}
}
for(const EffectSlot *slot : sorted_slots)
{
EffectState *state{slot->mEffectState.get()};
state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
}
}
/* Signal the event handler if there are any events to read. */
RingBuffer *ring{ctx->mAsyncEvents.get()};
if(ring->readSpace() > 0)
ctx->mEventSem.post();
}
}
void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const size_t SamplesToDo,
const DistanceComp::ChanData *distcomp)
{
ASSUME(SamplesToDo > 0);
for(auto &chanbuffer : Samples)
{
const float gain{distcomp->Gain};
const size_t base{distcomp->Length};
float *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
++distcomp;
if(base < 1)
continue;
float *inout{al::assume_aligned<16>(chanbuffer.data())};
auto inout_end = inout + SamplesToDo;
if(SamplesToDo >= base) [[likely]]
{
auto delay_end = std::rotate(inout, inout_end - base, inout_end);
std::swap_ranges(inout, delay_end, distbuf);
}
else
{
auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
std::rotate(distbuf, delay_start, distbuf + base);
}
std::transform(inout, inout_end, inout, [gain](auto a){ return a * gain; });
}
}
void ApplyDither(const al::span<FloatBufferLine> Samples, uint *dither_seed,
const float quant_scale, const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
/* Dithering. Generate whitenoise (uniform distribution of random values
* between -1 and +1) and add it to the sample values, after scaling up to
* the desired quantization depth amd before rounding.
*/
const float invscale{1.0f / quant_scale};
uint seed{*dither_seed};
auto dither_sample = [&seed,invscale,quant_scale](const float sample) noexcept -> float
{
float val{sample * quant_scale};
uint rng0{dither_rng(&seed)};
uint rng1{dither_rng(&seed)};
val += static_cast<float>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
return fast_roundf(val) * invscale;
};
for(FloatBufferLine &inout : Samples)
std::transform(inout.begin(), inout.begin()+SamplesToDo, inout.begin(), dither_sample);
*dither_seed = seed;
}
/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
* chokes on that given the inline specializations.
*/
template<typename T>
inline T SampleConv(float) noexcept;
template<> inline float SampleConv(float val) noexcept
{ return val; }
template<> inline int32_t SampleConv(float val) noexcept
{
/* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
* This means a normalized float has at most 25 bits of signed precision.
* When scaling and clamping for a signed 32-bit integer, these following
* values are the best a float can give.
*/
return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
}
template<> inline int16_t SampleConv(float val) noexcept
{ return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
template<> inline int8_t SampleConv(float val) noexcept
{ return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }
/* Define unsigned output variations. */
template<> inline uint32_t SampleConv(float val) noexcept
{ return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; }
template<> inline uint16_t SampleConv(float val) noexcept
{ return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); }
template<> inline uint8_t SampleConv(float val) noexcept
{ return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); }
template<DevFmtType T>
void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset,
const size_t SamplesToDo, const size_t FrameStep)
{
ASSUME(FrameStep > 0);
ASSUME(SamplesToDo > 0);
DevFmtType_t<T> *outbase{static_cast<DevFmtType_t<T>*>(OutBuffer) + Offset*FrameStep};
size_t c{0};
for(const FloatBufferLine &inbuf : InBuffer)
{
DevFmtType_t<T> *out{outbase++};
auto conv_sample = [FrameStep,&out](const float s) noexcept -> void
{
*out = SampleConv<DevFmtType_t<T>>(s);
out += FrameStep;
};
std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
++c;
}
if(const size_t extra{FrameStep - c})
{
const auto silence = SampleConv<DevFmtType_t<T>>(0.0f);
for(size_t i{0};i < SamplesToDo;++i)
{
std::fill_n(outbase, extra, silence);
outbase += FrameStep;
}
}
}
} // namespace
uint DeviceBase::renderSamples(const uint numSamples)
{
const uint samplesToDo{minu(numSamples, BufferLineSize)};
/* Clear main mixing buffers. */
for(FloatBufferLine &buffer : MixBuffer)
buffer.fill(0.0f);
/* Increment the mix count at the start (lsb should now be 1). */
IncrementRef(MixCount);
/* Process and mix each context's sources and effects. */
ProcessContexts(this, samplesToDo);
/* Increment the clock time. Every second's worth of samples is converted
* and added to clock base so that large sample counts don't overflow
* during conversion. This also guarantees a stable conversion.
*/
SamplesDone += samplesToDo;
ClockBase += std::chrono::seconds{SamplesDone / Frequency};
SamplesDone %= Frequency;
/* Increment the mix count at the end (lsb should now be 0). */
IncrementRef(MixCount);
/* Apply any needed post-process for finalizing the Dry mix to the RealOut
* (Ambisonic decode, UHJ encode, etc).
*/
postProcess(samplesToDo);
/* Apply compression, limiting sample amplitude if needed or desired. */
if(Limiter) Limiter->process(samplesToDo, RealOut.Buffer.data());
/* Apply delays and attenuation for mismatched speaker distances. */
if(ChannelDelays)
ApplyDistanceComp(RealOut.Buffer, samplesToDo, ChannelDelays->mChannels.data());
/* Apply dithering. The compressor should have left enough headroom for the
* dither noise to not saturate.
*/
if(DitherDepth > 0.0f)
ApplyDither(RealOut.Buffer, &DitherSeed, DitherDepth, samplesToDo);
return samplesToDo;
}
void DeviceBase::renderSamples(const al::span<float*> outBuffers, const uint numSamples)
{
FPUCtl mixer_mode{};
uint total{0};
while(const uint todo{numSamples - total})
{
const uint samplesToDo{renderSamples(todo)};
auto *srcbuf = RealOut.Buffer.data();
for(auto *dstbuf : outBuffers)
{
std::copy_n(srcbuf->data(), samplesToDo, dstbuf + total);
++srcbuf;
}
total += samplesToDo;
}
}
void DeviceBase::renderSamples(void *outBuffer, const uint numSamples, const size_t frameStep)
{
FPUCtl mixer_mode{};
uint total{0};
while(const uint todo{numSamples - total})
{
const uint samplesToDo{renderSamples(todo)};
if(outBuffer) [[likely]]
{
/* Finally, interleave and convert samples, writing to the device's
* output buffer.
*/
switch(FmtType)
{
#define HANDLE_WRITE(T) case T: \
Write<T>(RealOut.Buffer, outBuffer, total, samplesToDo, frameStep); break;
HANDLE_WRITE(DevFmtByte)
HANDLE_WRITE(DevFmtUByte)
HANDLE_WRITE(DevFmtShort)
HANDLE_WRITE(DevFmtUShort)
HANDLE_WRITE(DevFmtInt)
HANDLE_WRITE(DevFmtUInt)
HANDLE_WRITE(DevFmtFloat)
#undef HANDLE_WRITE
}
}
total += samplesToDo;
}
}
void DeviceBase::handleDisconnect(const char *msg, ...)
{
IncrementRef(MixCount);
if(Connected.exchange(false, std::memory_order_acq_rel))
{
AsyncEvent evt{AsyncEvent::Disconnected};
va_list args;
va_start(args, msg);
int msglen{vsnprintf(evt.u.disconnect.msg, sizeof(evt.u.disconnect.msg), msg, args)};
va_end(args);
if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.disconnect.msg))
evt.u.disconnect.msg[sizeof(evt.u.disconnect.msg)-1] = 0;
for(ContextBase *ctx : *mContexts.load())
{
if(ctx->mEnabledEvts.load(std::memory_order_acquire).test(AsyncEvent::Disconnected))
{
RingBuffer *ring{ctx->mAsyncEvents.get()};
auto evt_data = ring->getWriteVector().first;
if(evt_data.len > 0)
{
al::construct_at(reinterpret_cast<AsyncEvent*>(evt_data.buf), evt);
ring->writeAdvance(1);
ctx->mEventSem.post();
}
}
if(!ctx->mStopVoicesOnDisconnect)
{
ProcessVoiceChanges(ctx);
continue;
}
auto voicelist = ctx->getVoicesSpanAcquired();
auto stop_voice = [](Voice *voice) -> void
{
voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
voice->mSourceID.store(0u, std::memory_order_relaxed);
voice->mPlayState.store(Voice::Stopped, std::memory_order_release);
};
std::for_each(voicelist.begin(), voicelist.end(), stop_voice);
}
}
IncrementRef(MixCount);
}