axmol/extensions/spine/SkeletonRenderer.cpp

1079 lines
41 KiB
C++

/******************************************************************************
* Spine Runtimes License Agreement
* Last updated January 1, 2020. Replaces all prior versions.
*
* Copyright (c) 2013-2020, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <spine/spine-cocos2dx.h>
#include <spine/Extension.h>
#include <spine/AttachmentVertices.h>
#include <algorithm>
USING_NS_AX;
namespace spine {
namespace {
Cocos2dTextureLoader textureLoader;
int computeTotalCoordCount(Skeleton& skeleton, int startSlotIndex, int endSlotIndex);
axis::Rect computeBoundingRect(const float* coords, int vertexCount);
void interleaveCoordinates(float* dst, const float* src, int vertexCount, int dstStride);
BlendFunc makeBlendFunc(BlendMode blendMode, bool premultipliedAlpha);
void transformWorldVertices(float* dstCoord, int coordCount, Skeleton& skeleton, int startSlotIndex, int endSlotIndex);
bool cullRectangle(Renderer* renderer, const Mat4& transform, const axis::Rect& rect);
Color4B ColorToColor4B(const Color& color);
bool slotIsOutRange(Slot& slot, int startSlotIndex, int endSlotIndex);
bool nothingToDraw(Slot& slot, int startSlotIndex, int endSlotIndex);
}
// C Variable length array
#ifdef _MSC_VER
// VLA not supported, use _malloca
#define VLA(type, arr, count) \
type* arr = static_cast<type*>( _malloca(sizeof(type) * count) )
#define VLA_FREE(arr) do { _freea(arr); } while(false)
#else
#define VLA(type, arr, count) \
type arr[count]
#define VLA_FREE(arr)
#endif
SkeletonRenderer* SkeletonRenderer::createWithSkeleton(Skeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData) {
SkeletonRenderer* node = new SkeletonRenderer(skeleton, ownsSkeleton, ownsSkeletonData);
node->autorelease();
return node;
}
SkeletonRenderer* SkeletonRenderer::createWithData (SkeletonData* skeletonData, bool ownsSkeletonData) {
SkeletonRenderer* node = new SkeletonRenderer(skeletonData, ownsSkeletonData);
node->autorelease();
return node;
}
SkeletonRenderer* SkeletonRenderer::createWithFile (const std::string& skeletonDataFile, Atlas* atlas, float scale) {
SkeletonRenderer* node = new SkeletonRenderer(skeletonDataFile, atlas, scale);
node->autorelease();
return node;
}
SkeletonRenderer* SkeletonRenderer::createWithFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) {
SkeletonRenderer* node = new SkeletonRenderer(skeletonDataFile, atlasFile, scale);
node->autorelease();
return node;
}
void SkeletonRenderer::initialize () {
_clipper = new (__FILE__, __LINE__) SkeletonClipping();
_blendFunc = BlendFunc::ALPHA_PREMULTIPLIED;
setOpacityModifyRGB(true);
setTwoColorTint(false);
_skeleton->setToSetupPose();
_skeleton->updateWorldTransform();
}
void SkeletonRenderer::setupGLProgramState (bool twoColorTintEnabled) {
if (twoColorTintEnabled) {
#if COCOS2D_VERSION < 0x00040000
setGLProgramState(SkeletonTwoColorBatch::getInstance()->getTwoColorTintProgramState());
#endif
return;
}
Texture2D *texture = nullptr;
for (int i = 0, n = _skeleton->getSlots().size(); i < n; i++) {
Slot* slot = _skeleton->getDrawOrder()[i];
Attachment* const attachment = slot->getAttachment();
if (!attachment) continue;
if (attachment->getRTTI().isExactly(RegionAttachment::rtti)) {
RegionAttachment* regionAttachment = static_cast<RegionAttachment*>(attachment);
texture = static_cast<AttachmentVertices*>(regionAttachment->getRendererObject())->_texture;
} else if (attachment->getRTTI().isExactly(MeshAttachment::rtti)) {
MeshAttachment* meshAttachment = static_cast<MeshAttachment*>(attachment);
texture = static_cast<AttachmentVertices*>(meshAttachment->getRendererObject())->_texture;
} else {
continue;
}
if (texture != nullptr) {
break;
}
}
#if COCOS2D_VERSION < 0x00040000
setGLProgramState(GLProgramState::getOrCreateWithGLProgramName(GLProgram::SHADER_NAME_POSITION_TEXTURE_COLOR_NO_MVP, texture));
#endif
}
void SkeletonRenderer::setSkeletonData (SkeletonData *skeletonData, bool ownsSkeletonData) {
_skeleton = new (__FILE__, __LINE__) Skeleton(skeletonData);
_ownsSkeletonData = ownsSkeletonData;
}
SkeletonRenderer::SkeletonRenderer ()
: _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
}
SkeletonRenderer::SkeletonRenderer(Skeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData, bool ownsAtlas)
: _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithSkeleton(skeleton, ownsSkeleton, ownsSkeletonData, ownsAtlas);
}
SkeletonRenderer::SkeletonRenderer (SkeletonData *skeletonData, bool ownsSkeletonData)
: _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithData(skeletonData, ownsSkeletonData);
}
SkeletonRenderer::SkeletonRenderer (const std::string& skeletonDataFile, Atlas* atlas, float scale)
: _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithJsonFile(skeletonDataFile, atlas, scale);
}
SkeletonRenderer::SkeletonRenderer (const std::string& skeletonDataFile, const std::string& atlasFile, float scale)
: _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithJsonFile(skeletonDataFile, atlasFile, scale);
}
SkeletonRenderer::~SkeletonRenderer () {
if (_ownsSkeletonData) delete _skeleton->getData();
if (_ownsSkeleton) delete _skeleton;
if (_ownsAtlas && _atlas) delete _atlas;
if (_attachmentLoader) delete _attachmentLoader;
delete _clipper;
}
void SkeletonRenderer::initWithSkeleton(Skeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData, bool ownsAtlas) {
_skeleton = skeleton;
_ownsSkeleton = ownsSkeleton;
_ownsSkeletonData = ownsSkeletonData;
_ownsAtlas = ownsAtlas;
initialize();
}
void SkeletonRenderer::initWithData (SkeletonData* skeletonData, bool ownsSkeletonData) {
_ownsSkeleton = true;
setSkeletonData(skeletonData, ownsSkeletonData);
initialize();
}
void SkeletonRenderer::initWithJsonFile (const std::string& skeletonDataFile, Atlas* atlas, float scale) {
_atlas = atlas;
_attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas);
SkeletonJson json(_attachmentLoader);
json.setScale(scale);
SkeletonData* skeletonData = json.readSkeletonDataFile(skeletonDataFile.c_str());
CCASSERT(skeletonData, (!json.getError().isEmpty() ? json.getError().buffer() : "Error reading skeleton data."));
_ownsSkeleton = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::initWithJsonFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) {
_atlas = new (__FILE__, __LINE__) Atlas(atlasFile.c_str(), &textureLoader, true);
CCASSERT(_atlas, "Error reading atlas file.");
_attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas);
SkeletonJson json(_attachmentLoader);
json.setScale(scale);
SkeletonData* skeletonData = json.readSkeletonDataFile(skeletonDataFile.c_str());
CCASSERT(skeletonData, (!json.getError().isEmpty() ? json.getError().buffer() : "Error reading skeleton data."));
_ownsSkeleton = true;
_ownsAtlas = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::initWithBinaryFile (const std::string& skeletonDataFile, Atlas* atlas, float scale) {
_atlas = atlas;
_attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas);
SkeletonBinary binary(_attachmentLoader);
binary.setScale(scale);
SkeletonData* skeletonData = binary.readSkeletonDataFile(skeletonDataFile.c_str());
CCASSERT(skeletonData, (!binary.getError().isEmpty() ? binary.getError().buffer() : "Error reading skeleton data."));
_ownsSkeleton = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::initWithBinaryFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) {
_atlas = new (__FILE__, __LINE__) Atlas(atlasFile.c_str(), &textureLoader, true);
CCASSERT(_atlas, "Error reading atlas file.");
_attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas);
SkeletonBinary binary(_attachmentLoader);
binary.setScale(scale);
SkeletonData* skeletonData = binary.readSkeletonDataFile(skeletonDataFile.c_str());
CCASSERT(skeletonData, (!binary.getError().isEmpty() ? binary.getError().buffer() : "Error reading skeleton data."));
_ownsSkeleton = true;
_ownsAtlas = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::update (float deltaTime) {
Node::update(deltaTime);
if (_ownsSkeleton) _skeleton->update(deltaTime * _timeScale);
}
void SkeletonRenderer::draw (Renderer* renderer, const Mat4& transform, uint32_t transformFlags) {
// Early exit if the skeleton is invisible.
if (getDisplayedOpacity() == 0 || _skeleton->getColor().a == 0) {
return;
}
const int coordCount = computeTotalCoordCount(*_skeleton, _startSlotIndex, _endSlotIndex);
if (coordCount == 0) {
return;
}
assert(coordCount % 2 == 0);
VLA(float, worldCoords, coordCount);
transformWorldVertices(worldCoords, coordCount, *_skeleton, _startSlotIndex, _endSlotIndex);
#if CC_USE_CULLING
const axis::Rect bb = computeBoundingRect(worldCoords, coordCount / 2);
if (cullRectangle(renderer, transform, bb)) {
VLA_FREE(worldCoords);
return;
}
#endif
const float* worldCoordPtr = worldCoords;
SkeletonBatch* batch = SkeletonBatch::getInstance();
SkeletonTwoColorBatch* twoColorBatch = SkeletonTwoColorBatch::getInstance();
const bool hasSingleTint = (isTwoColorTint() == false);
if (_effect) {
_effect->begin(*_skeleton);
}
const Color3B displayedColor = getDisplayedColor();
Color nodeColor;
nodeColor.r = displayedColor.r / 255.f;
nodeColor.g = displayedColor.g / 255.f;
nodeColor.b = displayedColor.b / 255.f;
nodeColor.a = getDisplayedOpacity() / 255.f;
Color color;
Color darkColor;
const float darkPremultipliedAlpha = _premultipliedAlpha ? 1.f : 0;
AttachmentVertices* attachmentVertices = nullptr;
TwoColorTrianglesCommand* lastTwoColorTrianglesCommand = nullptr;
for (int i = 0, n = _skeleton->getSlots().size(); i < n; ++i) {
Slot* slot = _skeleton->getDrawOrder()[i];;
if (nothingToDraw(*slot, _startSlotIndex, _endSlotIndex)) {
_clipper->clipEnd(*slot);
continue;
}
axis::TrianglesCommand::Triangles triangles;
TwoColorTriangles trianglesTwoColor;
if (slot->getAttachment()->getRTTI().isExactly(RegionAttachment::rtti)) {
RegionAttachment* attachment = static_cast<RegionAttachment*>(slot->getAttachment());
attachmentVertices = static_cast<AttachmentVertices*>(attachment->getRendererObject());
float* dstTriangleVertices = nullptr;
int dstStride = 0; // in floats
if (hasSingleTint) {
triangles.indices = attachmentVertices->_triangles->indices;
triangles.indexCount = attachmentVertices->_triangles->indexCount;
triangles.verts = batch->allocateVertices(attachmentVertices->_triangles->vertCount);
triangles.vertCount = attachmentVertices->_triangles->vertCount;
assert(triangles.vertCount == 4);
memcpy(triangles.verts, attachmentVertices->_triangles->verts, sizeof(axis::V3F_C4B_T2F) * attachmentVertices->_triangles->vertCount);
dstStride = sizeof(V3F_C4B_T2F) / sizeof(float);
dstTriangleVertices = reinterpret_cast<float*>(triangles.verts);
} else {
trianglesTwoColor.indices = attachmentVertices->_triangles->indices;
trianglesTwoColor.indexCount = attachmentVertices->_triangles->indexCount;
trianglesTwoColor.verts = twoColorBatch->allocateVertices(attachmentVertices->_triangles->vertCount);
trianglesTwoColor.vertCount = attachmentVertices->_triangles->vertCount;
assert(trianglesTwoColor.vertCount == 4);
for (int v = 0; v < trianglesTwoColor.vertCount; v++) {
trianglesTwoColor.verts[v].texCoords = attachmentVertices->_triangles->verts[v].texCoords;
}
dstTriangleVertices = reinterpret_cast<float*>(trianglesTwoColor.verts);
dstStride = sizeof(V3F_C4B_C4B_T2F) / sizeof(float);
}
// Copy world vertices to triangle vertices.
interleaveCoordinates(dstTriangleVertices, worldCoordPtr, 4, dstStride);
worldCoordPtr += 8;
color = attachment->getColor();
}
else if (slot->getAttachment()->getRTTI().isExactly(MeshAttachment::rtti)) {
MeshAttachment* attachment = (MeshAttachment*)slot->getAttachment();
attachmentVertices = (AttachmentVertices*)attachment->getRendererObject();
float* dstTriangleVertices = nullptr;
int dstStride = 0; // in floats
int dstVertexCount = 0;
if (hasSingleTint) {
triangles.indices = attachmentVertices->_triangles->indices;
triangles.indexCount = attachmentVertices->_triangles->indexCount;
triangles.verts = batch->allocateVertices(attachmentVertices->_triangles->vertCount);
triangles.vertCount = attachmentVertices->_triangles->vertCount;
memcpy(triangles.verts, attachmentVertices->_triangles->verts, sizeof(axis::V3F_C4B_T2F) * attachmentVertices->_triangles->vertCount);
dstTriangleVertices = (float*)triangles.verts;
dstStride = sizeof(V3F_C4B_T2F) / sizeof(float);
dstVertexCount = triangles.vertCount;
} else {
trianglesTwoColor.indices = attachmentVertices->_triangles->indices;
trianglesTwoColor.indexCount = attachmentVertices->_triangles->indexCount;
trianglesTwoColor.verts = twoColorBatch->allocateVertices(attachmentVertices->_triangles->vertCount);
trianglesTwoColor.vertCount = attachmentVertices->_triangles->vertCount;
for (int v = 0; v < trianglesTwoColor.vertCount; v++) {
trianglesTwoColor.verts[v].texCoords = attachmentVertices->_triangles->verts[v].texCoords;
}
dstTriangleVertices = (float*)trianglesTwoColor.verts;
dstStride = sizeof(V3F_C4B_C4B_T2F) / sizeof(float);
dstVertexCount = trianglesTwoColor.vertCount;
}
// Copy world vertices to triangle vertices.
//assert(dstVertexCount * 2 == attachment->super.worldVerticesLength);
interleaveCoordinates(dstTriangleVertices, worldCoordPtr, dstVertexCount, dstStride);
worldCoordPtr += dstVertexCount * 2;
color = attachment->getColor();
}
else if (slot->getAttachment()->getRTTI().isExactly(ClippingAttachment::rtti)) {
ClippingAttachment* clip = (ClippingAttachment*)slot->getAttachment();
_clipper->clipStart(*slot, clip);
continue;
} else {
_clipper->clipEnd(*slot);
continue;
}
if (slot->hasDarkColor()) {
darkColor = slot->getDarkColor();
} else {
darkColor.r = 0;
darkColor.g = 0;
darkColor.b = 0;
}
darkColor.a = darkPremultipliedAlpha;
color.a *= nodeColor.a * _skeleton->getColor().a * slot->getColor().a;
if (color.a == 0) {
_clipper->clipEnd(*slot);
continue;
}
color.r *= nodeColor.r * _skeleton->getColor().r * slot->getColor().r;
color.g *= nodeColor.g * _skeleton->getColor().g * slot->getColor().g;
color.b *= nodeColor.b * _skeleton->getColor().b * slot->getColor().b;
if (_premultipliedAlpha) {
color.r *= color.a;
color.g *= color.a;
color.b *= color.a;
}
const axis::Color4B color4B = ColorToColor4B(color);
const axis::Color4B darkColor4B = ColorToColor4B(darkColor);
const BlendFunc blendFunc = makeBlendFunc(slot->getData().getBlendMode(), attachmentVertices->_texture->hasPremultipliedAlpha());
_blendFunc = blendFunc;
if (hasSingleTint) {
if (_clipper->isClipping()) {
_clipper->clipTriangles((float*)&triangles.verts[0].vertices, triangles.indices, triangles.indexCount, (float*)&triangles.verts[0].texCoords, sizeof(axis::V3F_C4B_T2F) / 4);
batch->deallocateVertices(triangles.vertCount);
if (_clipper->getClippedTriangles().size() == 0) {
_clipper->clipEnd(*slot);
continue;
}
triangles.vertCount = _clipper->getClippedVertices().size() / 2;
triangles.verts = batch->allocateVertices(triangles.vertCount);
triangles.indexCount = _clipper->getClippedTriangles().size();
triangles.indices =
batch->allocateIndices(triangles.indexCount);
memcpy(triangles.indices, _clipper->getClippedTriangles().buffer(), sizeof(unsigned short) * _clipper->getClippedTriangles().size());
#if COCOS2D_VERSION < 0x00040000
axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _glProgramState, blendFunc, triangles, transform, transformFlags);
#else
axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, triangles, transform, transformFlags);
#endif
const float* verts = _clipper->getClippedVertices().buffer();
const float* uvs = _clipper->getClippedUVs().buffer();
if (_effect) {
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
Color darkTmp;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv+=2, ++vertex) {
Color lightCopy = color;
vertex->vertices.x = verts[vv];
vertex->vertices.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
_effect->transform(vertex->vertices.x, vertex->vertices.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkTmp);
vertex->colors = ColorToColor4B(lightCopy);
}
} else {
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv+=2, ++vertex) {
vertex->vertices.x = verts[vv];
vertex->vertices.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
vertex->colors = color4B;
}
}
} else {
// Not clipping.
#if COCOS2D_VERSION < 0x00040000
axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _glProgramState, blendFunc, triangles, transform, transformFlags);
#else
axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, triangles, transform, transformFlags);
#endif
if (_effect) {
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
Color darkTmp;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
Color lightCopy = color;
_effect->transform(vertex->vertices.x, vertex->vertices.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkTmp);
vertex->colors = ColorToColor4B(lightCopy);
}
} else {
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
vertex->colors = color4B;
}
}
}
} else {
// Two color tinting.
if (_clipper->isClipping()) {
_clipper->clipTriangles((float*)&trianglesTwoColor.verts[0].position, trianglesTwoColor.indices, trianglesTwoColor.indexCount, (float*)&trianglesTwoColor.verts[0].texCoords, sizeof(V3F_C4B_C4B_T2F) / 4);
twoColorBatch->deallocateVertices(trianglesTwoColor.vertCount);
if (_clipper->getClippedTriangles().size() == 0) {
_clipper->clipEnd(*slot);
continue;
}
trianglesTwoColor.vertCount = _clipper->getClippedVertices().size() / 2;
trianglesTwoColor.verts = twoColorBatch->allocateVertices(trianglesTwoColor.vertCount);
trianglesTwoColor.indexCount = _clipper->getClippedTriangles().size();
trianglesTwoColor.indices = twoColorBatch->allocateIndices(trianglesTwoColor.indexCount);
memcpy(trianglesTwoColor.indices, _clipper->getClippedTriangles().buffer(), sizeof(unsigned short) * _clipper->getClippedTriangles().size());
#if COCOS2D_VERSION < 0x00040000
TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture->getName(), _glProgramState, blendFunc, trianglesTwoColor, transform, transformFlags);
#else
TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, trianglesTwoColor, transform, transformFlags);
#endif
const float* verts = _clipper->getClippedVertices().buffer();
const float* uvs = _clipper->getClippedUVs().buffer();
if (_effect) {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv += 2, ++vertex) {
Color lightCopy = color;
Color darkCopy = darkColor;
vertex->position.x = verts[vv];
vertex->position.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
_effect->transform(vertex->position.x, vertex->position.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkCopy);
vertex->color = ColorToColor4B(lightCopy);
vertex->color2 = ColorToColor4B(darkCopy);
}
} else {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv += 2, ++vertex) {
vertex->position.x = verts[vv];
vertex->position.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
vertex->color = color4B;
vertex->color2 = darkColor4B;
}
}
} else {
#if COCOS2D_VERSION < 0x00040000
TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture->getName(), _glProgramState, blendFunc, trianglesTwoColor, transform, transformFlags);
#else
TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, trianglesTwoColor, transform, transformFlags);
#endif
if (_effect) {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
Color lightCopy = color;
Color darkCopy = darkColor;
_effect->transform(vertex->position.x, vertex->position.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkCopy);
vertex->color = ColorToColor4B(lightCopy);
vertex->color2 = ColorToColor4B(darkCopy);
}
} else {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
vertex->color = color4B;
vertex->color2 = darkColor4B;
}
}
}
}
_clipper->clipEnd(*slot);
}
_clipper->clipEnd();
if (lastTwoColorTrianglesCommand) {
Node* parent = this->getParent();
// We need to decide if we can postpone flushing the current batch. We can postpone if the next sibling node is a two color
// tinted skeleton with the same global-z.
// The parent->getChildrenCount() > 100 check is a hack as checking for a sibling is an O(n) operation, and if all children
// of this nodes parent are skeletons, we are in O(n2) territory.
if (!parent || parent->getChildrenCount() > 100 || getChildrenCount() != 0) {
lastTwoColorTrianglesCommand->setForceFlush(true);
} else {
const axis::Vector<Node*>& children = parent->getChildren();
Node* sibling = nullptr;
for (ssize_t i = 0; i < children.size(); i++) {
if (children.at(i) == this) {
if (i < children.size() - 1) {
sibling = children.at(i+1);
break;
}
}
}
if (!sibling) {
lastTwoColorTrianglesCommand->setForceFlush(true);
} else {
SkeletonRenderer* siblingSkeleton = dynamic_cast<SkeletonRenderer*>(sibling);
if (!siblingSkeleton || // flush is next sibling isn't a SkeletonRenderer
!siblingSkeleton->isTwoColorTint() || // flush if next sibling isn't two color tinted
!siblingSkeleton->isVisible() || // flush if next sibling is two color tinted but not visible
(siblingSkeleton->getGlobalZOrder() != this->getGlobalZOrder())) { // flush if next sibling is two color tinted but z-order differs
lastTwoColorTrianglesCommand->setForceFlush(true);
}
}
}
}
if (_effect) _effect->end();
if (_debugBoundingRect || _debugSlots || _debugBones || _debugMeshes) {
drawDebug(renderer, transform, transformFlags);
}
VLA_FREE(worldCoords);
}
void SkeletonRenderer::drawDebug (Renderer* renderer, const Mat4 &transform, uint32_t transformFlags) {
#if !defined(USE_MATRIX_STACK_PROJECTION_ONLY)
Director* director = Director::getInstance();
director->pushMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW);
director->loadMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW, transform);
#endif
DrawNode* drawNode = DrawNode::create();
drawNode->setGlobalZOrder(getGlobalZOrder());
// Draw bounding rectangle
if (_debugBoundingRect) {
#if COCOS2D_VERSION < 0x00040000
glLineWidth(2);
#else
drawNode->setLineWidth(2.0f);
#endif
const axis::Rect brect = getBoundingBox();
const Vec2 points[4] =
{
brect.origin,
{ brect.origin.x + brect.size.width, brect.origin.y },
{ brect.origin.x + brect.size.width, brect.origin.y + brect.size.height },
{ brect.origin.x, brect.origin.y + brect.size.height }
};
drawNode->drawPoly(points, 4, true, Color4F::GREEN);
}
if (_debugSlots) {
// Slots.
// DrawPrimitives::setDrawColor4B(0, 0, 255, 255);
#if COCOS2D_VERSION < 0x00040000
glLineWidth(2);
#else
drawNode->setLineWidth(2.0f);
#endif
V3F_C4B_T2F_Quad quad;
for (int i = 0, n = _skeleton->getSlots().size(); i < n; i++) {
Slot* slot = _skeleton->getDrawOrder()[i];
if (!slot->getBone().isActive()) continue;
if (!slot->getAttachment() || !slot->getAttachment()->getRTTI().isExactly(RegionAttachment::rtti)) continue;
if (slotIsOutRange(*slot, _startSlotIndex, _endSlotIndex)) {
continue;
}
RegionAttachment* attachment = (RegionAttachment*)slot->getAttachment();
float worldVertices[8];
attachment->computeWorldVertices(slot->getBone(), worldVertices, 0, 2);
const Vec2 points[4] =
{
{ worldVertices[0], worldVertices[1] },
{ worldVertices[2], worldVertices[3] },
{ worldVertices[4], worldVertices[5] },
{ worldVertices[6], worldVertices[7] }
};
drawNode->drawPoly(points, 4, true, Color4F::BLUE);
}
}
if (_debugBones) {
// Bone lengths.
#if COCOS2D_VERSION < 0x00040000
glLineWidth(2);
#else
drawNode->setLineWidth(2.0f);
#endif
for (int i = 0, n = _skeleton->getBones().size(); i < n; i++) {
Bone *bone = _skeleton->getBones()[i];
if (!bone->isActive()) continue;
float x = bone->getData().getLength() * bone->getA() + bone->getWorldX();
float y = bone->getData().getLength() * bone->getC() + bone->getWorldY();
drawNode->drawLine(Vec2(bone->getWorldX(), bone->getWorldY()), Vec2(x, y), Color4F::RED);
}
// Bone origins.
auto color = Color4F::BLUE; // Root bone is blue.
for (int i = 0, n = _skeleton->getBones().size(); i < n; i++) {
Bone *bone = _skeleton->getBones()[i];
if (!bone->isActive()) continue;
drawNode->drawPoint(Vec2(bone->getWorldX(), bone->getWorldY()), 4, color);
if (i == 0) color = Color4F::GREEN;
}
}
if (_debugMeshes) {
// Meshes.
#if COCOS2D_VERSION < 0x00040000
glLineWidth(2);
#else
drawNode->setLineWidth(2.0f);
#endif
for (int i = 0, n = _skeleton->getSlots().size(); i < n; ++i) {
Slot* slot = _skeleton->getDrawOrder()[i];
if (!slot->getBone().isActive()) continue;
if (!slot->getAttachment() || !slot->getAttachment()->getRTTI().isExactly(MeshAttachment::rtti)) continue;
MeshAttachment* const mesh = static_cast<MeshAttachment*>(slot->getAttachment());
VLA(float, worldCoord, mesh->getWorldVerticesLength());
mesh->computeWorldVertices(*slot, 0, mesh->getWorldVerticesLength(), worldCoord, 0, 2);
for (size_t t = 0; t < mesh->getTriangles().size(); t += 3) {
// Fetch triangle indices
const int idx0 = mesh->getTriangles()[t + 0];
const int idx1 = mesh->getTriangles()[t + 1];
const int idx2 = mesh->getTriangles()[t + 2];
const Vec2 v[3] =
{
worldCoord + (idx0 * 2),
worldCoord + (idx1 * 2),
worldCoord + (idx2 * 2)
};
drawNode->drawPoly(v, 3, true, Color4F::YELLOW);
}
VLA_FREE(worldCoord);
}
}
drawNode->draw(renderer, transform, transformFlags);
#if !defined(USE_MATRIX_STACK_PROJECTION_ONLY)
director->popMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW);
#endif
}
axis::Rect SkeletonRenderer::getBoundingBox () const {
const int coordCount = computeTotalCoordCount(*_skeleton, _startSlotIndex, _endSlotIndex);
if (coordCount == 0) return { 0, 0, 0, 0 };
VLA(float, worldCoords, coordCount);
transformWorldVertices(worldCoords, coordCount, *_skeleton, _startSlotIndex, _endSlotIndex);
const axis::Rect bb = computeBoundingRect(worldCoords, coordCount / 2);
VLA_FREE(worldCoords);
return bb;
}
// --- Convenience methods for Skeleton_* functions.
void SkeletonRenderer::updateWorldTransform() {
_skeleton->updateWorldTransform();
}
void SkeletonRenderer::setToSetupPose () {
_skeleton->setToSetupPose();
}
void SkeletonRenderer::setBonesToSetupPose () {
_skeleton->setBonesToSetupPose();
}
void SkeletonRenderer::setSlotsToSetupPose () {
_skeleton->setSlotsToSetupPose();
}
Bone* SkeletonRenderer::findBone (const std::string& boneName) const {
return _skeleton->findBone(boneName.c_str());
}
Slot* SkeletonRenderer::findSlot (const std::string& slotName) const {
return _skeleton->findSlot( slotName.c_str());
}
void SkeletonRenderer::setSkin (const std::string& skinName) {
_skeleton->setSkin(skinName.empty() ? 0 : skinName.c_str());
}
void SkeletonRenderer::setSkin (const char* skinName) {
_skeleton->setSkin(skinName);
}
Attachment* SkeletonRenderer::getAttachment (const std::string& slotName, const std::string& attachmentName) const {
return _skeleton->getAttachment(slotName.c_str(), attachmentName.c_str());
}
bool SkeletonRenderer::setAttachment (const std::string& slotName, const std::string& attachmentName) {
bool result = _skeleton->getAttachment(slotName.c_str(), attachmentName.empty() ? 0 : attachmentName.c_str()) ? true : false;
_skeleton->setAttachment(slotName.c_str(), attachmentName.empty() ? 0 : attachmentName.c_str());
return result;
}
bool SkeletonRenderer::setAttachment (const std::string& slotName, const char* attachmentName) {
bool result = _skeleton->getAttachment(slotName.c_str(), attachmentName) ? true : false;
_skeleton->setAttachment(slotName.c_str(), attachmentName);
return result;
}
void SkeletonRenderer::setTwoColorTint(bool enabled) {
#if COCOS2D_VERSION >= 0x00040000
_twoColorTint = enabled;
#endif
setupGLProgramState(enabled);
}
bool SkeletonRenderer::isTwoColorTint() {
#if COCOS2D_VERSION < 0x00040000
return getGLProgramState() == SkeletonTwoColorBatch::getInstance()->getTwoColorTintProgramState();
#else
return _twoColorTint;
#endif
}
void SkeletonRenderer::setVertexEffect(VertexEffect *effect) {
this->_effect = effect;
}
void SkeletonRenderer::setSlotsRange(int startSlotIndex, int endSlotIndex) {
_startSlotIndex = startSlotIndex == -1 ? 0 : startSlotIndex;
_endSlotIndex = endSlotIndex == -1 ? std::numeric_limits<int>::max() : endSlotIndex;
}
Skeleton* SkeletonRenderer::getSkeleton () const {
return _skeleton;
}
void SkeletonRenderer::setTimeScale (float scale) {
_timeScale = scale;
}
float SkeletonRenderer::getTimeScale () const {
return _timeScale;
}
void SkeletonRenderer::setDebugSlotsEnabled (bool enabled) {
_debugSlots = enabled;
}
bool SkeletonRenderer::getDebugSlotsEnabled () const {
return _debugSlots;
}
void SkeletonRenderer::setDebugBonesEnabled (bool enabled) {
_debugBones = enabled;
}
bool SkeletonRenderer::getDebugBonesEnabled () const {
return _debugBones;
}
void SkeletonRenderer::setDebugMeshesEnabled (bool enabled) {
_debugMeshes = enabled;
}
bool SkeletonRenderer::getDebugMeshesEnabled () const {
return _debugMeshes;
}
void SkeletonRenderer::setDebugBoundingRectEnabled(bool enabled) {
_debugBoundingRect = enabled;
}
bool SkeletonRenderer::getDebugBoundingRectEnabled() const {
return _debugBoundingRect;
}
void SkeletonRenderer::onEnter () {
#if CC_ENABLE_SCRIPT_BINDING && COCOS2D_VERSION < 0x00040000
if (_scriptType == kScriptTypeJavascript && ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnEnter)) return;
#endif
Node::onEnter();
scheduleUpdate();
}
void SkeletonRenderer::onExit () {
#if CC_ENABLE_SCRIPT_BINDING && COCOS2D_VERSION < 0x00040000
if (_scriptType == kScriptTypeJavascript && ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnExit)) return;
#endif
Node::onExit();
unscheduleUpdate();
}
// --- CCBlendProtocol
const BlendFunc& SkeletonRenderer::getBlendFunc () const {
return _blendFunc;
}
void SkeletonRenderer::setBlendFunc (const BlendFunc &blendFunc) {
_blendFunc = blendFunc;
}
void SkeletonRenderer::setOpacityModifyRGB (bool value) {
_premultipliedAlpha = value;
}
bool SkeletonRenderer::isOpacityModifyRGB () const {
return _premultipliedAlpha;
}
namespace {
axis::Rect computeBoundingRect(const float* coords, int vertexCount) {
assert(coords);
assert(vertexCount > 0);
const float* v = coords;
float minX = v[0];
float minY = v[1];
float maxX = minX;
float maxY = minY;
for (int i = 1; i < vertexCount; ++i) {
v += 2;
float x = v[0];
float y = v[1];
minX = std::min(minX, x);
minY = std::min(minY, y);
maxX = std::max(maxX, x);
maxY = std::max(maxY, y);
}
return { minX, minY, maxX - minX, maxY - minY };
}
bool slotIsOutRange(Slot& slot, int startSlotIndex, int endSlotIndex) {
const int index = slot.getData().getIndex();
return startSlotIndex > index || endSlotIndex < index;
}
bool nothingToDraw(Slot& slot, int startSlotIndex, int endSlotIndex) {
Attachment *attachment = slot.getAttachment();
if (!attachment ||
slotIsOutRange(slot, startSlotIndex, endSlotIndex) ||
!slot.getBone().isActive())
return true;
const auto& attachmentRTTI = attachment->getRTTI();
if (attachmentRTTI.isExactly(ClippingAttachment::rtti))
return false;
if (slot.getColor().a == 0)
return true;
if (attachmentRTTI.isExactly(RegionAttachment::rtti)) {
if (static_cast<RegionAttachment*>(attachment)->getColor().a == 0)
return true;
}
else if (attachmentRTTI.isExactly(MeshAttachment::rtti)) {
if (static_cast<MeshAttachment*>(attachment)->getColor().a == 0)
return true;
}
return false;
}
int computeTotalCoordCount(Skeleton& skeleton, int startSlotIndex, int endSlotIndex) {
int coordCount = 0;
for (size_t i = 0; i < skeleton.getSlots().size(); ++i) {
Slot& slot = *skeleton.getSlots()[i];
if (nothingToDraw(slot, startSlotIndex, endSlotIndex)) {
continue;
}
Attachment* const attachment = slot.getAttachment();
if (attachment->getRTTI().isExactly(RegionAttachment::rtti)) {
coordCount += 8;
}
else if (attachment->getRTTI().isExactly(MeshAttachment::rtti)) {
MeshAttachment* const mesh = static_cast<MeshAttachment*>(attachment);
coordCount += mesh->getWorldVerticesLength();
}
}
return coordCount;
}
void transformWorldVertices(float* dstCoord, int coordCount, Skeleton& skeleton, int startSlotIndex, int endSlotIndex) {
float* dstPtr = dstCoord;
#ifndef NDEBUG
float* const dstEnd = dstCoord + coordCount;
#endif
for (size_t i = 0; i < skeleton.getSlots().size(); ++i) {
/*const*/ Slot& slot = *skeleton.getDrawOrder()[i]; // match the draw order of SkeletonRenderer::Draw
if (nothingToDraw(slot, startSlotIndex, endSlotIndex)) {
continue;
}
Attachment* const attachment = slot.getAttachment();
if (attachment->getRTTI().isExactly(RegionAttachment::rtti)) {
RegionAttachment* const regionAttachment = static_cast<RegionAttachment*>(attachment);
assert(dstPtr + 8 <= dstEnd);
regionAttachment->computeWorldVertices(slot.getBone(), dstPtr, 0, 2);
dstPtr += 8;
} else if (attachment->getRTTI().isExactly(MeshAttachment::rtti)) {
MeshAttachment* const mesh = static_cast<MeshAttachment*>(attachment);
assert(dstPtr + mesh->getWorldVerticesLength() <= dstEnd);
mesh->computeWorldVertices(slot, 0, mesh->getWorldVerticesLength(), dstPtr, 0, 2);
dstPtr += mesh->getWorldVerticesLength();
}
}
assert(dstPtr == dstEnd);
}
void interleaveCoordinates(float* dst, const float* src, int count, int dstStride) {
if (dstStride == 2) {
memcpy(dst, src, sizeof(float) * count * 2);
} else {
for (int i = 0; i < count; ++i) {
dst[0] = src[0];
dst[1] = src[1];
dst += dstStride;
src += 2;
}
}
}
BlendFunc makeBlendFunc(BlendMode blendMode, bool premultipliedAlpha) {
BlendFunc blendFunc;
#if COCOS2D_VERSION < 0x00040000
switch (blendMode) {
case BlendMode_Additive:
blendFunc.src = premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
blendFunc.dst = GL_ONE;
break;
case BlendMode_Multiply:
blendFunc.src = GL_DST_COLOR;
blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA;
break;
case BlendMode_Screen:
blendFunc.src = GL_ONE;
blendFunc.dst = GL_ONE_MINUS_SRC_COLOR;
break;
default:
blendFunc.src = premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA;
break;
}
#else
switch (blendMode) {
case BlendMode_Additive:
blendFunc.src = premultipliedAlpha ? backend::BlendFactor::ONE : backend::BlendFactor::SRC_ALPHA;
blendFunc.dst = backend::BlendFactor::ONE;
break;
case BlendMode_Multiply:
blendFunc.src = backend::BlendFactor::DST_COLOR;
blendFunc.dst = backend::BlendFactor::ONE_MINUS_SRC_ALPHA;
break;
case BlendMode_Screen:
blendFunc.src = backend::BlendFactor::ONE;
blendFunc.dst = backend::BlendFactor::ONE_MINUS_SRC_COLOR;
break;
default:
blendFunc.src = premultipliedAlpha ? backend::BlendFactor::ONE : backend::BlendFactor::SRC_ALPHA;
blendFunc.dst = backend::BlendFactor::ONE_MINUS_SRC_ALPHA;
}
#endif
return blendFunc;
}
bool cullRectangle(Renderer* renderer, const Mat4& transform, const axis::Rect& rect) {
if (Camera::getVisitingCamera() == nullptr)
return false;
auto director = Director::getInstance();
auto scene = director->getRunningScene();
if (!scene || (scene && Camera::getDefaultCamera() != Camera::getVisitingCamera()))
return false;
Rect visibleRect(director->getVisibleOrigin(), director->getVisibleSize());
// transform center point to screen space
float hSizeX = rect.size.width/2;
float hSizeY = rect.size.height/2;
Vec3 v3p(rect.origin.x + hSizeX, rect.origin.y + hSizeY, 0);
transform.transformPoint(&v3p);
Vec2 v2p = Camera::getVisitingCamera()->projectGL(v3p);
// convert content size to world coordinates
float wshw = std::max(fabsf(hSizeX * transform.m[0] + hSizeY * transform.m[4]), fabsf(hSizeX * transform.m[0] - hSizeY * transform.m[4]));
float wshh = std::max(fabsf(hSizeX * transform.m[1] + hSizeY * transform.m[5]), fabsf(hSizeX * transform.m[1] - hSizeY * transform.m[5]));
// enlarge visible rect half size in screen coord
visibleRect.origin.x -= wshw;
visibleRect.origin.y -= wshh;
visibleRect.size.width += wshw * 2;
visibleRect.size.height += wshh * 2;
return !visibleRect.containsPoint(v2p);
}
Color4B ColorToColor4B(const Color& color) {
return { (uint8_t)(color.r * 255.f), (uint8_t)(color.g * 255.f), (uint8_t)(color.b * 255.f), (uint8_t)(color.a * 255.f) };
}
}
}