mirror of https://github.com/axmolengine/axmol.git
167 lines
8.7 KiB
Markdown
167 lines
8.7 KiB
Markdown
# Development setup
|
|
|
|
## Common Requirement [Python](https://www.python.org/downloads/)
|
|
|
|
- PowerShell-5.0+
|
|
- Please install from:
|
|
- https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.3
|
|
- https://github.com/PowerShell/PowerShell/releases
|
|
- win7+, no needs install, the system preinstalled PowerShell 5.0 should works
|
|
- macos,linux or you want install latest powershell for windows, visit: https://github.com/PowerShell/PowerShell/releases
|
|
|
|
- Python-3.7+
|
|
|
|
## Prerequisites
|
|
|
|
1. Enter `axmol` root directory
|
|
2. Run `pwsh setup.ps1`, restart the console after it has finished for environment variables to take effect
|
|
|
|
## Creating A New Project
|
|
|
|
Using a powershell console window, an example of a command to generate a new project is as follows:
|
|
|
|
```axmol new -p YOUR.UNIQUE.ID -d PROJECT_PATH -l [cpp|lua] [--portrait] PROJECT_NAME```
|
|
|
|
Type `axmol new --help` at the command line for more options you can pass to `axmol new`
|
|
|
|
Examples:
|
|
|
|
- Cpp: `axmol new -p org.axmol.hellocpp -d D:\dev\projects\ -l cpp --portrait HelloCpp`
|
|
- Lua: `axmol new -p org.axmol.hellolua -d D:\dev\projects\ -l lua --portrait HelloLua`
|
|
|
|
## Quick build your new project by `build.ps1` for all target platforms [`Recommended`]
|
|
|
|
If you use latest commits after 6/29/2023 18:50, once you crate a new project, there is a build script `build.ps1` in your project root directory,
|
|
then you can simply build your project for all platform targets, i.e.
|
|
|
|
- win32: `pwsh .\build.ps1 -p win32 -a x64 -xc '--config','Debug'` can runs on Windows with vs2022 installed
|
|
- winuwp: `pwsh .\build.ps1 -p winuwp -a x64 -xc '--config','Debug'` can runs on Windows with vs2022 installed
|
|
- linux: run the setup script `install-deps-linux.sh` once, then `pwsh .\build.ps1 -p linux -a x64 -xc '--config','Debug'` can runs on Linux with g++ installed
|
|
- osx: `pwsh .\build.ps1 -p osx -a x64 -xc '--config','Debug'` can runs on macOS with xcode13~14.2 installed
|
|
- android: `pwsh .\build.ps1 -p android -a arm64` can runs on Windows,Linux,macOS and script will auto setup android sdk
|
|
- ios: `pwsh .\build.ps1 -p ios -a x64 -xc '--config','Debug'` can runs on macOS with xcode13~14.2 installed
|
|
- tvos: `pwsh .\build.ps1 -p tvos -a x64 -xc '--config','Debug'` can runs on macOS with xcode13~14.2 installed
|
|
|
|
## Quick build engine for host targets?
|
|
|
|
Goto axmol root directory, double click or run `build.ps1` without any parameters, it will build `HelloCpp` by default
|
|
|
|
## Windows (Visual Studio)
|
|
|
|
1. Install [CMake](https://cmake.org/) 3.22.1+
|
|
2. Install Visual Studio 2022 (VS2019 should be support, but VS2022 is recommended)
|
|
3. Create a new project as shown [here](#creating-a-new-project)
|
|
4. In a console window, navigate into the root directory of the project you created in the previous step
|
|
5. Generate the relevant Visual Studio project using the cmake command:
|
|
|
|
```cmake -S SOURCE_DIR -B BUILD_DIR -G VISUAL_STUDIO_VERSION_STRING -A [Win32|x64]```
|
|
|
|
For example, say `SOURCE_DIR` is the current path `"."`, and `BUILD_DIR` (out-of-source build directory) is named `"build"`:
|
|
|
|
a) C++ 20:
|
|
- for 32 bit Visual Studio 2019:
|
|
```cmake -S . -B build -G "Visual Studio 16 2019" -A Win32```
|
|
- for 64 bit Visual Studio 2019:
|
|
```cmake -S . -B build -G "Visual Studio 16 2019" -A x64```
|
|
- for 32 bit Visual Studio 2022:
|
|
```cmake -S . -B build -G "Visual Studio 17 2022" -A Win32```
|
|
- for 64 bit Visual Studio 2022:
|
|
```cmake -S . -B build -G "Visual Studio 17 2022" -A x64```
|
|
|
|
b) C++17
|
|
- add `-DCMAKE_CXX_STANDARD=17` for C++17 on your command line like:
|
|
cmake -S . -B build `-DCMAKE_CXX_STANDARD=17` -G "Visual Studio 17 2022" -A x64
|
|
|
|
|
|
6. Use Visual Studio to open the newly created solution file. For example, `./build/ProjectName.sln`
|
|
|
|
### Windows UWP (Visual Studio 2022), because microsoft limit, only support C++17
|
|
```cmake -B build_uwp -DCMAKE_SYSTEM_NAME=WindowsStore "-DCMAKE_SYSTEM_VERSION=10.0" "-DAX_VS_DEPLOYMENT_TARGET=10.0.17763.0"```
|
|
|
|
#### Creating the Visual Studio solution for all axmol test projects (Win/UWP)
|
|
|
|
- Perform steps 1.-6. or the Windows UWP step above (if not done)
|
|
7. Open the solution (".\build\axmol.sln" or ".\build_uwp\axmol.sln") in Visual Studio and build any of the test projects via the IDE.
|
|
|
|
### Improve 'Visual Studio' workflow, support linking with engine prebuilt libs
|
|
|
|
See [windows workflow guide](https://github.com/axmolengine/axmol/issues/564)
|
|
|
|
## Android (Android Studio)
|
|
|
|
1. Install Android Studio 2021.1.1+
|
|
2. When starting Android Studio for the first time, it will guide you to install the SDK and other tools, so ensure that you do install them.
|
|
3. Start Android and choose [Open an existing Android Studio Project] and select your project. For example, the existing cpp-test project located in ```axmol\tests\cpp-tests\proj.android```
|
|
4. Start Android Studio and Open [Tools][SDKManager], then switch to ```SDK Tools```, check the ```Show Package Details```, choose the following tools and click the button ```Apply``` to install them:
|
|
- Android SDK Platform 33
|
|
- Android Gradle Plugin (AGP) 7.4.2
|
|
- Android SDK Build-Tools 30.0.3 match with AGP, refer to: <https://developer.android.com/studio/releases/gradle-plugin>
|
|
- Gradle 8.1
|
|
- NDK r23c+
|
|
- CMake 3.22.1+
|
|
5. Wait for ```Gradle sync``` finish.
|
|
6. Note: If you use non-sdk provided CMake edition, you will need to download ```ninja``` from <https://github.com/ninja-build/ninja/releases>, and copy ```ninja.exe``` to cmake's bin directory
|
|
|
|
## Android Studio (without Android Studio)
|
|
|
|
1. Download command-tools from <https://developer.android.com/studio#command-tools>, for example: https://dl.google.com/android/repository/commandlinetools-win-9477386_latest.zip
|
|
2. Install Android devtools (for example in windows)
|
|
|
|
```bat
|
|
# unzip command-tools at D:\dev\adt\
|
|
# Install android devtools
|
|
cd D:\dev\adt\
|
|
mkdir sdk
|
|
.\cmdline-tools\bin\sdkmanager.bat --verbose --sdk_root=D:\dev\adt\sdk "platform-tools" "cmdline-tools;latest" "platforms;android-33" "build-tools;30.0.3" "cmake;3.22.1" "ndk;23.2.8568313"
|
|
set ANDROID_HOME=D:\dev\adt\sdk
|
|
|
|
# Goto xxx\proj.android
|
|
.\gradlew.bat assembleRelease -PPROP_BUILD_TYPE=cmake -PPROP_APP_ABI=arm64-v8a --parallel --info
|
|
```
|
|
|
|
## iOS, tvOS and macOS
|
|
|
|
1. Ensure xcode12+ & [cmake3.21+](https://github.com/Kitware/CMake/releases) are installed, install cmake command line support: ```sudo "/Applications/CMake.app/Contents/bin/cmake-gui" --install```
|
|
2. Create a new project as shown [here](#creating-a-new-project)
|
|
3. In a console window, navigate into the root directory of the project you created in the previous step
|
|
4. Execute the following command
|
|
```sudo xcode-select -switch /Applications/Xcode.app/Contents/Developer```
|
|
5. Generate the relevant xcode project using one of the following commands:
|
|
- for ios arm64:
|
|
```cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$AX_ROOT/cmake/ios.toolchain.cmake -DPLATFORM=OS64```
|
|
- for ios armv7,arm64 combined:
|
|
```cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$AX_ROOT/cmake/ios.toolchain.cmake -DPLATFORM=OS```
|
|
- for ios simulator x86_64:
|
|
```cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$AX_ROOT/cmake/ios.toolchain.cmake -DPLATFORM=SIMULATOR64```
|
|
- for tvos arm64:
|
|
```cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$AX_ROOT/cmake/ios.toolchain.cmake -DPLATFORM=TVOS```
|
|
- for tvos simulator x86_64:
|
|
```cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$AX_ROOT/cmake/ios.toolchain.cmake -DPLATFORM=SIMULATOR_TVOS```
|
|
- for macos x86_64(Intel)
|
|
```cmake -S . -B build -GXcode -DCMAKE_OSX_ARCHITECTURES=x86_64```
|
|
- for macos arm64(M1)
|
|
```cmake -S . -B build -GXcode -DCMAKE_OSX_ARCHITECTURES=arm64```
|
|
|
|
6. After cmake finishes generating, you can open the xcode project at ```build``` folder and run cpp-tests or other test targets.
|
|
7. Notes
|
|
- **The code signing is required to run the ios/tvos app on your device, just change the bundle identifier until the auto manage signing is solved**
|
|
- **axmol only provides aarm64, x86_64 prebuilt libraries for ios/tvos**
|
|
|
|
## Linux (VSCode)
|
|
|
|
1. run `echo -e "y" | $AX_ROOT/install-deps-linux.sh`
|
|
2. Open axmol source folder with vscode
|
|
3. Install C++, CMake extensions for vscode
|
|
4. vscode will auto prompt you to choose toolset for building, just select gcc match with your system installed default gcc
|
|
```sh
|
|
# check gcc version
|
|
gcc -v
|
|
```
|
|
i.e. `gcc version 11.3.0 (Ubuntu 11.3.0-1ubuntu1~22.04)`
|
|
5. vscode will run cmake config automatically, after done, click `build` in taskbar, you can also choose specific target
|
|
to build and run
|
|
|
|
|
|
Notes: if you needs debug by vscode, remember ensure choose `CMake: [Debug]` in vscode taskbar
|
|
|