mirror of https://github.com/axmolengine/axmol.git
223 lines
7.2 KiB
C++
223 lines
7.2 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btContinuousConvexCollision.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
|
|
#include "LinearMath/btTransformUtil.h"
|
|
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
|
|
|
#include "btGjkPairDetector.h"
|
|
#include "btPointCollector.h"
|
|
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
|
|
|
|
btContinuousConvexCollision::btContinuousConvexCollision(const btConvexShape* convexA, const btConvexShape* convexB, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver)
|
|
: m_simplexSolver(simplexSolver),
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
m_convexA(convexA),
|
|
m_convexB1(convexB),
|
|
m_planeShape(0)
|
|
{
|
|
}
|
|
|
|
btContinuousConvexCollision::btContinuousConvexCollision(const btConvexShape* convexA, const btStaticPlaneShape* plane)
|
|
: m_simplexSolver(0),
|
|
m_penetrationDepthSolver(0),
|
|
m_convexA(convexA),
|
|
m_convexB1(0),
|
|
m_planeShape(plane)
|
|
{
|
|
}
|
|
|
|
/// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
|
|
/// You don't want your game ever to lock-up.
|
|
#define MAX_ITERATIONS 64
|
|
|
|
void btContinuousConvexCollision::computeClosestPoints(const btTransform& transA, const btTransform& transB, btPointCollector& pointCollector)
|
|
{
|
|
if (m_convexB1)
|
|
{
|
|
m_simplexSolver->reset();
|
|
btGjkPairDetector gjk(m_convexA, m_convexB1, m_convexA->getShapeType(), m_convexB1->getShapeType(), m_convexA->getMargin(), m_convexB1->getMargin(), m_simplexSolver, m_penetrationDepthSolver);
|
|
btGjkPairDetector::ClosestPointInput input;
|
|
input.m_transformA = transA;
|
|
input.m_transformB = transB;
|
|
gjk.getClosestPoints(input, pointCollector, 0);
|
|
}
|
|
else
|
|
{
|
|
//convex versus plane
|
|
const btConvexShape* convexShape = m_convexA;
|
|
const btStaticPlaneShape* planeShape = m_planeShape;
|
|
|
|
const btVector3& planeNormal = planeShape->getPlaneNormal();
|
|
const btScalar& planeConstant = planeShape->getPlaneConstant();
|
|
|
|
btTransform convexWorldTransform = transA;
|
|
btTransform convexInPlaneTrans;
|
|
convexInPlaneTrans = transB.inverse() * convexWorldTransform;
|
|
btTransform planeInConvex;
|
|
planeInConvex = convexWorldTransform.inverse() * transB;
|
|
|
|
btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis() * -planeNormal);
|
|
|
|
btVector3 vtxInPlane = convexInPlaneTrans(vtx);
|
|
btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
|
|
|
|
btVector3 vtxInPlaneProjected = vtxInPlane - distance * planeNormal;
|
|
btVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected;
|
|
btVector3 normalOnSurfaceB = transB.getBasis() * planeNormal;
|
|
|
|
pointCollector.addContactPoint(
|
|
normalOnSurfaceB,
|
|
vtxInPlaneWorld,
|
|
distance);
|
|
}
|
|
}
|
|
|
|
bool btContinuousConvexCollision::calcTimeOfImpact(
|
|
const btTransform& fromA,
|
|
const btTransform& toA,
|
|
const btTransform& fromB,
|
|
const btTransform& toB,
|
|
CastResult& result)
|
|
{
|
|
/// compute linear and angular velocity for this interval, to interpolate
|
|
btVector3 linVelA, angVelA, linVelB, angVelB;
|
|
btTransformUtil::calculateVelocity(fromA, toA, btScalar(1.), linVelA, angVelA);
|
|
btTransformUtil::calculateVelocity(fromB, toB, btScalar(1.), linVelB, angVelB);
|
|
|
|
btScalar boundingRadiusA = m_convexA->getAngularMotionDisc();
|
|
btScalar boundingRadiusB = m_convexB1 ? m_convexB1->getAngularMotionDisc() : 0.f;
|
|
|
|
btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
|
|
btVector3 relLinVel = (linVelB - linVelA);
|
|
|
|
btScalar relLinVelocLength = (linVelB - linVelA).length();
|
|
|
|
if ((relLinVelocLength + maxAngularProjectedVelocity) == 0.f)
|
|
return false;
|
|
|
|
btScalar lambda = btScalar(0.);
|
|
|
|
btVector3 n;
|
|
n.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
|
|
bool hasResult = false;
|
|
btVector3 c;
|
|
|
|
btScalar lastLambda = lambda;
|
|
//btScalar epsilon = btScalar(0.001);
|
|
|
|
int numIter = 0;
|
|
//first solution, using GJK
|
|
|
|
btScalar radius = 0.001f;
|
|
// result.drawCoordSystem(sphereTr);
|
|
|
|
btPointCollector pointCollector1;
|
|
|
|
{
|
|
computeClosestPoints(fromA, fromB, pointCollector1);
|
|
|
|
hasResult = pointCollector1.m_hasResult;
|
|
c = pointCollector1.m_pointInWorld;
|
|
}
|
|
|
|
if (hasResult)
|
|
{
|
|
btScalar dist;
|
|
dist = pointCollector1.m_distance + result.m_allowedPenetration;
|
|
n = pointCollector1.m_normalOnBInWorld;
|
|
btScalar projectedLinearVelocity = relLinVel.dot(n);
|
|
if ((projectedLinearVelocity + maxAngularProjectedVelocity) <= SIMD_EPSILON)
|
|
return false;
|
|
|
|
//not close enough
|
|
while (dist > radius)
|
|
{
|
|
if (result.m_debugDrawer)
|
|
{
|
|
result.m_debugDrawer->drawSphere(c, 0.2f, btVector3(1, 1, 1));
|
|
}
|
|
btScalar dLambda = btScalar(0.);
|
|
|
|
projectedLinearVelocity = relLinVel.dot(n);
|
|
|
|
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
|
|
if ((projectedLinearVelocity + maxAngularProjectedVelocity) <= SIMD_EPSILON)
|
|
return false;
|
|
|
|
dLambda = dist / (projectedLinearVelocity + maxAngularProjectedVelocity);
|
|
|
|
lambda += dLambda;
|
|
|
|
if (lambda > btScalar(1.) || lambda < btScalar(0.))
|
|
return false;
|
|
|
|
//todo: next check with relative epsilon
|
|
if (lambda <= lastLambda)
|
|
{
|
|
return false;
|
|
//n.setValue(0,0,0);
|
|
//break;
|
|
}
|
|
lastLambda = lambda;
|
|
|
|
//interpolate to next lambda
|
|
btTransform interpolatedTransA, interpolatedTransB, relativeTrans;
|
|
|
|
btTransformUtil::integrateTransform(fromA, linVelA, angVelA, lambda, interpolatedTransA);
|
|
btTransformUtil::integrateTransform(fromB, linVelB, angVelB, lambda, interpolatedTransB);
|
|
relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
|
|
|
|
if (result.m_debugDrawer)
|
|
{
|
|
result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(), 0.2f, btVector3(1, 0, 0));
|
|
}
|
|
|
|
result.DebugDraw(lambda);
|
|
|
|
btPointCollector pointCollector;
|
|
computeClosestPoints(interpolatedTransA, interpolatedTransB, pointCollector);
|
|
|
|
if (pointCollector.m_hasResult)
|
|
{
|
|
dist = pointCollector.m_distance + result.m_allowedPenetration;
|
|
c = pointCollector.m_pointInWorld;
|
|
n = pointCollector.m_normalOnBInWorld;
|
|
}
|
|
else
|
|
{
|
|
result.reportFailure(-1, numIter);
|
|
return false;
|
|
}
|
|
|
|
numIter++;
|
|
if (numIter > MAX_ITERATIONS)
|
|
{
|
|
result.reportFailure(-2, numIter);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
result.m_fraction = lambda;
|
|
result.m_normal = n;
|
|
result.m_hitPoint = c;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|