axmol/core/2d/DrawNode.cpp

1565 lines
49 KiB
C++

/* Copyright (c) 2012 Scott Lembcke and Howling Moon Software
* Copyright (c) 2012 cocos2d-x.org
* Copyright (c) 2013-2016 Chukong Technologies Inc.
* Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
* Copyright (c) 2019-present Axmol Engine contributors (see AUTHORS.md).
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "2d/DrawNode.h"
#include <stddef.h>
#include "base/Types.h"
#include "base/EventType.h"
#include "base/Configuration.h"
#include "renderer/Renderer.h"
#include "base/Director.h"
#include "base/EventListenerCustom.h"
#include "base/EventDispatcher.h"
#include "2d/ActionCatmullRom.h"
#include "base/Utils.h"
#include "renderer/Shaders.h"
#include "renderer/backend/ProgramState.h"
#include "poly2tri/poly2tri.h"
namespace ax
{
#if defined(_WIN32)
# pragma push_macro("TRANSPARENT")
# undef TRANSPARENT
#endif
/** Is a polygon convex?
* @param verts A pointer to point coordinates.
* @param count The number of verts measured in points.
*/
static bool isConvex(const Vec2* verts, int count)
{
bool isPositive = false, isNegative = false;
for (unsigned int i = 0; i < count; i++)
{
auto& A = verts[i];
auto& B = verts[(i + 1) % count];
auto& C = verts[(i + 2) % count];
double crossProduct = (B.x - A.x) * (C.y - B.y) - (B.y - A.y) * (C.x - B.x);
if (crossProduct > 0)
isPositive = true;
else if (crossProduct < 0)
isNegative = true;
if (isPositive && isNegative)
return false; // is concave
}
return true; // is convex
}
static V2F_C4B_T2F* expandBufferAndGetPointer(axstd::pod_vector<V2F_C4B_T2F>& buffer, size_t count)
{
size_t oldSize = buffer.size();
buffer.expand(count);
return buffer.data() + oldSize;
}
DrawNode::DrawNode()
{
_blendFunc = BlendFunc::ALPHA_PREMULTIPLIED;
properties.setDefaultValues();
#if AX_ENABLE_CACHE_TEXTURE_DATA
// TODO new-renderer: interface setupBuffer removal
// Need to listen the event only when not use batchnode, because it will use VBO
// auto listener = EventListenerCustom::create(EVENT_RENDERER_RECREATED, [this](EventCustom* event){
// /** listen the event that renderer was recreated on Android/WP8 */
// this->setupBuffer();
// });
// _eventDispatcher->addEventListenerWithSceneGraphPriority(listener, this);
#endif
}
DrawNode::~DrawNode()
{
freeShaderInternal(_customCommandTriangle);
freeShaderInternal(_customCommandPoint);
freeShaderInternal(_customCommandLine);
}
DrawNode* DrawNode::create()
{
DrawNode* ret = new DrawNode();
if (ret->init())
{
ret->autorelease();
}
else
{
AX_SAFE_DELETE(ret);
}
return ret;
}
bool DrawNode::init()
{
_blendFunc = BlendFunc::ALPHA_PREMULTIPLIED;
updateShader();
_trianglesDirty = true;
_pointsDirty = true;
_linesDirty = true;
return true;
}
void DrawNode::updateShader()
{
updateShaderInternal(_customCommandTriangle, backend::ProgramType::POSITION_COLOR_LENGTH_TEXTURE,
CustomCommand::DrawType::ARRAY, CustomCommand::PrimitiveType::TRIANGLE);
updateShaderInternal(_customCommandPoint, backend::ProgramType::POSITION_COLOR_TEXTURE_AS_POINTSIZE,
CustomCommand::DrawType::ARRAY, CustomCommand::PrimitiveType::POINT);
updateShaderInternal(_customCommandLine, backend::ProgramType::POSITION_COLOR_LENGTH_TEXTURE,
CustomCommand::DrawType::ARRAY, CustomCommand::PrimitiveType::LINE);
}
void DrawNode::updateShaderInternal(CustomCommand& cmd,
uint32_t programType,
CustomCommand::DrawType drawType,
CustomCommand::PrimitiveType primitiveType)
{
auto& pipelinePS = cmd.getPipelineDescriptor().programState;
AX_SAFE_RELEASE(pipelinePS);
auto program = backend::Program::getBuiltinProgram(programType);
pipelinePS = new backend::ProgramState(program);
setVertexLayout(cmd);
cmd.setPrimitiveType(primitiveType);
cmd.setDrawType(drawType);
}
void DrawNode::setVertexLayout(CustomCommand& cmd)
{
auto* programState = cmd.getPipelineDescriptor().programState;
programState->validateSharedVertexLayout(backend::VertexLayoutType::DrawNode);
}
void DrawNode::freeShaderInternal(CustomCommand& cmd)
{
auto& pipelinePS = cmd.getPipelineDescriptor().programState;
AX_SAFE_RELEASE_NULL(pipelinePS);
}
void DrawNode::updateBlendState(CustomCommand& cmd)
{
backend::BlendDescriptor& blendDescriptor = cmd.getPipelineDescriptor().blendDescriptor;
blendDescriptor.blendEnabled = true;
if (_blendFunc == BlendFunc::ALPHA_NON_PREMULTIPLIED)
{
blendDescriptor.sourceRGBBlendFactor = backend::BlendFactor::SRC_ALPHA;
blendDescriptor.destinationRGBBlendFactor = backend::BlendFactor::ONE_MINUS_SRC_ALPHA;
blendDescriptor.sourceAlphaBlendFactor = backend::BlendFactor::SRC_ALPHA;
blendDescriptor.destinationAlphaBlendFactor = backend::BlendFactor::ONE_MINUS_SRC_ALPHA;
setOpacityModifyRGB(false);
}
else
{
blendDescriptor.sourceRGBBlendFactor = backend::BlendFactor::ONE;
blendDescriptor.destinationRGBBlendFactor = backend::BlendFactor::ONE_MINUS_SRC_ALPHA;
blendDescriptor.sourceAlphaBlendFactor = backend::BlendFactor::ONE;
blendDescriptor.destinationAlphaBlendFactor = backend::BlendFactor::ONE_MINUS_SRC_ALPHA;
setOpacityModifyRGB(true);
}
}
void DrawNode::updateUniforms(const Mat4& transform, CustomCommand& cmd)
{
auto& pipelineDescriptor = cmd.getPipelineDescriptor();
const auto& matrixP = _director->getMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_PROJECTION);
Mat4 matrixMVP = matrixP * transform;
auto mvpLocation = pipelineDescriptor.programState->getUniformLocation("u_MVPMatrix");
pipelineDescriptor.programState->setUniform(mvpLocation, matrixMVP.m, sizeof(matrixMVP.m));
float alpha = _displayedOpacity / 255.0f;
auto alphaUniformLocation = pipelineDescriptor.programState->getUniformLocation("u_alpha");
pipelineDescriptor.programState->setUniform(alphaUniformLocation, &alpha, sizeof(alpha));
}
void DrawNode::draw(Renderer* renderer, const Mat4& transform, uint32_t flags)
{
if (_trianglesDirty || _pointsDirty || _linesDirty)
updateBuffers();
if (_customCommandTriangle.getVertexDrawCount() > 0)
{
updateBlendState(_customCommandTriangle);
updateUniforms(transform, _customCommandTriangle);
_customCommandTriangle.init(_globalZOrder);
renderer->addCommand(&_customCommandTriangle);
}
if (_customCommandPoint.getVertexDrawCount() > 0)
{
updateBlendState(_customCommandPoint);
updateUniforms(transform, _customCommandPoint);
_customCommandPoint.init(_globalZOrder);
renderer->addCommand(&_customCommandPoint);
}
if (_customCommandLine.getVertexDrawCount() > 0)
{
updateBlendState(_customCommandLine);
updateUniforms(transform, _customCommandLine);
_customCommandLine.init(_globalZOrder);
renderer->addCommand(&_customCommandLine);
}
}
static void udpateCommand(CustomCommand& cmd, const axstd::pod_vector<V2F_C4B_T2F>& buffer)
{
if (buffer.empty())
{
cmd.setVertexBuffer(nullptr);
}
else
{
cmd.createVertexBuffer(sizeof(V2F_C4B_T2F), buffer.size(), CustomCommand::BufferUsage::STATIC);
cmd.updateVertexBuffer(buffer.data(), buffer.size() * sizeof(V2F_C4B_T2F));
}
cmd.setVertexDrawInfo(0, buffer.size());
}
void DrawNode::updateBuffers()
{
if (_trianglesDirty)
{
_trianglesDirty = false;
udpateCommand(_customCommandTriangle, _triangles);
}
if (_pointsDirty)
{
_pointsDirty = false;
udpateCommand(_customCommandPoint, _points);
}
if (_linesDirty)
{
_linesDirty = false;
udpateCommand(_customCommandLine, _lines);
}
}
void DrawNode::drawPoint(const Vec2& position,
const float pointSize,
const Color4B& color,
const DrawNode::PointType pointType)
{
if (pointSize <= 0.0f)
return;
_drawPoint(position, pointSize, color, pointType);
}
void DrawNode::drawPoints(const Vec2* position,
unsigned int numberOfPoints,
const Color4B& color,
const DrawNode::PointType pointType)
{
_drawPoints(position, numberOfPoints, 1.0f, color, pointType);
}
void DrawNode::drawPoints(const Vec2* position,
unsigned int numberOfPoints,
const float pointSize,
const Color4B& color,
const DrawNode::PointType pointType)
{
if (pointSize <= 0.0f)
return;
_drawPoints(position, numberOfPoints, pointSize, color, pointType);
}
void DrawNode::drawLine(const Vec2& origin,
const Vec2& destination,
const Color4B& color,
float thickness,
DrawNode::EndType etStart,
DrawNode::EndType etEnd)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
_drawSegment(origin, destination, color, thickness, etStart, etEnd);
}
void DrawNode::drawPoly(const Vec2* poli,
unsigned int numberOfPoints,
bool closedPolygon,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
_drawPoly(poli, numberOfPoints, closedPolygon, color, thickness);
}
void DrawNode::drawCircle(const Vec2& center,
float radius,
float angle,
unsigned int segments,
bool drawLineToCenter,
float scaleX,
float scaleY,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
if (radius == 0.0f)
{
AXLOGW("{}: radius == 0", __FUNCTION__);
return;
}
_drawCircle(center, radius, angle, segments, drawLineToCenter, scaleX, scaleY, color, Color4B(), false, thickness);
}
void DrawNode::drawCircle(const Vec2& center,
float radius,
float angle,
unsigned int segments,
bool drawLineToCenter,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
if (radius == 0.0f)
{
AXLOGW("{}: radius == 0", __FUNCTION__);
return;
}
_drawCircle(center, radius, angle, segments, drawLineToCenter, 1.0f, 1.0f, color, color, false, thickness);
}
void DrawNode::drawStar(const Vec2& center,
float radiusI,
float radiusO,
unsigned int segments,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
_drawAStar(center, radiusI, radiusO, segments, color, color, thickness, false);
}
void DrawNode::drawSolidStar(const Vec2& center,
float radiusI, // inner
float radiusO, // outer
unsigned int segments,
const Color4B& color,
const Color4B& filledColor,
float thickness)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
_drawAStar(center, radiusI, radiusO, segments, color, filledColor, thickness, true);
}
void DrawNode::drawQuadBezier(const Vec2& origin,
const Vec2& control,
const Vec2& destination,
unsigned int segments,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
axstd::pod_vector<Vec2> _vertices{
static_cast<size_t>(segments + 1)}; // Vec2* _vertices = _abuf.get<Vec2>(segments + 1);
float t = 0.0f;
for (unsigned int i = 0; i < segments; i++)
{
_vertices[i].x = powf(1.0f - t, 2.0f) * origin.x + 2.0f * (1.0f - t) * t * control.x + t * t * destination.x;
_vertices[i].y = powf(1.0f - t, 2.0f) * origin.y + 2.0f * (1.0f - t) * t * control.y + t * t * destination.y;
t += 1.0f / segments;
}
_vertices[segments].x = destination.x;
_vertices[segments].y = destination.y;
_drawPoly(_vertices.data(), segments + 1, false, color, thickness, false);
}
void DrawNode::drawCubicBezier(const Vec2& origin,
const Vec2& control1,
const Vec2& control2,
const Vec2& destination,
unsigned int segments,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
axstd::pod_vector<Vec2> _vertices{static_cast<size_t>(segments + 1)};
float t = 0.0f;
for (unsigned int i = 0; i < segments; i++)
{
_vertices[i].x = powf(1.0f - t, 3.0f) * origin.x + 3.0f * powf(1.0f - t, 2.0f) * t * control1.x +
3.0f * (1 - t) * t * t * control2.x + t * t * t * destination.x;
_vertices[i].y = powf(1.0f - t, 3.0f) * origin.y + 3.0f * powf(1.0f - t, 2.0f) * t * control1.y +
3.0f * (1 - t) * t * t * control2.y + t * t * t * destination.y;
t += 1.0f / segments;
}
_vertices[segments].x = destination.x;
_vertices[segments].y = destination.y;
_drawPoly(_vertices.data(), segments + 1, false, color, thickness, true);
}
void DrawNode::drawCardinalSpline(PointArray* config,
float tension,
unsigned int segments,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
axstd::pod_vector<Vec2> _vertices{static_cast<size_t>(segments)};
ssize_t p;
float lt;
float deltaT = 1.0f / config->count();
for (unsigned int i = 0; i < segments; i++)
{
float dt = (float)i / segments;
// border
if (dt == 1)
{
p = config->count() - 1;
lt = 1;
}
else
{
p = static_cast<ssize_t>(dt / deltaT);
lt = (dt - deltaT * (float)p) / deltaT;
}
// Interpolate
Vec2 pp0 = config->getControlPointAtIndex(p - 1);
Vec2 pp1 = config->getControlPointAtIndex(p + 0);
Vec2 pp2 = config->getControlPointAtIndex(p + 1);
Vec2 pp3 = config->getControlPointAtIndex(p + 2);
Vec2 newPos = ccCardinalSplineAt(pp0, pp1, pp2, pp3, tension, lt);
_vertices[i].x = newPos.x;
_vertices[i].y = newPos.y;
if (newPos == config->getControlPointAtIndex(config->count() - 1) && i > 0)
{
segments = i + 1;
break;
}
}
_drawPoly(_vertices.data(), segments, false, color, thickness, true);
}
void DrawNode::drawCatmullRom(PointArray* points, unsigned int segments, const Color4B& color, float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
drawCardinalSpline(points, 0.5f, segments, color, thickness);
}
void DrawNode::drawDot(const Vec2& pos, float radius, const Color4B& color)
{
if (radius <= 0.0f)
{
AXLOGW("{}: radius <= 0", __FUNCTION__);
return;
}
_drawDot(pos, radius, color);
}
void DrawNode::drawRect(const Vec2& p1,
const Vec2& p2,
const Vec2& p3,
const Vec2& p4,
const Color4B& color,
float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
Vec2 line[5] = {p1, p2, p3, p4, p1};
_drawPoly(line, 5, false, color, thickness, true);
}
void DrawNode::drawRect(const Vec2& origin, const Vec2& destination, const Color4B& color, float thickness)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
Vec2 line[5] = {origin, Vec2(destination.x, origin.y), destination, Vec2(origin.x, destination.y), origin};
_drawPoly(line, 5, false, color, thickness, true);
}
void DrawNode::drawSegment(const Vec2& from,
const Vec2& to,
float thickness,
const Color4B& color,
DrawNode::EndType etStart,
DrawNode::EndType etEnd)
{
if (thickness <= 0.0f)
{
AXLOGW("{}: thickness <= 0", __FUNCTION__);
return;
}
_drawSegment(from, to, color, thickness, etStart, etEnd);
}
void DrawNode::drawPolygon(Vec2* verts,
int count,
const Color4B& fillColor,
float thickness,
const Color4B& borderColor,
bool isconvex)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
_drawPolygon(verts, count, fillColor, borderColor, true, thickness, isconvex);
}
void DrawNode::drawPolygon(Vec2* verts, int count, float thickness, const Color4B& borderColor, bool isconvex)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
_drawPolygon(verts, count, Color4B::TRANSPARENT, borderColor, true, thickness, isconvex);
}
void DrawNode::drawSolidPolygon(Vec2* verts,
int count,
const Color4B& fillColor,
float thickness,
const Color4B& borderColor,
bool isconvex)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
_drawPolygon(verts, count, fillColor, borderColor, true, thickness, isconvex);
}
void DrawNode::drawSolidRect(const Vec2& origin,
const Vec2& destination,
const Color4B& fillColor,
float thickness,
const Color4B& borderColor)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
Vec2 _vertices[] = {origin, Vec2(destination.x, origin.y), destination, Vec2(origin.x, destination.y), origin};
_drawPolygon(_vertices, 5, fillColor, borderColor, true, thickness, true);
}
void DrawNode::drawSolidPoly(const Vec2* poli,
unsigned int numberOfPoints,
const Color4B& color,
float thickness,
const Color4B& borderColor,
bool isconvex)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
_drawPolygon(poli, numberOfPoints, color, borderColor, true, thickness, isconvex);
}
void DrawNode::drawPie(const Vec2& center,
float radius,
float rotation,
int startAngle,
int endAngle,
float scaleX,
float scaleY,
const Color4B& fillColor,
const Color4B& borderColor,
DrawMode drawMode,
float thickness)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
_drawPie(center, radius, rotation, startAngle, endAngle, scaleX, scaleY, fillColor, borderColor, drawMode,
thickness);
}
void DrawNode::drawPie(const Vec2& center,
float radius,
float angle,
int startAngle,
int endAngle,
float scaleX,
float scaleY,
const Color4B& color,
DrawMode drawMode)
{
_drawPie(center, radius, angle, startAngle, endAngle, scaleX, scaleY, Color4B::TRANSPARENT, color, drawMode, 1.0f);
}
void DrawNode::drawSolidCircle(const Vec2& center,
float radius,
float angle,
unsigned int segments,
float scaleX,
float scaleY,
const Color4B& fillColor,
float thickness,
const Color4B& borderColor,
bool drawLineToCenter)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
_drawCircle(center, radius, angle, segments, drawLineToCenter, scaleX, scaleY, borderColor, fillColor, true,
thickness);
}
void DrawNode::drawSolidCircle(const Vec2& center,
float radius,
float angle,
unsigned int segments,
float scaleX,
float scaleY,
const Color4B& color)
{
if (radius < 0.0f)
{
AXLOGW("{}: radius < 0, changed to 0", __FUNCTION__);
radius = 0.0f;
}
_drawCircle(center, radius, angle, segments, false, scaleX, scaleY, Color4B(), color, true);
}
void DrawNode::drawSolidCircle(const Vec2& center,
float radius,
float angle,
unsigned int segments,
const Color4B& color)
{
if (radius < 0.0f)
{
AXLOGW("{}: radius < 0, changed to 0", __FUNCTION__);
radius = 0.0f;
}
_drawCircle(center, radius, angle, segments, false, 1.0f, 1.0f, Color4B(), color, true);
}
void DrawNode::drawTriangle(const Vec2* vertices3, const Color4B& color)
{
Vec2 vertices[3] = {vertices3[0], vertices3[1], vertices3[2]};
_drawTriangle(vertices, Color4B::TRANSPARENT, color, false, 0.0f);
}
void DrawNode::drawTriangle(const Vec2& p1, const Vec2& p2, const Vec2& p3, const Color4B& color)
{
Vec2 vertices[3] = {p1, p2, p3};
_drawTriangle(vertices, Color4B::TRANSPARENT, color, false, 0.0f);
}
void DrawNode::drawSolidTriangle(const Vec2* vertices3,
const Color4B& fillColor,
const Color4B& borderColor,
float thickness)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
Vec2 vertices[3] = {vertices3[0], vertices3[1], vertices3[2]};
_drawTriangle(vertices, fillColor, borderColor, true, thickness);
}
void DrawNode::drawSolidTriangle(const Vec2& p1,
const Vec2& p2,
const Vec2& p3,
const Color4B& fillColor,
const Color4B& borderColor,
float thickness)
{
if (thickness < 0.0f)
{
AXLOGW("{}: thickness < 0, changed to 0", __FUNCTION__);
thickness = 0.0f;
}
Vec2 vertices[3] = {p1, p2, p3};
_drawTriangle(vertices, fillColor, borderColor, false, thickness);
}
void DrawNode::clear()
{
_trianglesDirty = true;
_pointsDirty = true;
_linesDirty = true;
_triangles.clear();
_points.clear();
_lines.clear();
}
const BlendFunc& DrawNode::getBlendFunc() const
{
return _blendFunc;
}
void DrawNode::setBlendFunc(const BlendFunc& blendFunc)
{
_blendFunc = blendFunc;
}
void DrawNode::visit(Renderer* renderer, const Mat4& parentTransform, uint32_t parentFlags)
{
if (_isolated)
{
// ignore `parentTransform` from parent
Node::visit(renderer, Mat4::IDENTITY, parentFlags);
}
else
{
Node::visit(renderer, parentTransform, parentFlags);
}
}
void DrawNode::_drawPolygon(const Vec2* verts,
unsigned int count,
const Color4B& fillColor,
const Color4B& borderColor,
bool closedPolygon,
float thickness,
bool isconvex)
{
AXASSERT(count >= 0, "invalid count value");
bool outline = (thickness != 0.0f);
auto _vertices = _transform(verts, count, closedPolygon);
std::vector<V2F_C4B_T2F_Triangle> triangleList;
int vertex_count = 0;
// calculate the memory (important for correct drawing stuff)
if (closedPolygon && !isconvex && fillColor.a > 0.0f && !isConvex(_vertices.data(), count) && count >= 3)
{
std::vector<p2t::Point> p2pointsStorage;
p2pointsStorage.reserve(count);
std::vector<p2t::Point*> p2points;
p2points.reserve(count);
for (unsigned int i = 0; i < count - 1;
i++) // count-1 is needed because of: _vertices[0] = _vertices[i < count]
{
p2points.emplace_back(&p2pointsStorage.emplace_back((float)_vertices[i].x, (float)_vertices[i].y));
}
p2t::CDT cdt(p2points);
cdt.Triangulate();
std::vector<p2t::Triangle*> tris = cdt.GetTriangles();
vertex_count += tris.size();
for (auto&& t : tris) // use it later; only one calculate!!!
{
p2t::Point* vec1 = t->GetPoint(0);
p2t::Point* vec2 = t->GetPoint(1);
p2t::Point* vec3 = t->GetPoint(2);
V2F_C4B_T2F_Triangle triangle = {
{Vec2(vec1->x, vec1->y), fillColor, Vec2::ZERO},
{Vec2(vec2->x, vec2->y), fillColor, Vec2::ZERO},
{Vec2(vec3->x, vec3->y), fillColor, Vec2::ZERO},
};
triangleList.emplace_back(triangle); // use it for drawing later
}
}
else if (fillColor.a > 0.0f)
{
vertex_count += count - 2;
}
if (outline)
{
if (thickness != 1.0f || properties.drawOrder)
{
vertex_count += 6 * (count - 1);
}
else
{
vertex_count += 2 * count;
}
}
vertex_count *= 3;
auto triangles = reinterpret_cast<V2F_C4B_T2F_Triangle*>(expandBufferAndGetPointer(_triangles, vertex_count));
_trianglesDirty = true;
// start drawing...
int ii = 0;
if (closedPolygon && !isconvex && fillColor.a > 0.0f && !isConvex(_vertices.data(), count) && count >= 3)
{
for (auto&& t : triangleList)
{
triangles[ii++] = t;
}
}
else if (fillColor.a > 0.0f)
{
for (unsigned int i = 0; i < count - 2; i++)
{
triangles[ii++] = {
{_vertices[0], fillColor, Vec2::ZERO},
{_vertices[i + 1], fillColor, Vec2::ZERO},
{_vertices[i + 2], fillColor, Vec2::ZERO},
};
}
}
if (outline)
{
if (thickness != 1.0f || properties.drawOrder)
{
thickness *= properties.factor;
for (unsigned int i = 1; i < (count); i++)
{
Vec2 a = _vertices[i - 1];
Vec2 b = _vertices[i];
Vec2 n = ((b - a).getPerp()).getNormalized();
Vec2 t = n.getPerp();
Vec2 nw = n * thickness;
Vec2 tw = t * thickness;
Vec2 v0 = b - (nw + tw);
Vec2 v1 = b + (nw - tw);
Vec2 v2 = b - nw;
Vec2 v3 = b + nw;
Vec2 v4 = a - nw;
Vec2 v5 = a + nw;
Vec2 v6 = a - (nw - tw);
Vec2 v7 = a + (nw + tw);
{
triangles[ii++] = {
{v0, borderColor, -(n + t)},
{v1, borderColor, n - t},
{v2, borderColor, -n},
};
triangles[ii++] = {
{v3, borderColor, n},
{v1, borderColor, n - t},
{v2, borderColor, -n},
};
}
triangles[ii++] = {
{v3, borderColor, n},
{v4, borderColor, -n},
{v2, borderColor, -n},
};
triangles[ii++] = {
{v3, borderColor, n},
{v4, borderColor, -n},
{v5, borderColor, n},
};
{
triangles[ii++] = {
{v6, borderColor, t - n},
{v4, borderColor, -n},
{v5, borderColor, n},
};
triangles[ii++] = {
{v6, borderColor, t - n},
{v7, borderColor, t + n},
{v5, borderColor, n},
};
}
}
}
else
{
struct ExtrudeVerts
{
Vec2 offset, n;
};
axstd::pod_vector<ExtrudeVerts> extrude{static_cast<size_t>(sizeof(struct ExtrudeVerts) * count)};
for (unsigned int i = 0; i < count; i++)
{
Vec2 v0 = _vertices[(i - 1 + count) % count];
Vec2 v1 = _vertices[i];
Vec2 v2 = _vertices[(i + 1) % count];
Vec2 n1 = ((v1 - v0).getPerp()).getNormalized();
Vec2 n2 = ((v2 - v1).getPerp()).getNormalized();
Vec2 offset = (n1 + n2) * (1.0f / (Vec2::dot(n1, n2) + 1.0f));
extrude[i] = {offset, n2};
}
for (unsigned int i = 0; i < count; i++)
{
int j = (i + 1) % count;
Vec2 v0 = _vertices[i];
Vec2 v1 = _vertices[j];
Vec2 n0 = extrude[i].n;
Vec2 offset0 = extrude[i].offset;
Vec2 offset1 = extrude[j].offset;
Vec2 inner0 = v0 - offset0 * thickness;
Vec2 inner1 = v1 - offset1 * thickness;
Vec2 outer0 = v0 + offset0 * thickness;
Vec2 outer1 = v1 + offset1 * thickness;
triangles[ii++] = {{inner0, borderColor, -n0}, {inner1, borderColor, -n0}, {outer1, borderColor, n0}};
triangles[ii++] = {{inner0, borderColor, -n0}, {outer0, borderColor, n0}, {outer1, borderColor, n0}};
}
}
}
}
void DrawNode::_drawPoly(const Vec2* verts,
unsigned int count,
bool closedPolygon,
const Color4B& color,
float thickness,
bool isconvex)
{
if (thickness == 1.0f && !properties.drawOrder)
{
auto _vertices = _transform(verts, count, closedPolygon);
unsigned int vertex_count = (closedPolygon) ? 2 * count : 2 * (count - 1);
auto line = expandBufferAndGetPointer(_lines, vertex_count);
_linesDirty = true;
int ii = 0;
for (unsigned int i = 0; i < count - 1; i++)
{
line[ii++] = {_vertices[i], color, Vec2::ZERO};
line[ii++] = {_vertices[i + 1], color, Vec2::ZERO};
}
if (closedPolygon)
{
line[ii++] = {_vertices[count - 1], color, Vec2::ZERO};
line[ii++] = line[0];
}
}
else
{
_drawPolygon(verts, count, Color4B::TRANSPARENT, color, closedPolygon, thickness, isconvex);
}
}
void DrawNode::_drawSegment(const Vec2& from,
const Vec2& to,
const Color4B& color,
float thickness,
DrawNode::EndType etStart,
DrawNode::EndType etEnd)
{
Vec2 vertices[2] = {from, to};
applyTransform(vertices, vertices, 2);
if (thickness == 1.0f && !properties.drawOrder)
{
auto line = expandBufferAndGetPointer(_lines, 2);
_linesDirty = true;
line[0] = {vertices[0], color, Vec2::ZERO};
line[1] = {vertices[1], color, Vec2::ZERO};
}
else
{
Vec2 a = vertices[0];
Vec2 b = vertices[1];
Vec2 n = ((b - a).getPerp()).getNormalized();
Vec2 t = n.getPerp();
Vec2 nw = n * thickness;
Vec2 tw = t * thickness;
Vec2 v0 = b - (nw + tw);
Vec2 v1 = b + (nw - tw);
Vec2 v2 = b - nw;
Vec2 v3 = b + nw;
Vec2 v4 = a - nw;
Vec2 v5 = a + nw;
Vec2 v6 = a - (nw - tw);
Vec2 v7 = a + (nw + tw);
unsigned int vertex_count = 3 * ((etStart != DrawNode::EndType::Butt) ? 2 : 0) + 3 * 2 +
3 * ((etEnd != DrawNode::EndType::Butt) ? 2 : 0);
auto triangles = reinterpret_cast<V2F_C4B_T2F_Triangle*>(expandBufferAndGetPointer(_triangles, vertex_count));
_trianglesDirty = true;
int ii = 0;
switch (etEnd)
{
case DrawNode::EndType::Butt:
break;
case DrawNode::EndType::Square:
triangles[ii++] = {
{v0, color, Vec2::ZERO},
{v1, color, -n},
{v2, color, n},
};
triangles[ii++] = {
{v3, color, n},
{v1, color, Vec2::ZERO},
{v2, color, -n},
};
break;
case DrawNode::EndType::Round:
triangles[ii++] = {
{v0, color, -(n + t)},
{v1, color, n - t},
{v2, color, -n},
};
triangles[ii++] = {
{v3, color, n},
{v1, color, n - t},
{v2, color, -n},
};
break;
default:
break;
}
// BODY
triangles[ii++] = {
{v3, color, n},
{v4, color, -n},
{v2, color, -n},
};
triangles[ii++] = {
{v3, color, n},
{v4, color, -n},
{v5, color, n},
};
switch (etStart)
{
case DrawNode::EndType::Butt:
break;
case DrawNode::EndType::Square:
triangles[ii++] = {
{v6, color, Vec2::ZERO},
{v4, color, -n},
{v5, color, n},
};
triangles[ii++] = {
{v6, color, -n},
{v7, color, Vec2::ZERO},
{v5, color, n},
};
break;
case DrawNode::EndType::Round:
triangles[ii++] = {
{v6, color, t - n},
{v4, color, -n},
{v5, color, n},
};
triangles[ii++] = {
{v6, color, t - n},
{v7, color, t + n},
{v5, color, n},
};
break;
default:
break;
}
}
}
void DrawNode::_drawDot(const Vec2& pos, float radius, const Color4B& color)
{
unsigned int vertex_count = 2 * 3;
auto triangles = reinterpret_cast<V2F_C4B_T2F_Triangle*>(expandBufferAndGetPointer(_triangles, vertex_count));
_trianglesDirty = true;
V2F_C4B_T2F a = {Vec2(pos.x - radius, pos.y - radius), color, Vec2(-1.0f, -1.0f)};
V2F_C4B_T2F b = {Vec2(pos.x - radius, pos.y + radius), color, Vec2(-1.0f, 1.0f)};
V2F_C4B_T2F c = {Vec2(pos.x + radius, pos.y + radius), color, Vec2(1.0f, 1.0f)};
V2F_C4B_T2F d = {Vec2(pos.x + radius, pos.y - radius), color, Vec2(1.0f, -1.0f)};
triangles[0] = {a, b, c};
triangles[1] = {a, c, d};
}
void DrawNode::_drawCircle(const Vec2& center,
float radius,
float angle,
unsigned int segments,
bool drawLineToCenter,
float scaleX,
float scaleY,
const Color4B& borderColor,
const Color4B& fillColor,
bool solid,
float thickness)
{
const float coef = 2.0f * (float)M_PI / segments;
int count = (drawLineToCenter) ? 3 : 2;
Vec2* _vertices = new Vec2[segments + count];
float rsX = radius * scaleX;
float rsY = radius * scaleY;
for (unsigned int i = 0; i < segments; i++)
{
float rads = i * coef + angle;
_vertices[i].x = rsX * cosf(rads) + center.x;
_vertices[i].y = rsY * sinf(rads) + center.y;
}
_vertices[segments] = _vertices[0];
if (drawLineToCenter)
_vertices[++segments] = center;
if (solid)
_drawPolygon(_vertices, segments + 1, fillColor, borderColor, false, thickness, true);
else
_drawPoly(_vertices, segments + 1, false, borderColor, thickness, true);
AX_SAFE_DELETE_ARRAY(_vertices);
}
void DrawNode::_drawTriangle(Vec2* vertices3,
const Color4B& borderColor,
const Color4B& fillColor,
bool solid,
float thickness)
{
unsigned int vertex_count = 3;
if (thickness != 0.0f)
{
_drawPolygon(vertices3, vertex_count, fillColor, borderColor, true, thickness, true);
}
else
{
applyTransform(vertices3, vertices3, vertex_count);
auto triangles = reinterpret_cast<V2F_C4B_T2F_Triangle*>(expandBufferAndGetPointer(_triangles, vertex_count));
_trianglesDirty = true;
triangles[0] = {{vertices3[0], fillColor, Vec2::ZERO},
{vertices3[1], fillColor, Vec2::ZERO},
{vertices3[2], fillColor, Vec2::ZERO}};
}
}
void DrawNode::_drawAStar(const Vec2& center,
float radiusI, // inner
float radiusO, // outer
unsigned int segments,
const Color4B& color,
const Color4B& filledColor,
float thickness,
bool solid)
{
const float coef = 2.0f * (float)M_PI / segments;
float halfAngle = coef / 2.0f;
axstd::pod_vector<Vec2> _vertices(segments * 2 + 1);
int i = 0;
for (unsigned int a = 0; a < segments; a++)
{
float rads = a * coef;
_vertices[i++] = Vec2(center.x + cos(rads) * radiusO, center.y + sin(rads) * radiusO);
_vertices[i++] = Vec2(center.x + cos(rads + halfAngle) * radiusI, center.y + sin(rads + halfAngle) * radiusI);
}
if (solid)
{
_drawPolygon(_vertices.data(), i, filledColor, color, true, thickness, false);
}
else
{
_vertices[i++] = _vertices[0];
_drawPoly(_vertices.data(), i, true, color, thickness, false);
}
}
void DrawNode::_drawPoints(const Vec2* position,
unsigned int numberOfPoints,
const float pointSize,
const Color4B& color,
const DrawNode::PointType pointType)
{
if (properties.drawOrder == true)
{
float pointSize4 = pointSize * 0.25f;
Vec2 vec2Size4 = Vec2(pointSize4, pointSize4);
for (unsigned int i = 0; i < numberOfPoints; i++)
{
switch (pointType)
{
case PointType::Circle:
{
_drawCircle(position[i], pointSize4, 90, 32, false, 1.0f, 1.0f, Color4B(), color, true);
break;
}
case PointType::Rect:
{
Vec2 origin = position[i] - vec2Size4;
Vec2 destination = position[i] + vec2Size4;
Vec2 _vertices[] = {origin, Vec2(destination.x, origin.y), destination, Vec2(origin.x, destination.y),
origin};
_drawPolygon(_vertices, 5, color, color, false, 0.0f, true);
}
break;
default:
break;
}
}
return;
}
auto point = expandBufferAndGetPointer(_points, numberOfPoints);
_pointsDirty = true;
for (unsigned int i = 0; i < numberOfPoints; i++)
{
*(point + i) = {position[i], color, Vec2(pointSize, 0.0f)};
}
}
void DrawNode::_drawPoint(const Vec2& position,
const float pointSize,
const Color4B& color,
const DrawNode::PointType pointType)
{
if (properties.drawOrder == true)
{
float pointSize4 = pointSize * 0.25f;
Vec2 vec2Size4 = Vec2(pointSize4, pointSize4);
switch (pointType)
{
case PointType::Circle:
{
_drawCircle(position, pointSize4, 90, 32, false, 1.0f, 1.0f, Color4B(), color, true);
break;
}
case PointType::Rect:
{
Vec2 origin = position - vec2Size4;
Vec2 destination = position + vec2Size4;
Vec2 _vertices[] = {origin, Vec2(destination.x, origin.y), destination, Vec2(origin.x, destination.y),
origin};
_drawPolygon(_vertices, 5, color, color, false, 0.0f, true);
}
break;
default:
break;
}
return;
}
if (properties.drawOrder == true)
{
float pointSize4 = pointSize * 0.25f;
Vec2 origin = position - Vec2(pointSize4, pointSize4);
Vec2 destination = position + Vec2(pointSize4, pointSize4);
Vec2 _vertices[] = {origin, Vec2(destination.x, origin.y), destination, Vec2(origin.x, destination.y)};
_drawPolygon(_vertices, 4, color, color, false, 0.0f, true);
}
else
{
auto point = expandBufferAndGetPointer(_points, 1);
_pointsDirty = true;
*point = {position, color, Vec2(pointSize, 0.0f)};
}
}
void DrawNode::_drawPie(const Vec2& center,
float radius,
float rotation,
int startAngle,
int endAngle,
float scaleX,
float scaleY,
const Color4B& fillColor,
const Color4B& borderColor,
DrawMode drawMode,
float thickness)
{
#define DEGREES 360
// Not a real line!
if (startAngle == endAngle)
return;
// Its a circle?
if (MAX((startAngle - endAngle), (endAngle - startAngle)) == DEGREES)
{
switch (drawMode)
{
case DrawMode::Fill:
_drawCircle(center, radius, 0.0f, 360, false, scaleX, scaleY, borderColor, fillColor, true, thickness);
break;
case DrawMode::Outline:
_drawCircle(center, radius, 0.0f, 360, false, scaleX, scaleY, borderColor, Color4B::TRANSPARENT, true,
thickness);
break;
case DrawMode::Line:
_drawCircle(center, radius, 0.0f, 360, false, scaleX, scaleY, borderColor, Color4B::TRANSPARENT, true,
thickness);
break;
case DrawMode::Semi:
_drawCircle(center, radius, 0.0f, 360, false, scaleX, scaleY, borderColor, fillColor, true, thickness);
break;
default:
break;
}
return;
}
else
{
const float coef = 2.0f * (float)M_PI / DEGREES;
axstd::pod_vector<Vec2> _vertices(DEGREES + 2);
int n = 0;
float rads = 0.0f;
float _angle = AX_DEGREES_TO_RADIANS(rotation);
if (startAngle > endAngle)
{
std::swap(endAngle, startAngle);
}
for (int i = 0; i <= DEGREES; i++)
{
if (startAngle <= i && endAngle >= i)
{
rads = i * coef;
float j = radius * cosf(rads + _angle) * scaleX + center.x;
float k = radius * sinf(rads + _angle) * scaleY + center.y;
_vertices[n].x = j;
_vertices[n].y = k;
n++;
}
}
switch (drawMode)
{
case DrawMode::Fill:
_vertices[n++] = center;
_vertices[n++] = _vertices[0];
_drawPolygon(_vertices.data(), n, fillColor, Color4B::TRANSPARENT, true, 0, false);
_drawPoly(_vertices.data(), n, false, borderColor, thickness, true);
break;
case DrawMode::Outline:
_vertices[n++] = center;
_vertices[n++] = _vertices[0];
_drawPoly(_vertices.data(), n, false, borderColor, thickness, true);
break;
case DrawMode::Line:
_drawPoly(_vertices.data(), n, false, borderColor, thickness, true);
break;
case DrawMode::Semi:
if (fillColor != Color4B::TRANSPARENT)
_drawPolygon(_vertices.data(), n, fillColor, borderColor, true, 0, false);
_drawPoly(_vertices.data(), n, true, borderColor, thickness, true);
break;
default:
break;
}
}
}
axstd::pod_vector<Vec2> DrawNode::_transform(const Vec2* _vertices, unsigned int& count, bool closedPolygon)
{
Vec2 vert0 = _vertices[0];
int closedCounter = 0;
if (closedPolygon && _vertices[0] != _vertices[count - 1])
{
closedCounter = 1;
}
axstd::pod_vector<Vec2> vert(count + closedCounter);
if (properties.transform == false)
{
memcpy(vert.data(), _vertices, count * sizeof(Vec2));
if (closedCounter)
{
vert[count++] = vert0;
}
return vert;
}
applyTransform(_vertices, vert.data(), count);
if (closedCounter)
{
vert[count++] = vert[0];
}
return vert;
}
void DrawNode::applyTransform(const Vec2* from, Vec2* to, unsigned int count)
{
if (properties.transform == false)
return;
auto scale = properties.scale;
auto position = properties.position;
if (properties.rotation == 0.0f)
{
for (unsigned int i = 0; i < count; i++)
{
to[i].x = from[i].x * scale.x + position.x;
to[i].y = from[i].y * scale.y + position.y;
}
}
else
{
const float sinRot = sin(properties.rotation);
const float cosRot = cos(properties.rotation);
auto center = properties.center;
// https://stackoverflow.com/questions/2259476/rotating-a-point-about-another-point-2d
for (unsigned int i = 0; i < count; i++)
{
// translate point to origin
float x = from[i].x - center.x;
float y = from[i].y - center.y;
// rotate point
float rx = x * cosRot - y * sinRot;
float ry = x * sinRot + y * cosRot;
// translate point back
x = rx + center.x;
y = ry + center.y;
// scale and position
to[i].x = x * scale.x + position.x;
to[i].y = y * scale.y + position.y;
}
}
}
#if defined(_WIN32)
# pragma pop_macro("TRANSPARENT")
#endif
} // namespace ax