axmol/Box2D/Collision/b2DynamicTree.cpp

366 lines
8.3 KiB
C++

/*
* Copyright (c) 2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Collision/b2DynamicTree.h>
#include <cstring>
#include <cfloat>
b2DynamicTree::b2DynamicTree()
{
m_root = b2_nullNode;
m_nodeCapacity = 16;
m_nodeCount = 0;
m_nodes = (b2DynamicTreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2DynamicTreeNode));
memset(m_nodes, 0, m_nodeCapacity * sizeof(b2DynamicTreeNode));
// Build a linked list for the free list.
for (int32 i = 0; i < m_nodeCapacity - 1; ++i)
{
m_nodes[i].next = i + 1;
}
m_nodes[m_nodeCapacity-1].next = b2_nullNode;
m_freeList = 0;
m_path = 0;
m_insertionCount = 0;
}
b2DynamicTree::~b2DynamicTree()
{
// This frees the entire tree in one shot.
b2Free(m_nodes);
}
// Allocate a node from the pool. Grow the pool if necessary.
int32 b2DynamicTree::AllocateNode()
{
// Expand the node pool as needed.
if (m_freeList == b2_nullNode)
{
b2Assert(m_nodeCount == m_nodeCapacity);
// The free list is empty. Rebuild a bigger pool.
b2DynamicTreeNode* oldNodes = m_nodes;
m_nodeCapacity *= 2;
m_nodes = (b2DynamicTreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2DynamicTreeNode));
memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2DynamicTreeNode));
b2Free(oldNodes);
// Build a linked list for the free list. The parent
// pointer becomes the "next" pointer.
for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i)
{
m_nodes[i].next = i + 1;
}
m_nodes[m_nodeCapacity-1].next = b2_nullNode;
m_freeList = m_nodeCount;
}
// Peel a node off the free list.
int32 nodeId = m_freeList;
m_freeList = m_nodes[nodeId].next;
m_nodes[nodeId].parent = b2_nullNode;
m_nodes[nodeId].child1 = b2_nullNode;
m_nodes[nodeId].child2 = b2_nullNode;
++m_nodeCount;
return nodeId;
}
// Return a node to the pool.
void b2DynamicTree::FreeNode(int32 nodeId)
{
b2Assert(0 <= nodeId && nodeId < m_nodeCapacity);
b2Assert(0 < m_nodeCount);
m_nodes[nodeId].next = m_freeList;
m_freeList = nodeId;
--m_nodeCount;
}
// Create a proxy in the tree as a leaf node. We return the index
// of the node instead of a pointer so that we can grow
// the node pool.
int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData)
{
int32 proxyId = AllocateNode();
// Fatten the aabb.
b2Vec2 r(b2_aabbExtension, b2_aabbExtension);
m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r;
m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r;
m_nodes[proxyId].userData = userData;
InsertLeaf(proxyId);
// Rebalance if necessary.
int32 iterationCount = m_nodeCount >> 4;
int32 tryCount = 0;
int32 height = ComputeHeight();
while (height > 64 && tryCount < 10)
{
Rebalance(iterationCount);
height = ComputeHeight();
++tryCount;
}
return proxyId;
}
void b2DynamicTree::DestroyProxy(int32 proxyId)
{
b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
b2Assert(m_nodes[proxyId].IsLeaf());
RemoveLeaf(proxyId);
FreeNode(proxyId);
}
bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement)
{
b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
b2Assert(m_nodes[proxyId].IsLeaf());
if (m_nodes[proxyId].aabb.Contains(aabb))
{
return false;
}
RemoveLeaf(proxyId);
// Extend AABB.
b2AABB b = aabb;
b2Vec2 r(b2_aabbExtension, b2_aabbExtension);
b.lowerBound = b.lowerBound - r;
b.upperBound = b.upperBound + r;
// Predict AABB displacement.
b2Vec2 d = b2_aabbMultiplier * displacement;
if (d.x < 0.0f)
{
b.lowerBound.x += d.x;
}
else
{
b.upperBound.x += d.x;
}
if (d.y < 0.0f)
{
b.lowerBound.y += d.y;
}
else
{
b.upperBound.y += d.y;
}
m_nodes[proxyId].aabb = b;
InsertLeaf(proxyId);
return true;
}
void b2DynamicTree::InsertLeaf(int32 leaf)
{
++m_insertionCount;
if (m_root == b2_nullNode)
{
m_root = leaf;
m_nodes[m_root].parent = b2_nullNode;
return;
}
// Find the best sibling for this node.
b2Vec2 center = m_nodes[leaf].aabb.GetCenter();
int32 sibling = m_root;
if (m_nodes[sibling].IsLeaf() == false)
{
do
{
int32 child1 = m_nodes[sibling].child1;
int32 child2 = m_nodes[sibling].child2;
b2Vec2 delta1 = b2Abs(m_nodes[child1].aabb.GetCenter() - center);
b2Vec2 delta2 = b2Abs(m_nodes[child2].aabb.GetCenter() - center);
float32 norm1 = delta1.x + delta1.y;
float32 norm2 = delta2.x + delta2.y;
if (norm1 < norm2)
{
sibling = child1;
}
else
{
sibling = child2;
}
}
while(m_nodes[sibling].IsLeaf() == false);
}
// Create a parent for the siblings.
int32 node1 = m_nodes[sibling].parent;
int32 node2 = AllocateNode();
m_nodes[node2].parent = node1;
m_nodes[node2].userData = NULL;
m_nodes[node2].aabb.Combine(m_nodes[leaf].aabb, m_nodes[sibling].aabb);
if (node1 != b2_nullNode)
{
if (m_nodes[m_nodes[sibling].parent].child1 == sibling)
{
m_nodes[node1].child1 = node2;
}
else
{
m_nodes[node1].child2 = node2;
}
m_nodes[node2].child1 = sibling;
m_nodes[node2].child2 = leaf;
m_nodes[sibling].parent = node2;
m_nodes[leaf].parent = node2;
do
{
if (m_nodes[node1].aabb.Contains(m_nodes[node2].aabb))
{
break;
}
m_nodes[node1].aabb.Combine(m_nodes[m_nodes[node1].child1].aabb, m_nodes[m_nodes[node1].child2].aabb);
node2 = node1;
node1 = m_nodes[node1].parent;
}
while(node1 != b2_nullNode);
}
else
{
m_nodes[node2].child1 = sibling;
m_nodes[node2].child2 = leaf;
m_nodes[sibling].parent = node2;
m_nodes[leaf].parent = node2;
m_root = node2;
}
}
void b2DynamicTree::RemoveLeaf(int32 leaf)
{
if (leaf == m_root)
{
m_root = b2_nullNode;
return;
}
int32 node2 = m_nodes[leaf].parent;
int32 node1 = m_nodes[node2].parent;
int32 sibling;
if (m_nodes[node2].child1 == leaf)
{
sibling = m_nodes[node2].child2;
}
else
{
sibling = m_nodes[node2].child1;
}
if (node1 != b2_nullNode)
{
// Destroy node2 and connect node1 to sibling.
if (m_nodes[node1].child1 == node2)
{
m_nodes[node1].child1 = sibling;
}
else
{
m_nodes[node1].child2 = sibling;
}
m_nodes[sibling].parent = node1;
FreeNode(node2);
// Adjust ancestor bounds.
while (node1 != b2_nullNode)
{
b2AABB oldAABB = m_nodes[node1].aabb;
m_nodes[node1].aabb.Combine(m_nodes[m_nodes[node1].child1].aabb, m_nodes[m_nodes[node1].child2].aabb);
if (oldAABB.Contains(m_nodes[node1].aabb))
{
break;
}
node1 = m_nodes[node1].parent;
}
}
else
{
m_root = sibling;
m_nodes[sibling].parent = b2_nullNode;
FreeNode(node2);
}
}
void b2DynamicTree::Rebalance(int32 iterations)
{
if (m_root == b2_nullNode)
{
return;
}
for (int32 i = 0; i < iterations; ++i)
{
int32 node = m_root;
uint32 bit = 0;
while (m_nodes[node].IsLeaf() == false)
{
int32* children = &m_nodes[node].child1;
node = children[(m_path >> bit) & 1];
bit = (bit + 1) & (8* sizeof(uint32) - 1);
}
++m_path;
RemoveLeaf(node);
InsertLeaf(node);
}
}
// Compute the height of a sub-tree.
int32 b2DynamicTree::ComputeHeight(int32 nodeId) const
{
if (nodeId == b2_nullNode)
{
return 0;
}
b2Assert(0 <= nodeId && nodeId < m_nodeCapacity);
b2DynamicTreeNode* node = m_nodes + nodeId;
int32 height1 = ComputeHeight(node->child1);
int32 height2 = ComputeHeight(node->child2);
return 1 + b2Max(height1, height2);
}
int32 b2DynamicTree::ComputeHeight() const
{
return ComputeHeight(m_root);
}