axmol/tests/cpp-tests/Classes/UnitTest/UnitTest.cpp

1161 lines
38 KiB
C++

#include "UnitTest.h"
#include "RefPtrTest.h"
#include "ui/UIHelper.h"
USING_NS_CC;
#if (CC_TARGET_PLATFORM == CC_PLATFORM_IOS)
#if defined (__arm64__)
#define USE_NEON64
#define INCLUDE_NEON64
#elif defined (__ARM_NEON__)
#define USE_NEON32
#define INCLUDE_NEON32
#else
#endif
#elif (CC_TARGET_PLATFORM == CC_PLATFORM_ANDROID)
#if defined (__arm64__) || defined (__aarch64__)
#define USE_NEON64
#define INCLUDE_NEON64
#elif defined (__ARM_NEON__)
#define INCLUDE_NEON32
#else
#endif
#else
#endif
#if defined (__SSE__)
#define USE_SSE
#define INCLUDE_SSE
#endif
#if (defined INCLUDE_NEON64) || (defined INCLUDE_NEON32) // FIXME: || (defined INCLUDE_SSE)
#define UNIT_TEST_FOR_OPTIMIZED_MATH_UTIL
#endif
// For ' < o > ' multiply test scene.
UnitTests::UnitTests()
{
ADD_TEST_CASE(TemplateVectorTest);
ADD_TEST_CASE(TemplateMapTest);
ADD_TEST_CASE(ValueTest);
ADD_TEST_CASE(RefPtrTest);
ADD_TEST_CASE(UTFConversionTest);
ADD_TEST_CASE(UIHelperSubStringTest);
#ifdef UNIT_TEST_FOR_OPTIMIZED_MATH_UTIL
ADD_TEST_CASE(MathUtilTest);
#endif
};
std::string UnitTestDemo::title() const
{
return "UnitTest";
}
//---------------------------------------------------------------
void TemplateVectorTest::onEnter()
{
UnitTestDemo::onEnter();
Vector<Node*> vec;
CCASSERT(vec.empty(), "vec should be empty.");
CCASSERT(vec.capacity() == 0, "vec.capacity should be 0.");
CCASSERT(vec.size() == 0, "vec.size should be 0.");
CCASSERT(vec.max_size() > 0, "vec.max_size should > 0.");
auto node1 = Node::create();
node1->setTag(1);
vec.pushBack(node1);
CCASSERT(node1->getReferenceCount() == 2, "node1->getReferenceCount should be 2.");
auto node2 = Node::create();
node2->setTag(2);
vec.pushBack(node2);
CCASSERT(vec.getIndex(node1) == 0, "node1 should at index 0 in vec.");
CCASSERT(vec.getIndex(node2) == 1, "node2 should at index 1 in vec.");
auto node3 = Node::create();
node3->setTag(3);
vec.insert(1, node3);
CCASSERT(vec.at(0)->getTag() == 1, "The element at 0, tag should be 1.");
CCASSERT(vec.at(1)->getTag() == 3, "The element at 1, tag should be 3.");
CCASSERT(vec.at(2)->getTag() == 2, "The element at 2, tag should be 2.");
// Test copy constructor
Vector<Node*> vec2(vec);
CCASSERT(vec2.size() == vec.size(), "vec2 and vec should have equal size.");
ssize_t size = vec.size();
for (ssize_t i = 0; i < size; ++i)
{
CCASSERT(vec2.at(i) == vec.at(i), "The element at the same index in vec2 and vec2 should be equal.");
CCASSERT(vec.at(i)->getReferenceCount() == 3, "The reference cound of element in vec is 3. ");
CCASSERT(vec2.at(i)->getReferenceCount() == 3, "The reference cound of element in vec2 is 3. ");
}
// Test copy assignment operator
Vector<Node*> vec3;
vec3 = vec2;
CCASSERT(vec3.size() == vec2.size(), "vec3 and vec2 should have equal size.");
size = vec3.size();
for (ssize_t i = 0; i < size; ++i)
{
CCASSERT(vec3.at(i) == vec2.at(i), "The element at the same index in vec3 and vec2 should be equal.");
CCASSERT(vec3.at(i)->getReferenceCount() == 4, "The reference cound of element in vec3 is 4. ");
CCASSERT(vec2.at(i)->getReferenceCount() == 4, "The reference cound of element in vec2 is 4. ");
CCASSERT(vec.at(i)->getReferenceCount() == 4, "The reference cound of element in vec is 4. ");
}
// Test move constructor
auto createVector = [this](){
Vector<Node*> ret;
for (int i = 0; i < 20; i++)
{
ret.pushBack(Node::create());
}
int j = 1000;
for (auto& child : ret)
{
child->setTag(j++);
}
return ret;
};
Vector<Node*> vec4(createVector());
for (const auto& child : vec4)
{
CCASSERT(child->getReferenceCount() == 2, "child's reference count should be 2.");
}
// Test init Vector<T> with capacity
Vector<Node*> vec5(10);
CCASSERT(vec5.capacity() == 10, "vec5's capacity should be 10.");
vec5.reserve(20);
CCASSERT(vec5.capacity() == 20, "vec5's capacity should be 20.");
CCASSERT(vec5.size() == 0, "vec5's size should be 0.");
CCASSERT(vec5.empty(), "vec5 is empty now.");
auto toRemovedNode = Node::create();
vec5.pushBack(toRemovedNode);
CCASSERT(toRemovedNode->getReferenceCount() == 2, "toRemovedNode's reference count is 2.");
// Test move assignment operator
vec5 = createVector();
CCASSERT(toRemovedNode->getReferenceCount() == 1, "toRemovedNode's reference count is 1.");
CCASSERT(vec5.size() == 20, "size should be 20");
for (const auto& child : vec5)
{
CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2.");
}
// Test Vector<T>::find
CCASSERT(vec.find(node3) == (vec.begin() + 1), "node3 is the 2nd element in vec.");
CCASSERT(std::find(std::begin(vec), std::end(vec), node2) == (vec.begin() + 2), "node2 is the 3rd element in vec.");
CCASSERT(vec.front()->getTag() == 1, "vec's front element's tag is 1.");
CCASSERT(vec.back()->getTag() == 2, "vec's back element's tag is 2.");
CCASSERT(vec.getRandomObject(), "vec getRandomObject should return true.");
CCASSERT(!vec.contains(Node::create()), "vec doesn't contain a empty Node instance.");
CCASSERT(vec.contains(node1), "vec contains node1.");
CCASSERT(vec.contains(node2), "vec contains node2.");
CCASSERT(vec.contains(node3), "vec contains node3.");
CCASSERT(vec.equals(vec2), "vec is equal to vec2.");
CCASSERT(vec.equals(vec3), "vec is equal to vec3.");
// Insert
vec5.insert(2, node1);
CCASSERT(vec5.at(2)->getTag() == 1, "vec5's 3rd element's tag is 1.");
CCASSERT(vec5.size() == 21, "vec5's size is 21.");
vec5.back()->setTag(100);
vec5.popBack();
CCASSERT(vec5.size() == 20, "vec5's size is 20.");
CCASSERT(vec5.back()->getTag() != 100, "the back element of vec5's tag is 100.");
// Erase and clear
Vector<Node*> vec6 = createVector();
Vector<Node*> vec7 = vec6; // Copy for check
CCASSERT(vec6.size() == 20, "vec6's size is 20.");
vec6.erase(vec6.begin() + 1); //
CCASSERT(vec6.size() == 19, "vec6's size is 19.");
CCASSERT((*(vec6.begin() + 1))->getTag() == 1002, "The 2rd element in vec6's tag is 1002.");
vec6.erase(vec6.begin() + 2, vec6.begin() + 10);
CCASSERT(vec6.size() == 11, "vec6's size is 11.");
CCASSERT(vec6.at(0)->getTag() == 1000, "vec6's first element's tag is 1000.");
CCASSERT(vec6.at(1)->getTag() == 1002, "vec6's second element's tag is 1002.");
CCASSERT(vec6.at(2)->getTag() == 1011, "vec6's third element's tag is 1011.");
CCASSERT(vec6.at(3)->getTag() == 1012, "vec6's fouth element's tag is 1012.");
vec6.erase(3);
CCASSERT(vec6.at(3)->getTag() == 1013, "vec6's 4th elemetn's tag is 1013.");
vec6.eraseObject(vec6.at(2));
CCASSERT(vec6.at(2)->getTag() == 1013, "vec6's 3rd element's tag is 1013.");
vec6.clear();
auto objA = Node::create(); // retain count is 1
auto objB = Node::create();
auto objC = Node::create();
{
Vector<Node*> array1;
Vector<Node*> array2;
// push back objA 3 times
array1.pushBack(objA); // retain count is 2
array1.pushBack(objA); // retain count is 3
array1.pushBack(objA); // retain count is 4
array2.pushBack(objA); // retain count is 5
array2.pushBack(objB);
array2.pushBack(objC);
for (auto obj : array1) {
array2.eraseObject(obj);
}
CCASSERT(objA->getReferenceCount() == 4, "objA's reference count is 4.");
}
CCASSERT(objA->getReferenceCount() == 1, "objA's reference count is 1.");
{
Vector<Node*> array1;
// push back objA 3 times
array1.pushBack(objA); // retain count is 2
array1.pushBack(objA); // retain count is 3
array1.pushBack(objA); // retain count is 4
CCASSERT(objA->getReferenceCount() == 4, "objA's reference count is 4.");
array1.eraseObject(objA, true); // Remove all occurrences in the Vector.
CCASSERT(objA->getReferenceCount() == 1, "objA's reference count is 1.");
array1.pushBack(objA); // retain count is 2
array1.pushBack(objA); // retain count is 3
array1.pushBack(objA); // retain count is 4
array1.eraseObject(objA, false);
CCASSERT(objA->getReferenceCount() == 3, "objA's reference count is 3."); // Only remove the first occurrence in the Vector.
}
// Check the retain count in vec7
CCASSERT(vec7.size() == 20, "vec7's size is 20.");
for (const auto& child : vec7)
{
CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2.");
}
// Sort
Vector<Node*> vecForSort = createVector();
std::sort(vecForSort.begin(), vecForSort.end(), [](Node* a, Node* b){
return a->getTag() >= b->getTag();
});
for (int i = 0; i < 20; ++i)
{
CCASSERT(vecForSort.at(i)->getTag() - 1000 == (19 - i), "vecForSort's element's tag is invalid.");
}
// Reverse
vecForSort.reverse();
for (int i = 0; i < 20; ++i)
{
CCASSERT(vecForSort.at(i)->getTag() - 1000 == i, "vecForSort's element's tag is invalid.");
}
// Swap
Vector<Node*> vecForSwap = createVector();
vecForSwap.swap(2, 4);
CCASSERT(vecForSwap.at(2)->getTag() == 1004, "vecForSwap's 3nd element's tag is 1004.");
CCASSERT(vecForSwap.at(4)->getTag() == 1002, "vecForSwap's 5rd element's tag is 1002.");
vecForSwap.swap(vecForSwap.at(2), vecForSwap.at(4));
CCASSERT(vecForSwap.at(2)->getTag() == 1002, "vecForSwap's 3rd element's tag is 1002.");
CCASSERT(vecForSwap.at(4)->getTag() == 1004, "vecForSwap's 5rd element's tag is 1004.");
// shrinkToFit
Vector<Node*> vecForShrink = createVector();
vecForShrink.reserve(100);
CCASSERT(vecForShrink.capacity() == 100, "vecForShrink's capacity is 100.");
vecForShrink.pushBack(Node::create());
vecForShrink.shrinkToFit();
CCASSERT(vecForShrink.capacity() == 21, "vecForShrink's capacity is 21.");
// get random object
// Set the seed by time
std::srand((unsigned)time(nullptr));
Vector<Node*> vecForRandom = createVector();
log("<--- begin ---->");
for (int i = 0; i < vecForRandom.size(); ++i)
{
log("Vector: random object tag = %d", vecForRandom.getRandomObject()->getTag());
}
log("<---- end ---->");
// Self assignment
Vector<Node*> vecSelfAssign = createVector();
vecSelfAssign = vecSelfAssign;
CCASSERT(vecSelfAssign.size() == 20, "vecSelfAssign's size is 20.");
for (const auto& child : vecSelfAssign)
{
CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2.");
}
vecSelfAssign = std::move(vecSelfAssign);
CCASSERT(vecSelfAssign.size() == 20, "vecSelfAssign's size is 20.");
for (const auto& child : vecSelfAssign)
{
CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2.");
}
// const at
Vector<Node*> vecConstAt = createVector();
constFunc(vecConstAt);
}
void TemplateVectorTest::constFunc(const Vector<Node*>& vec) const
{
log("vec[8] = %d", vec.at(8)->getTag());
}
std::string TemplateVectorTest::subtitle() const
{
return "Vector<T>, should not crash";
}
//---------------------------------------------------------------
void TemplateMapTest::onEnter()
{
UnitTestDemo::onEnter();
auto createMap = [this](){
Map<std::string, Node*> ret;
for (int i = 0; i < 20; ++i)
{
auto node = Node::create();
node->setTag(1000 + i);
ret.insert(StringUtils::toString(i), node);
}
return ret;
};
// Default constructor
Map<std::string, Node*> map1;
CCASSERT(map1.empty(), "map1 is empty.");
CCASSERT(map1.size() == 0, "map1's size is 0.");
CCASSERT(map1.keys().empty(), "map1's keys are empty.");
CCASSERT(map1.keys(Node::create()).empty(), "map1's keys don't contain a empty Node.");
// Move constructor
Map<std::string, Node*> map2 = createMap();
for (const auto& e : map2)
{
CCASSERT(e.second->getReferenceCount() == 2, "e.second element's reference count is 2.");
}
// Copy constructor
Map<std::string, Node*> map3(map2);
for (const auto& e : map3)
{
CCASSERT(e.second->getReferenceCount() == 3, "e.second's reference count is 3.");
}
// Move assignment operator
Map<std::string, Node*> map4;
auto unusedNode = Node::create();
map4.insert("unused",unusedNode);
map4 = createMap();
CCASSERT(unusedNode->getReferenceCount() == 1, "unusedNode's reference count is 1.");
for (const auto& e : map4)
{
CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference count is 2.");
}
// Copy assignment operator
Map<std::string, Node*> map5;
map5 = map4;
for (const auto& e : map5)
{
CCASSERT(e.second->getReferenceCount() == 3, "e.second's reference count is 3.");
}
// Check size
CCASSERT(map4.size() == map5.size(), "map4's size is equal to map5.size.");
for (const auto& e : map4)
{
CCASSERT(e.second == map5.find(e.first)->second, "e.second can't be found in map5.");
}
// bucket_count, bucket_size(n), bucket
log("--------------");
log("bucket_count = %d", static_cast<int>(map4.bucketCount()));
log("size = %d", static_cast<int>(map4.size()));
for (int i = 0; i < map4.bucketCount(); ++i)
{
log("bucket_size(%d) = %d", i, static_cast<int>(map4.bucketSize(i)));
}
for (const auto& e : map4)
{
log("bucket(\"%s\"), bucket index = %d", e.first.c_str(), static_cast<int>(map4.bucket(e.first)));
}
log("----- all keys---------");
// keys and at
auto keys = map4.keys();
for (const auto& key : keys)
{
log("key = %s", key.c_str());
}
auto node10Key = map4.at("10");
map4.insert("100", node10Key);
map4.insert("101", node10Key);
map4.insert("102", node10Key);
log("------ keys for object --------");
auto keysForObject = map4.keys(node10Key);
for (const auto& key : keysForObject)
{
log("key = %s", key.c_str());
}
log("--------------");
// at in const function
constFunc(map4);
// find
auto nodeToFind = map4.find("10");
CCASSERT(nodeToFind->second->getTag() == 1010, "nodeToFind's tag value is 1010.");
// insert
Map<std::string, Node*> map6;
auto node1 = Node::create();
node1->setTag(101);
auto node2 = Node::create();
node2->setTag(102);
auto node3 = Node::create();
node3->setTag(103);
map6.insert("insert01", node1);
map6.insert("insert02", node2);
map6.insert("insert03", node3);
CCASSERT(node1->getReferenceCount() == 2, "node1's reference count is 2.");
CCASSERT(node2->getReferenceCount() == 2, "node2's reference count is 2.");
CCASSERT(node3->getReferenceCount() == 2, "node3's reference count is 2.");
CCASSERT(map6.at("insert01") == node1, "The element at insert01 is equal to node1.");
CCASSERT(map6.at("insert02") == node2, "The element at insert02 is equal to node2.");
CCASSERT(map6.at("insert03") == node3, "The element at insert03 is equal to node3.");
// erase
Map<std::string, Node*> mapForErase = createMap();
mapForErase.erase(mapForErase.find("9"));
CCASSERT(mapForErase.find("9") == mapForErase.end(), "9 is already removed.");
CCASSERT(mapForErase.size() == 19, "mapForErase's size is 19.");
mapForErase.erase("7");
CCASSERT(mapForErase.find("7") == mapForErase.end(), "7 is already removed.");
CCASSERT(mapForErase.size() == 18, "mapForErase's size is 18.");
std::vector<std::string> itemsToRemove;
itemsToRemove.push_back("2");
itemsToRemove.push_back("3");
itemsToRemove.push_back("4");
mapForErase.erase(itemsToRemove);
CCASSERT(mapForErase.size() == 15, "mapForErase's size is 15.");
// clear
Map<std::string, Node*> mapForClear = createMap();
auto mapForClearCopy = mapForClear;
mapForClear.clear();
for (const auto& e : mapForClearCopy)
{
CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference count is 2.");
}
// get random object
// Set the seed by time
std::srand((unsigned)time(nullptr));
Map<std::string, Node*> mapForRandom = createMap();
log("<--- begin ---->");
for (int i = 0; i < mapForRandom.size(); ++i)
{
log("Map: random object tag = %d", mapForRandom.getRandomObject()->getTag());
}
log("<---- end ---->");
// Self assignment
Map<std::string, Node*> mapForSelfAssign = createMap();
mapForSelfAssign = mapForSelfAssign;
CCASSERT(mapForSelfAssign.size() == 20, "mapForSelfAssign's size is 20.");
for (const auto& e : mapForSelfAssign)
{
CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference count is 2.");
}
mapForSelfAssign = std::move(mapForSelfAssign);
CCASSERT(mapForSelfAssign.size() == 20, "mapForSelfAssign's size is 20.");
for (const auto& e : mapForSelfAssign)
{
CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference's count is 2.");
}
}
void TemplateMapTest::constFunc(const Map<std::string, Node*>& map) const
{
log("[%s]=(tag)%d", "0", map.at("0")->getTag());
log("[%s]=(tag)%d", "1", map.find("1")->second->getTag());
}
std::string TemplateMapTest::subtitle() const
{
return "Map<K, V>, should not crash";
}
//----------------------------------
void ValueTest::onEnter()
{
UnitTestDemo::onEnter();
Value v1;
CCASSERT(v1.getType() == Value::Type::NONE, "v1's value type should be VALUE::Type::NONE.");
CCASSERT(v1.isNull(), "v1 is null.");
Value v2(100);
CCASSERT(v2.getType() == Value::Type::INTEGER, "v2's value type should be VALUE::Type::INTEGER.");
CCASSERT(!v2.isNull(), "v2 is not null.");
Value v3(101.4f);
CCASSERT(v3.getType() == Value::Type::FLOAT, "v3's value type should be VALUE::Type::FLOAT.");
CCASSERT(!v3.isNull(), "v3 is not null.");
Value v4(106.1);
CCASSERT(v4.getType() == Value::Type::DOUBLE, "v4's value type should be VALUE::Type::DOUBLE.");
CCASSERT(!v4.isNull(), "v4 is not null.");
unsigned char byte = 50;
Value v5(byte);
CCASSERT(v5.getType() == Value::Type::BYTE, "v5's value type should be Value::Type::BTYE.");
CCASSERT(!v5.isNull(), "v5 is not null.");
Value v6(true);
CCASSERT(v6.getType() == Value::Type::BOOLEAN, "v6's value type is Value::Type::BOOLEAN.");
CCASSERT(!v6.isNull(), "v6 is not null.");
Value v7("string");
CCASSERT(v7.getType() == Value::Type::STRING, "v7's value type is Value::type::STRING.");
CCASSERT(!v7.isNull(), "v7 is not null.");
Value v8(std::string("string2"));
CCASSERT(v8.getType() == Value::Type::STRING, "v8's value type is Value::Type::STRING.");
CCASSERT(!v8.isNull(), "v8 is not null.");
auto createValueVector = [&](){
ValueVector ret;
ret.push_back(v1);
ret.push_back(v2);
ret.push_back(v3);
return ret;
};
Value v9(createValueVector());
CCASSERT(v9.getType() == Value::Type::VECTOR, "v9's value type is Value::Type::VECTOR.");
CCASSERT(!v9.isNull(), "v9 is not null.");
auto createValueMap = [&](){
ValueMap ret;
ret["aaa"] = v1;
ret["bbb"] = v2;
ret["ccc"] = v3;
return ret;
};
Value v10(createValueMap());
CCASSERT(v10.getType() == Value::Type::MAP, "v10's value type is Value::Type::MAP.");
CCASSERT(!v10.isNull(), "v10 is not null.");
auto createValueMapIntKey = [&](){
ValueMapIntKey ret;
ret[111] = v1;
ret[222] = v2;
ret[333] = v3;
return ret;
};
Value v11(createValueMapIntKey());
CCASSERT(v11.getType() == Value::Type::INT_KEY_MAP, "v11's value type is Value::Type::INT_KEY_MAP.");
CCASSERT(!v11.isNull(), "v11 is not null.");
}
std::string ValueTest::subtitle() const
{
return "Value Test, should not crash";
}
void ValueTest::constFunc(const Value& /*value*/) const
{
}
// UTFConversionTest
// FIXME: made as define to prevent compile warnings in release mode. Better is to be a `const static int`
#define TEST_CODE_NUM 11
static const char16_t __utf16Code[] =
{
0x3042,
0x3044,
0x3046,
0x3048,
0x304A,
0x3042,
0x3044,
0x3046,
0x3048,
0x304A,
0x0041,
0x0000,
};
// to avoid Xcode error, char => unsigned char
// If you use this table, please cast manually as (const char *).
static const unsigned char __utf8Code[] =
{
0xE3,0x81,0x82,
0xE3,0x81,0x84,
0xE3,0x81,0x86,
0xE3,0x81,0x88,
0xE3,0x81,0x8A,
0xE3,0x81,0x82,
0xE3,0x81,0x84,
0xE3,0x81,0x86,
0xE3,0x81,0x88,
0xE3,0x81,0x8A,
0x41,
0x00,
};
static const char16_t WHITE_SPACE_CODE[] =
{
0x0009,
0x000A,
0x000B,
0x000C,
0x000D,
0x0020,
0x0085,
0x00A0,
0x1680,
0x2000,
0x2001,
0x2002,
0x2003,
0x2004,
0x2005,
0x2006,
0x2007,
0x2008,
0x2009,
0x200A,
0x2028,
0x2029,
0x202F,
0x205F,
0x3000
};
static void doUTFConversion()
{
bool isSuccess = false;
std::string originalUTF8 = (const char*)__utf8Code;
std::u16string originalUTF16 = __utf16Code;
//---------------------------
std::string utf8Str;
isSuccess = StringUtils::UTF16ToUTF8(originalUTF16, utf8Str);
if (isSuccess)
{
isSuccess = memcmp(utf8Str.data(), originalUTF8.data(), originalUTF8.length()+1)==0;
}
CCASSERT(isSuccess, "StringUtils::UTF16ToUTF8 failed");
//---------------------------
std::u16string utf16Str;
isSuccess = StringUtils::UTF8ToUTF16(originalUTF8, utf16Str);
if (isSuccess)
{
isSuccess = memcmp(utf16Str.data(), originalUTF16.data(), originalUTF16.length()+1)==0;
}
CCASSERT(isSuccess && (utf16Str.length() == TEST_CODE_NUM), "StringUtils::UTF8ToUTF16 failed");
//---------------------------
auto vec1 = StringUtils::getChar16VectorFromUTF16String(originalUTF16);
CCASSERT(vec1.size() == originalUTF16.length(), "StringUtils::getChar16VectorFromUTF16String failed");
//---------------------------
std::vector<char16_t> vec2( vec1 );
vec2.push_back(0x2009);
vec2.push_back(0x2009);
vec2.push_back(0x2009);
vec2.push_back(0x2009);
std::vector<char16_t> vec3( vec2 );
StringUtils::trimUTF16Vector(vec2);
CCASSERT(vec1.size() == vec2.size(), "StringUtils::trimUTF16Vector failed");
for (size_t i = 0; i < vec2.size(); i++ )
{
CCASSERT(vec1.at(i) == vec2.at(i), "StringUtils::trimUTF16Vector failed");
}
//---------------------------
CCASSERT(StringUtils::getCharacterCountInUTF8String(originalUTF8) == TEST_CODE_NUM, "StringUtils::getCharacterCountInUTF8String failed");
//---------------------------
CCASSERT(StringUtils::getIndexOfLastNotChar16(vec3, 0x2009) == (vec1.size()-1), "StringUtils::getIndexOfLastNotChar16 failed");
//---------------------------
CCASSERT(originalUTF16.length() == TEST_CODE_NUM, "The length of the original utf16 string isn't equal to TEST_CODE_NUM");
//---------------------------
size_t whiteCodeNum = sizeof(WHITE_SPACE_CODE) / sizeof(WHITE_SPACE_CODE[0]);
for( size_t i = 0; i < whiteCodeNum; i++ )
{
CCASSERT(StringUtils::isUnicodeSpace(WHITE_SPACE_CODE[i]), "StringUtils::isUnicodeSpace failed");
}
CCASSERT(!StringUtils::isUnicodeSpace(0xFFFF), "StringUtils::isUnicodeSpace failed");
CCASSERT(!StringUtils::isCJKUnicode(0xFFFF) && StringUtils::isCJKUnicode(0x3100), "StringUtils::isCJKUnicode failed");
}
void UTFConversionTest::onEnter()
{
UnitTestDemo::onEnter();
for (int i = 0; i < 10000; ++i)
{
doUTFConversion();
}
}
std::string UTFConversionTest::subtitle() const
{
return "UTF8 <-> UTF16 Conversion Test, no crash";
}
// UIHelperSubStringTest
void UIHelperSubStringTest::onEnter()
{
UnitTestDemo::onEnter();
using cocos2d::ui::Helper;
{
// Trivial case
std::string source = "abcdefghij";
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 2) == "ab");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 2) == "cd");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 4, 2) == "ef");
}
{
// Empty string
std::string source = "";
// OK
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == "");
// Error: These cases cause "out of range" error
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == "");
}
{
// Ascii
std::string source = "abc";
// OK
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 3, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 3) == "abc");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 4) == "abc");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 2) == "bc");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 3) == "bc");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 1) == "c");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 2) == "c");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 3, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 3, 2) == "");
// Error: These cases cause "out of range" error
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 4, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 4, 1) == "");
}
{
// CJK characters
std::string source = "这里是中文测试例";
// OK
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 7, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 8, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 8, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == "\xe8\xbf\x99");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 4) == "\xe8\xbf\x99\xe9\x87\x8c\xe6\x98\xaf\xe4\xb8\xad");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 8) == "\xe8\xbf\x99\xe9\x87\x8c\xe6\x98\xaf\xe4\xb8\xad\xe6\x96\x87\xe6\xb5\x8b\xe8\xaf\x95\xe4\xbe\x8b");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 100) == "\xe8\xbf\x99\xe9\x87\x8c\xe6\x98\xaf\xe4\xb8\xad\xe6\x96\x87\xe6\xb5\x8b\xe8\xaf\x95\xe4\xbe\x8b");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 5) == "\xe6\x98\xaf\xe4\xb8\xad\xe6\x96\x87\xe6\xb5\x8b\xe8\xaf\x95");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 6, 2) == "\xe8\xaf\x95\xe4\xbe\x8b");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 6, 100) == "\xe8\xaf\x95\xe4\xbe\x8b");
// Error: These cases cause "out of range" error
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 9, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 9, 1) == "");
}
{
// Redundant UTF-8 sequence for Directory traversal attack (1)
std::string source = "\xC0\xAF";
// Error: Can't convert string to correct encoding such as UTF-32
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 2) == "");
}
{
// Redundant UTF-8 sequence for Directory traversal attack (2)
std::string source = "\xE0\x80\xAF";
// Error: Can't convert string to correct encoding such as UTF-32
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 3) == "");
}
{
// Redundant UTF-8 sequence for Directory traversal attack (3)
std::string source = "\xF0\x80\x80\xAF";
// Error: Can't convert string to correct encoding such as UTF-32
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == "");
CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 4) == "");
}
}
std::string UIHelperSubStringTest::subtitle() const
{
return "ui::Helper::getSubStringOfUTF8String Test";
}
// MathUtilTest
namespace UnitTest {
#ifdef INCLUDE_NEON32
#include "math/MathUtilNeon.inl"
#endif
#ifdef INCLUDE_NEON64
#include "math/MathUtilNeon64.inl"
#endif
#ifdef INCLUDE_SSE
//FIXME: #include "math/MathUtilSSE.inl"
#endif
#include "math/MathUtil.inl"
} // namespace UnitTest {
// I know the next line looks ugly, but it's a way to test MathUtil. :)
using namespace UnitTest::cocos2d;
static void __checkMathUtilResult(const char* description, const float* a1, const float* a2, int size)
{
log("-------------checking %s ----------------------------", description);
// Check whether the result of the optimized instruction is the same as which is implemented in C
for (int i = 0; i < size; ++i)
{
bool r = fabs(a1[i] - a2[i]) < 0.00001f;//FLT_EPSILON;
if (r)
{
log("Correct: a1[%d]=%f, a2[%d]=%f", i, a1[i], i, a2[i]);
}
else
{
log("Wrong: a1[%d]=%f, a2[%d]=%f", i, a1[i], i, a2[i]);
}
CCASSERT(r, "The optimized instruction is implemented in a wrong way, please check it!");
}
}
void MathUtilTest::onEnter()
{
UnitTestDemo::onEnter();
const int MAT4_SIZE = 16;
const int VEC4_SIZE = 4;
const float inMat41[MAT4_SIZE] = {
0.234023f, 2.472349f, 1.984244f, 2.23348f,
0.634124f, 0.234975f, 6.384572f, 0.82368f,
0.738028f, 1.845237f, 1.934721f, 1.62343f,
0.339023f, 3.472452f, 1.324714f, 4.23852f,
};
const float inMat42[MAT4_SIZE] = {
1.640232f, 4.472349f, 0.983244f, 1.23343f,
2.834124f, 8.234975f, 0.082572f, 3.82464f,
3.238028f, 2.845237f, 0.331721f, 4.62544f,
4.539023f, 9.472452f, 3.520714f, 2.23252f,
};
const float scalar = 1.323298f;
const float x = 0.432234f;
const float y = 1.333229f;
const float z = 2.535292f;
const float w = 4.632234f;
const float inVec4[VEC4_SIZE] = {2.323478f, 0.238482f, 4.223783f, 7.238238f};
const float inVec42[VEC4_SIZE] = {0.322374f, 8.258883f, 3.293683f, 2.838337f};
float outMat4Opt[MAT4_SIZE] = {0};
float outMat4C[MAT4_SIZE] = {0};
float outVec4Opt[VEC4_SIZE] = {0};
float outVec4C[VEC4_SIZE] = {0};
// inline static void addMatrix(const float* m, float scalar, float* dst);
MathUtilC::addMatrix(inMat41, scalar, outMat4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::addMatrix(inMat41, scalar, outMat4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::addMatrix(inMat41, scalar, outMat4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void addMatrix(const float* m, float scalar, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE);
// Clean
memset(outMat4C, 0, sizeof(outMat4C));
memset(outMat4Opt, 0, sizeof(outMat4Opt));
// inline static void addMatrix(const float* m1, const float* m2, float* dst);
MathUtilC::addMatrix(inMat41, inMat42, outMat4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::addMatrix(inMat41, inMat42, outMat4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::addMatrix(inMat41, inMat42, outMat4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void addMatrix(const float* m1, const float* m2, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE);
// Clean
memset(outMat4C, 0, sizeof(outMat4C));
memset(outMat4Opt, 0, sizeof(outMat4Opt));
// inline static void subtractMatrix(const float* m1, const float* m2, float* dst);
MathUtilC::subtractMatrix(inMat41, inMat42, outMat4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::subtractMatrix(inMat41, inMat42, outMat4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::subtractMatrix(inMat41, inMat42, outMat4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void subtractMatrix(const float* m1, const float* m2, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE);
// Clean
memset(outMat4C, 0, sizeof(outMat4C));
memset(outMat4Opt, 0, sizeof(outMat4Opt));
// inline static void multiplyMatrix(const float* m, float scalar, float* dst);
MathUtilC::multiplyMatrix(inMat41, scalar, outMat4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::multiplyMatrix(inMat41, scalar, outMat4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::multiplyMatrix(inMat41, scalar, outMat4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void multiplyMatrix(const float* m, float scalar, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE);
// Clean
memset(outMat4C, 0, sizeof(outMat4C));
memset(outMat4Opt, 0, sizeof(outMat4Opt));
// inline static void multiplyMatrix(const float* m1, const float* m2, float* dst);
MathUtilC::multiplyMatrix(inMat41, inMat42, outMat4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::multiplyMatrix(inMat41, inMat42, outMat4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::multiplyMatrix(inMat41, inMat42, outMat4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void multiplyMatrix(const float* m1, const float* m2, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE);
// Clean
memset(outMat4C, 0, sizeof(outMat4C));
memset(outMat4Opt, 0, sizeof(outMat4Opt));
// inline static void negateMatrix(const float* m, float* dst);
MathUtilC::negateMatrix(inMat41, outMat4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::negateMatrix(inMat41, outMat4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::negateMatrix(inMat41, outMat4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void negateMatrix(const float* m, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE);
// Clean
memset(outMat4C, 0, sizeof(outMat4C));
memset(outMat4Opt, 0, sizeof(outMat4Opt));
// inline static void transposeMatrix(const float* m, float* dst);
MathUtilC::transposeMatrix(inMat41, outMat4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::transposeMatrix(inMat41, outMat4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::transposeMatrix(inMat41, outMat4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void transposeMatrix(const float* m, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE);
// Clean
memset(outMat4C, 0, sizeof(outMat4C));
memset(outMat4Opt, 0, sizeof(outMat4Opt));
// inline static void transformVec4(const float* m, float x, float y, float z, float w, float* dst);
MathUtilC::transformVec4(inMat41, x, y, z, w, outVec4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::transformVec4(inMat41, x, y, z, w, outVec4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::transformVec4(inMat41, x, y, z, w, outVec4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void transformVec4(const float* m, float x, float y, float z, float w, float* dst);", outVec4C, outVec4Opt, VEC4_SIZE);
// Clean
memset(outVec4C, 0, sizeof(outVec4C));
memset(outVec4Opt, 0, sizeof(outVec4Opt));
// inline static void transformVec4(const float* m, const float* v, float* dst);
MathUtilC::transformVec4(inMat41, inVec4, outVec4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::transformVec4(inMat41, inVec4, outVec4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::transformVec4(inMat41, inVec4, outVec4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void transformVec4(const float* m, const float* v, float* dst);", outVec4C, outVec4Opt, VEC4_SIZE);
// Clean
memset(outVec4C, 0, sizeof(outVec4C));
memset(outVec4Opt, 0, sizeof(outVec4Opt));
// inline static void crossVec3(const float* v1, const float* v2, float* dst);
MathUtilC::crossVec3(inVec4, inVec42, outVec4C);
#ifdef INCLUDE_NEON32
MathUtilNeon::crossVec3(inVec4, inVec42, outVec4Opt);
#endif
#ifdef INCLUDE_NEON64
MathUtilNeon64::crossVec3(inVec4, inVec42, outVec4Opt);
#endif
#ifdef INCLUDE_SSE
// FIXME:
#endif
__checkMathUtilResult("inline static void crossVec3(const float* v1, const float* v2, float* dst);", outVec4C, outVec4Opt, VEC4_SIZE);
// Clean
memset(outVec4C, 0, sizeof(outVec4C));
memset(outVec4Opt, 0, sizeof(outVec4Opt));
}
std::string MathUtilTest::subtitle() const
{
return "MathUtilTest";
}