axmol/Box2D/Collision/b2CollideCircle.cpp

155 lines
4.4 KiB
C++

/*
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Collision/b2Collision.h>
#include <Box2D/Collision/Shapes/b2CircleShape.h>
#include <Box2D/Collision/Shapes/b2PolygonShape.h>
void b2CollideCircles(
b2Manifold* manifold,
const b2CircleShape* circleA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)
{
manifold->pointCount = 0;
b2Vec2 pA = b2Mul(xfA, circleA->m_p);
b2Vec2 pB = b2Mul(xfB, circleB->m_p);
b2Vec2 d = pB - pA;
float32 distSqr = b2Dot(d, d);
float32 rA = circleA->m_radius, rB = circleB->m_radius;
float32 radius = rA + rB;
if (distSqr > radius * radius)
{
return;
}
manifold->type = b2Manifold::e_circles;
manifold->localPoint = circleA->m_p;
manifold->localNormal.SetZero();
manifold->pointCount = 1;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
void b2CollidePolygonAndCircle(
b2Manifold* manifold,
const b2PolygonShape* polygonA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)
{
manifold->pointCount = 0;
// Compute circle position in the frame of the polygon.
b2Vec2 c = b2Mul(xfB, circleB->m_p);
b2Vec2 cLocal = b2MulT(xfA, c);
// Find the min separating edge.
int32 normalIndex = 0;
float32 separation = -b2_maxFloat;
float32 radius = polygonA->m_radius + circleB->m_radius;
int32 vertexCount = polygonA->m_vertexCount;
const b2Vec2* vertices = polygonA->m_vertices;
const b2Vec2* normals = polygonA->m_normals;
for (int32 i = 0; i < vertexCount; ++i)
{
float32 s = b2Dot(normals[i], cLocal - vertices[i]);
if (s > radius)
{
// Early out.
return;
}
if (s > separation)
{
separation = s;
normalIndex = i;
}
}
// Vertices that subtend the incident face.
int32 vertIndex1 = normalIndex;
int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
b2Vec2 v1 = vertices[vertIndex1];
b2Vec2 v2 = vertices[vertIndex2];
// If the center is inside the polygon ...
if (separation < b2_epsilon)
{
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = normals[normalIndex];
manifold->localPoint = 0.5f * (v1 + v2);
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
return;
}
// Compute barycentric coordinates
float32 u1 = b2Dot(cLocal - v1, v2 - v1);
float32 u2 = b2Dot(cLocal - v2, v1 - v2);
if (u1 <= 0.0f)
{
if (b2DistanceSquared(cLocal, v1) > radius * radius)
{
return;
}
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = cLocal - v1;
manifold->localNormal.Normalize();
manifold->localPoint = v1;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
else if (u2 <= 0.0f)
{
if (b2DistanceSquared(cLocal, v2) > radius * radius)
{
return;
}
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = cLocal - v2;
manifold->localNormal.Normalize();
manifold->localPoint = v2;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
else
{
b2Vec2 faceCenter = 0.5f * (v1 + v2);
float32 separation = b2Dot(cLocal - faceCenter, normals[vertIndex1]);
if (separation > radius)
{
return;
}
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = normals[vertIndex1];
manifold->localPoint = faceCenter;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
}