axmol/core/3d/Mesh.cpp

859 lines
29 KiB
C++

/****************************************************************************
Copyright (c) 2014-2016 Chukong Technologies Inc.
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
Copyright (c) 2019-present Axmol Engine contributors (see AUTHORS.md).
https://axmol.dev/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "3d/Mesh.h"
#include "3d/MeshSkin.h"
#include "3d/Skeleton3D.h"
#include "3d/MeshVertexIndexData.h"
#include "3d/VertexAttribBinding.h"
#include "2d/Light.h"
#include "2d/Scene.h"
#include "base/EventDispatcher.h"
#include "base/Director.h"
#include "base/Configuration.h"
#include "renderer/TextureCache.h"
#include "renderer/Material.h"
#include "renderer/Technique.h"
#include "renderer/Pass.h"
#include "renderer/Renderer.h"
#include "renderer/backend/Buffer.h"
#include "renderer/backend/Program.h"
#include "renderer/RenderConsts.h"
#include "math/Mat4.h"
using namespace std;
namespace ax
{
// Helpers
// sampler uniform names, only diffuse and normal texture are supported for now
std::string s_uniformSamplerName[] = {
"", // NTextureData::Usage::Unknown,
"", // NTextureData::Usage::None
"", // NTextureData::Usage::Diffuse
"", // NTextureData::Usage::Emissive
"", // NTextureData::Usage::Ambient
"", // NTextureData::Usage::Specular
"", // NTextureData::Usage::Shininess
"u_normalTex", // NTextureData::Usage::Normal
"", // NTextureData::Usage::Bump
"", // NTextureData::Usage::Transparency
"", // NTextureData::Usage::Reflection
};
// helpers
void Mesh::resetLightUniformValues()
{
const auto& conf = Configuration::getInstance();
constexpr int maxDirLight = AX_MAX_DIRECTIONAL_LIGHT;
constexpr int maxPointLight = AX_MAX_POINT_LIGHT;
constexpr int maxSpotLight = AX_MAX_SPOT_LIGHT;
_dirLightUniformColorValues.assign(maxDirLight, Vec3::ZERO);
_dirLightUniformDirValues.assign(maxDirLight, Vec3::ZERO);
_pointLightUniformColorValues.assign(maxPointLight, Vec3::ZERO);
_pointLightUniformPositionValues.assign(maxPointLight, Vec3::ZERO);
_pointLightUniformRangeInverseValues.assign(maxPointLight, 0.0f);
_spotLightUniformColorValues.assign(maxSpotLight, Vec3::ZERO);
_spotLightUniformPositionValues.assign(maxSpotLight, Vec3::ZERO);
// TODO It's strange that init _spotLightUniformDirValues to zeros will cause no light effects on iPhone6 and
// iPhone6s, but works well on iPhoneX fix no light effects on iPhone6 and iPhone6s
_spotLightUniformDirValues.assign(maxSpotLight, Vec3(FLT_EPSILON, 0.0f, 0.0f));
_spotLightUniformInnerAngleCosValues.assign(maxSpotLight, 1.0f);
_spotLightUniformOuterAngleCosValues.assign(maxSpotLight, 0.0f);
_spotLightUniformRangeInverseValues.assign(maxSpotLight, 0.0f);
}
Mesh::Mesh()
: _skin(nullptr)
, _visible(true)
, _instancing(false)
, _instanceTransformBuffer(nullptr)
, _instanceTransformBufferDirty(false)
, _instanceCount(0)
, _dynamicInstancing(false)
, _instanceMatrixCache(nullptr)
, meshIndexFormat(CustomCommand::IndexFormat::U_SHORT)
, _meshIndexData(nullptr)
, _blend(BlendFunc::ALPHA_NON_PREMULTIPLIED)
, _blendDirty(true)
, _material(nullptr)
, _texFile("")
{}
Mesh::~Mesh()
{
for (auto&& tex : _textures)
AX_SAFE_RELEASE(tex.second);
for (auto&& ins : _instances)
AX_SAFE_RELEASE(ins);
AX_SAFE_RELEASE(_skin);
AX_SAFE_RELEASE(_meshIndexData);
AX_SAFE_RELEASE(_material);
AX_SAFE_RELEASE(_instanceTransformBuffer);
AX_SAFE_DELETE_ARRAY(_instanceMatrixCache);
}
void Mesh::enableInstancing(bool instance, int count)
{
_instancing = instance;
_instanceCount = count;
}
void Mesh::setInstanceCount(int count) {
AXASSERT(_instancing, "Instancing should be enabled on this mesh.");
_instanceCount = count;
}
void Mesh::addInstanceChild(Node* child)
{
AX_SAFE_RETAIN(child);
_instances.push_back(child);
_instanceTransformDirty = true;
if (_instances.size() > _instanceCount)
{
_instanceCount *= 2;
_instanceTransformBufferDirty = true;
}
}
void Mesh::shrinkToFitInstances()
{
if (_instanceCount > _instances.size())
{
_instanceCount = _instances.size();
_instanceTransformBufferDirty = true;
}
}
void Mesh::rebuildInstances()
{
_instanceTransformDirty = true;
}
void Mesh::setDynamicInstancing(bool dynamic)
{
_dynamicInstancing = dynamic;
}
backend::Buffer* Mesh::getVertexBuffer() const
{
return _meshIndexData->getVertexBuffer();
}
bool Mesh::hasVertexAttrib(shaderinfos::VertexKey attrib) const
{
return _meshIndexData->getMeshVertexData()->hasVertexAttrib(attrib);
}
ssize_t Mesh::getMeshVertexAttribCount() const
{
return _meshIndexData->getMeshVertexData()->getMeshVertexAttribCount();
}
const MeshVertexAttrib& Mesh::getMeshVertexAttribute(int idx)
{
return _meshIndexData->getMeshVertexData()->getMeshVertexAttrib(idx);
}
int Mesh::getVertexSizeInBytes() const
{
return static_cast<int>(_meshIndexData->getMeshVertexData()->getSizePerVertex());
}
Mesh* Mesh::create(const std::vector<float>& positions,
const std::vector<float>& normals,
const std::vector<float>& texs,
const IndexArray& indices)
{
int perVertexSizeInFloat = 0;
std::vector<float> vertices;
std::vector<MeshVertexAttrib> attribs;
MeshVertexAttrib att;
att.type = backend::VertexFormat::FLOAT3;
attribs.reserve(3);
size_t hasNormal = 0;
size_t hasTexCoord = 0;
if (!positions.empty())
{
perVertexSizeInFloat += 3;
att.vertexAttrib = shaderinfos::VertexKey::VERTEX_ATTRIB_POSITION;
attribs.emplace_back(att);
}
if (!normals.empty())
{
perVertexSizeInFloat += 3;
att.vertexAttrib = shaderinfos::VertexKey::VERTEX_ATTRIB_NORMAL;
attribs.emplace_back(att);
hasNormal = 1;
}
if (!texs.empty())
{
perVertexSizeInFloat += 2;
att.type = backend::VertexFormat::FLOAT2;
att.vertexAttrib = shaderinfos::VertexKey::VERTEX_ATTRIB_TEX_COORD;
attribs.emplace_back(att);
hasTexCoord = 1;
}
// position, normal, texCoordinate into _vertexs
size_t vertexNum = positions.size() / 3;
vertices.reserve(positions.size() + hasNormal * 3 + hasTexCoord * 2);
for (size_t i = 0; i < vertexNum; i++)
{
vertices.emplace_back(positions[i * 3]);
vertices.emplace_back(positions[i * 3 + 1]);
vertices.emplace_back(positions[i * 3 + 2]);
if (hasNormal)
{
vertices.emplace_back(normals[i * 3]);
vertices.emplace_back(normals[i * 3 + 1]);
vertices.emplace_back(normals[i * 3 + 2]);
}
if (hasTexCoord)
{
vertices.emplace_back(texs[i * 2]);
vertices.emplace_back(texs[i * 2 + 1]);
}
}
return create(vertices, perVertexSizeInFloat, indices, attribs);
}
Mesh* Mesh::create(const std::vector<float>& vertices,
int /*perVertexSizeInFloat*/,
const IndexArray& indices,
const std::vector<MeshVertexAttrib>& attribs)
{
MeshData meshdata;
meshdata.attribs = attribs;
meshdata.vertex = vertices;
meshdata.subMeshIndices.emplace_back(indices);
meshdata.subMeshIds.emplace_back("");
auto meshvertexdata = MeshVertexData::create(meshdata, indices.format());
auto indexData = meshvertexdata->getMeshIndexDataByIndex(0);
auto mesh = create("", indexData);
mesh->setIndexFormat(indices.format());
return mesh;
}
Mesh* Mesh::create(std::string_view name, MeshIndexData* indexData, MeshSkin* skin)
{
auto state = new Mesh();
state->autorelease();
state->bindMeshCommand();
state->_name = name;
state->setMeshIndexData(indexData);
state->setSkin(skin);
return state;
}
void Mesh::setVisible(bool visible)
{
if (_visible != visible)
{
_visible = visible;
if (_visibleChanged)
_visibleChanged();
}
}
bool Mesh::isVisible() const
{
return _visible;
}
void Mesh::setTexture(std::string_view texPath)
{
_texFile = texPath;
auto tex = Director::getInstance()->getTextureCache()->addImage(texPath);
setTexture(tex, NTextureData::Usage::Diffuse);
}
void Mesh::setTexture(Texture2D* tex)
{
setTexture(tex, NTextureData::Usage::Diffuse);
}
void Mesh::setTexture(Texture2D* tex, NTextureData::Usage usage, bool cacheFileName)
{
// Texture must be saved for future use
// it doesn't matter if the material is already set or not
// This functionality is added for compatibility issues
if (tex == nullptr)
tex = Director::getInstance()->getTextureCache()->getDummyTexture();
AX_SAFE_RETAIN(tex);
AX_SAFE_RELEASE(_textures[usage]);
_textures[usage] = tex;
if (usage == NTextureData::Usage::Diffuse)
{
if (_material)
{
auto technique = _material->_currentTechnique;
for (auto&& pass : technique->_passes)
{
pass->setUniformTexture(0, tex->getBackendTexture());
}
}
bindMeshCommand();
if (cacheFileName)
_texFile = tex->getPath();
}
else if (usage == NTextureData::Usage::Normal) // currently only diffuse and normal are supported
{
if (_material)
{
auto technique = _material->_currentTechnique;
for (auto&& pass : technique->_passes)
{
pass->setUniformNormTexture(1, tex->getBackendTexture());
}
}
}
}
void Mesh::setTexture(std::string_view texPath, NTextureData::Usage usage)
{
auto tex = Director::getInstance()->getTextureCache()->addImage(texPath);
setTexture(tex, usage);
}
Texture2D* Mesh::getTexture() const
{
return _textures.at(NTextureData::Usage::Diffuse);
}
Texture2D* Mesh::getTexture(NTextureData::Usage usage)
{
return _textures[usage];
}
void Mesh::setMaterial(Material* material)
{
if (_material != material)
{
AX_SAFE_RELEASE(_material);
_material = material;
AX_SAFE_RETAIN(_material);
}
_meshCommands.clear();
if (_material)
{
for (auto&& technique : _material->getTechniques())
{
// allocate MeshCommand vector for technique
// allocate MeshCommand for each pass
auto& list = _meshCommands[technique->getName()];
list.resize(technique->getPasses().size());
int i = 0;
for (auto&& pass : technique->getPasses())
{
#ifdef _AX_DEBUG
// make it crashed when missing attribute data
if (_material->getTechnique()->getName().compare(technique->getName()) == 0)
{
auto program = pass->getProgramState()->getProgram();
auto& attributes = program->getActiveAttributes();
auto meshVertexData = _meshIndexData->getMeshVertexData();
auto attributeCount = meshVertexData->getMeshVertexAttribCount();
//AXASSERT(attributes.size() <= attributeCount, "missing attribute data");
}
#endif
// TODO
auto vertexAttribBinding = VertexAttribBinding::create(_meshIndexData, pass, &list[i]);
pass->setVertexAttribBinding(vertexAttribBinding);
i += 1;
}
}
_meshIndexData->setPrimitiveType(material->getPrimitiveType());
}
// Was the texture set before the GLProgramState ? Set it
for (auto&& tex : _textures)
setTexture(tex.second, tex.first);
if (_blendDirty)
setBlendFunc(_blend);
bindMeshCommand();
}
Material* Mesh::getMaterial() const
{
return _material;
}
void Mesh::draw(Renderer* renderer,
float globalZOrder,
const Mat4& transform,
uint32_t flags,
unsigned int lightMask,
const Vec4& color,
bool forceDepthWrite,
bool wireframe)
{
if (!isVisible())
return;
bool isTransparent = (_material->isTransparent() || color.w < 1.f);
float globalZ = isTransparent ? 0 : globalZOrder;
if (isTransparent)
flags |= Node::FLAGS_RENDER_AS_3D;
if (_instancing && _instanceCount > 0)
{
if (!_instanceTransformBuffer || _instanceTransformBufferDirty)
{
AX_SAFE_RELEASE(_instanceTransformBuffer);
AX_SAFE_DELETE_ARRAY(_instanceMatrixCache);
_instanceTransformBuffer = backend::DriverBase::getInstance()->newBuffer(
_instanceCount * 64, backend::BufferType::VERTEX, backend::BufferUsage::DYNAMIC);
_instanceMatrixCache = new float[_instanceCount * 16];
for (int i = 0; i < _instanceCount; i++)
{
_instanceMatrixCache[i * 16 + 0] = 1.0f;
_instanceMatrixCache[i * 16 + 1] = 0.0f;
_instanceMatrixCache[i * 16 + 2] = 0.0f;
_instanceMatrixCache[i * 16 + 3] = 0.0f;
_instanceMatrixCache[i * 16 + 4] = 0.0f;
_instanceMatrixCache[i * 16 + 5] = 1.0f;
_instanceMatrixCache[i * 16 + 6] = 0.0f;
_instanceMatrixCache[i * 16 + 7] = 0.0f;
_instanceMatrixCache[i * 16 + 8] = 0.0f;
_instanceMatrixCache[i * 16 + 9] = 0.0f;
_instanceMatrixCache[i * 16 + 10] = 1.0f;
_instanceMatrixCache[i * 16 + 11] = 0.0f;
_instanceMatrixCache[i * 16 + 12] = 0.0f;
_instanceMatrixCache[i * 16 + 13] = 0.0f;
_instanceMatrixCache[i * 16 + 14] = 0.0f;
_instanceMatrixCache[i * 16 + 15] = 1.0f;
}
// Fill the buffer with identity matrix.
_instanceTransformBuffer->updateData(_instanceMatrixCache, _instanceCount * 64);
_instanceTransformBufferDirty = false;
}
if (_instanceTransformDirty || _dynamicInstancing)
{
_instanceTransformDirty = false;
int memOffset = 0;
for (auto& _ : _instances)
{
auto& mat = _->getNodeToParentTransform();
std::copy(mat.m, mat.m + 16, _instanceMatrixCache + 16 * memOffset++);
}
_instanceTransformBuffer->updateSubData(_instanceMatrixCache, 0, _instanceCount * 64);
}
}
// TODO
// _meshCommand.init(globalZ,
// _material,
// getVertexBuffer(),
// getIndexBuffer(),
// getPrimitiveType(),
// getIndexFormat(),
// getIndexCount(),
// transform,
// flags);
if (isTransparent && !forceDepthWrite)
_material->getStateBlock().setDepthWrite(false);
else
_material->getStateBlock().setDepthWrite(true);
// set default uniforms for Mesh
// 'u_color' and others
const auto scene = Director::getInstance()->getRunningScene();
auto technique = _material->_currentTechnique;
for (const auto pass : technique->_passes)
{
pass->setUniformColor(&color, sizeof(color));
if (_skin)
pass->setUniformMatrixPalette(_skin->getMatrixPalette(), _skin->getMatrixPaletteSizeInBytes());
if (scene && !scene->getLights().empty())
{
setLightUniforms(pass, scene, color, lightMask);
}
}
auto& commands = _meshCommands[technique->getName()];
for (auto&& command : commands)
{
command.init(globalZ, transform);
command.setSkipBatching(isTransparent);
command.setTransparent(isTransparent);
command.set3D(!_material->isForce2DQueue());
command.setWireframe(wireframe);
if (_instancing && _instances.size() > 0)
{
command.setDrawType(CustomCommand::DrawType::ELEMENT_INSTANCE);
command.setInstanceBuffer(_instanceTransformBuffer, _instances.size());
}
else if (_instancing)
return;
}
_meshIndexData->setPrimitiveType(_material->_drawPrimitive);
_material->draw(commands.data(), globalZ, getVertexBuffer(), getIndexBuffer(), getPrimitiveType(), getIndexFormat(),
static_cast<unsigned int>(getIndexCount()), transform);
}
void Mesh::setSkin(MeshSkin* skin)
{
if (_skin != skin)
{
AX_SAFE_RETAIN(skin);
AX_SAFE_RELEASE(_skin);
_skin = skin;
calculateAABB();
}
}
void Mesh::setMeshIndexData(MeshIndexData* subMesh)
{
if (_meshIndexData != subMesh)
{
AX_SAFE_RETAIN(subMesh);
AX_SAFE_RELEASE(_meshIndexData);
_meshIndexData = subMesh;
calculateAABB();
bindMeshCommand();
}
}
void Mesh::setProgramState(backend::ProgramState* programState)
{
auto material = Material::createWithProgramState(programState);
if (_material)
{
material->setStateBlock(_material->getStateBlock());
}
setMaterial(material);
}
backend::ProgramState* Mesh::getProgramState() const
{
return _material ? _material->_currentTechnique->_passes.at(0)->getProgramState() : nullptr;
}
void Mesh::calculateAABB()
{
if (_meshIndexData)
{
_aabb = _meshIndexData->getAABB();
if (_skin)
{
// get skin root
Bone3D* root = nullptr;
Mat4 invBindPose;
if (_skin->_skinBones.size())
{
root = _skin->_skinBones.at(0);
while (root)
{
auto parent = root->getParentBone();
bool parentInSkinBone = false;
for (const auto& bone : _skin->_skinBones)
{
if (bone == parent)
{
parentInSkinBone = true;
break;
}
}
if (!parentInSkinBone)
break;
root = parent;
}
}
if (root)
{
_aabb.transform(root->getWorldMat() * _skin->getInvBindPose(root));
}
}
}
}
void Mesh::bindMeshCommand()
{
if (_material && _meshIndexData)
{
auto& stateBlock = _material->getStateBlock();
stateBlock.setCullFace(true);
stateBlock.setDepthTest(true);
if (_blend.src != backend::BlendFactor::ONE && _blend.dst != backend::BlendFactor::ONE)
stateBlock.setBlend(true);
}
}
void Mesh::setLightUniforms(Pass* pass, Scene* scene, const Vec4& color, unsigned int lightmask)
{
AXASSERT(pass, "Invalid Pass");
AXASSERT(scene, "Invalid scene");
const auto& conf = Configuration::getInstance();
constexpr int maxDirLight = AX_MAX_DIRECTIONAL_LIGHT;
constexpr int maxPointLight = AX_MAX_POINT_LIGHT;
constexpr int maxSpotLight = AX_MAX_SPOT_LIGHT;
auto& lights = scene->getLights();
auto bindings = pass->getVertexAttributeBinding();
if (bindings && bindings->hasAttribute(shaderinfos::VertexKey::VERTEX_ATTRIB_NORMAL))
{
resetLightUniformValues();
int enabledDirLightNum = 0;
int enabledPointLightNum = 0;
int enabledSpotLightNum = 0;
Vec3 ambientColor;
for (const auto& light : lights)
{
bool useLight = light->isEnabled() && ((unsigned int)light->getLightFlag() & lightmask);
if (useLight)
{
float intensity = light->getIntensity();
switch (light->getLightType())
{
case LightType::DIRECTIONAL:
{
if (enabledDirLightNum < maxDirLight)
{
auto dirLight = static_cast<DirectionLight*>(light);
Vec3 dir = dirLight->getDirectionInWorld();
dir.normalize();
const Color3B& col = dirLight->getDisplayedColor();
_dirLightUniformColorValues[enabledDirLightNum].set(
col.r / 255.0f * intensity, col.g / 255.0f * intensity, col.b / 255.0f * intensity);
_dirLightUniformDirValues[enabledDirLightNum] = dir;
++enabledDirLightNum;
}
}
break;
case LightType::POINT:
{
if (enabledPointLightNum < maxPointLight)
{
auto pointLight = static_cast<PointLight*>(light);
Mat4 mat = pointLight->getNodeToWorldTransform();
const Color3B& col = pointLight->getDisplayedColor();
_pointLightUniformColorValues[enabledPointLightNum].set(
col.r / 255.0f * intensity, col.g / 255.0f * intensity, col.b / 255.0f * intensity);
_pointLightUniformPositionValues[enabledPointLightNum].set(mat.m[12], mat.m[13], mat.m[14]);
_pointLightUniformRangeInverseValues[enabledPointLightNum] = 1.0f / pointLight->getRange();
++enabledPointLightNum;
}
}
break;
case LightType::SPOT:
{
if (enabledSpotLightNum < maxSpotLight)
{
auto spotLight = static_cast<SpotLight*>(light);
Vec3 dir = spotLight->getDirectionInWorld();
dir.normalize();
Mat4 mat = light->getNodeToWorldTransform();
const Color3B& col = spotLight->getDisplayedColor();
_spotLightUniformColorValues[enabledSpotLightNum].set(
col.r / 255.0f * intensity, col.g / 255.0f * intensity, col.b / 255.0f * intensity);
_spotLightUniformPositionValues[enabledSpotLightNum].set(mat.m[12], mat.m[13], mat.m[14]);
_spotLightUniformDirValues[enabledSpotLightNum] = dir;
_spotLightUniformInnerAngleCosValues[enabledSpotLightNum] = spotLight->getCosInnerAngle();
_spotLightUniformOuterAngleCosValues[enabledSpotLightNum] = spotLight->getCosOuterAngle();
_spotLightUniformRangeInverseValues[enabledSpotLightNum] = 1.0f / spotLight->getRange();
++enabledSpotLightNum;
}
}
break;
case LightType::AMBIENT:
{
auto ambLight = static_cast<AmbientLight*>(light);
const Color3B& col = ambLight->getDisplayedColor();
ambientColor.add(col.r / 255.0f * intensity, col.g / 255.0f * intensity,
col.b / 255.0f * intensity);
}
break;
default:
break;
}
}
}
if (0 < maxDirLight)
{
pass->setUniformDirLightColor(&_dirLightUniformColorValues[0],
_dirLightUniformColorValues.size() * sizeof(_dirLightUniformColorValues[0]));
pass->setUniformDirLightDir(&_dirLightUniformDirValues[0],
_dirLightUniformDirValues.size() * sizeof(_dirLightUniformDirValues[0]));
}
if (0 < maxPointLight)
{
pass->setUniformPointLightColor(
&_pointLightUniformColorValues[0],
_pointLightUniformColorValues.size() * sizeof(_pointLightUniformColorValues[0]));
pass->setUniformPointLightPosition(
&_pointLightUniformPositionValues[0],
_pointLightUniformPositionValues.size() * sizeof(_pointLightUniformPositionValues[0]));
pass->setUniformPointLightRangeInverse(
&_pointLightUniformRangeInverseValues[0],
_pointLightUniformRangeInverseValues.size() * sizeof(_pointLightUniformRangeInverseValues[0]));
}
if (0 < maxSpotLight)
{
pass->setUniformSpotLightColor(
&_spotLightUniformColorValues[0],
_spotLightUniformColorValues.size() * sizeof(_spotLightUniformColorValues[0]));
pass->setUniformSpotLightPosition(
&_spotLightUniformPositionValues[0],
_spotLightUniformPositionValues.size() * sizeof(_spotLightUniformPositionValues[0]));
pass->setUniformSpotLightDir(&_spotLightUniformDirValues[0],
_spotLightUniformDirValues.size() * sizeof(_spotLightUniformDirValues[0]));
pass->setUniformSpotLightInnerAngleCos(
&_spotLightUniformInnerAngleCosValues[0],
_spotLightUniformInnerAngleCosValues.size() * sizeof(_spotLightUniformInnerAngleCosValues[0]));
pass->setUniformSpotLightOuterAngleCos(
&_spotLightUniformOuterAngleCosValues[0],
_spotLightUniformOuterAngleCosValues.size() * sizeof(_spotLightUniformOuterAngleCosValues[0]));
pass->setUniformSpotLightRangeInverse(
&_spotLightUniformRangeInverseValues[0],
_spotLightUniformRangeInverseValues.size() * sizeof(_spotLightUniformRangeInverseValues[0]));
}
auto ambientLightColor = Vec3(ambientColor.x, ambientColor.y, ambientColor.z);
pass->setUniformAmbientLigthColor(&ambientLightColor, sizeof(ambientLightColor));
}
else // normal does not exist
{
Vec3 ambient(0.0f, 0.0f, 0.0f);
bool hasAmbient = false;
for (const auto& light : lights)
{
if (light->getLightType() == LightType::AMBIENT)
{
bool useLight = light->isEnabled() && ((unsigned int)light->getLightFlag() & lightmask);
if (useLight)
{
hasAmbient = true;
const Color3B& col = light->getDisplayedColor();
ambient.x += col.r * light->getIntensity();
ambient.y += col.g * light->getIntensity();
ambient.z += col.b * light->getIntensity();
}
}
}
if (hasAmbient)
{
ambient.x /= 255.f;
ambient.y /= 255.f;
ambient.z /= 255.f;
// override the uniform value of u_color using the calculated color
auto fcolor = Vec4(color.x * ambient.x, color.y * ambient.y, color.z * ambient.z, color.w);
pass->setUniformColor(&fcolor, sizeof(fcolor));
}
}
}
void Mesh::setBlendFunc(const BlendFunc& blendFunc)
{
// Blend must be saved for future use
// it doesn't matter if the material is already set or not
// This functionality is added for compatibility issues
if (_blend != blendFunc)
{
_blendDirty = true;
_blend = blendFunc;
}
if (_material)
{
// TODO set blend to Pass
_material->getStateBlock().setBlendFunc(blendFunc);
bindMeshCommand();
}
}
const BlendFunc& Mesh::getBlendFunc() const
{
// return _material->_currentTechnique->_passes.at(0)->getBlendFunc();
return _blend;
}
CustomCommand::PrimitiveType Mesh::getPrimitiveType() const
{
return _meshIndexData->getPrimitiveType();
}
ssize_t Mesh::getIndexCount() const
{
return _meshIndexData->getIndexBuffer()->getSize() / IndexArray::formatToStride(meshIndexFormat);
}
CustomCommand::IndexFormat Mesh::getIndexFormat() const
{
return meshIndexFormat;
}
void Mesh::setIndexFormat(CustomCommand::IndexFormat indexFormat)
{
meshIndexFormat = indexFormat;
}
backend::Buffer* Mesh::getIndexBuffer() const
{
return _meshIndexData->getIndexBuffer();
}
}