mirror of https://github.com/axmolengine/axmol.git
716 lines
16 KiB
C++
716 lines
16 KiB
C++
// MIT License
|
|
|
|
// Copyright (c) 2019 Erin Catto
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
#ifndef B2_MATH_H
|
|
#define B2_MATH_H
|
|
|
|
#include <math.h>
|
|
|
|
#include "b2_api.h"
|
|
#include "b2_settings.h"
|
|
|
|
/// This function is used to ensure that a floating point number is not a NaN or infinity.
|
|
inline bool b2IsValid(float x)
|
|
{
|
|
return isfinite(x);
|
|
}
|
|
|
|
#define b2Sqrt(x) sqrtf(x)
|
|
#define b2Atan2(y, x) atan2f(y, x)
|
|
|
|
/// A 2D column vector.
|
|
struct B2_API b2Vec2
|
|
{
|
|
/// Default constructor does nothing (for performance).
|
|
b2Vec2() {}
|
|
|
|
/// Construct using coordinates.
|
|
b2Vec2(float xIn, float yIn) : x(xIn), y(yIn) {}
|
|
|
|
/// Set this vector to all zeros.
|
|
void SetZero() { x = 0.0f; y = 0.0f; }
|
|
|
|
/// Set this vector to some specified coordinates.
|
|
void Set(float x_, float y_) { x = x_; y = y_; }
|
|
|
|
/// Negate this vector.
|
|
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
|
|
|
|
/// Read from and indexed element.
|
|
float operator () (int32 i) const
|
|
{
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Write to an indexed element.
|
|
float& operator () (int32 i)
|
|
{
|
|
return (&x)[i];
|
|
}
|
|
|
|
/// Add a vector to this vector.
|
|
void operator += (const b2Vec2& v)
|
|
{
|
|
x += v.x; y += v.y;
|
|
}
|
|
|
|
/// Subtract a vector from this vector.
|
|
void operator -= (const b2Vec2& v)
|
|
{
|
|
x -= v.x; y -= v.y;
|
|
}
|
|
|
|
/// Multiply this vector by a scalar.
|
|
void operator *= (float a)
|
|
{
|
|
x *= a; y *= a;
|
|
}
|
|
|
|
/// Get the length of this vector (the norm).
|
|
float Length() const
|
|
{
|
|
return b2Sqrt(x * x + y * y);
|
|
}
|
|
|
|
/// Get the length squared. For performance, use this instead of
|
|
/// b2Vec2::Length (if possible).
|
|
float LengthSquared() const
|
|
{
|
|
return x * x + y * y;
|
|
}
|
|
|
|
/// Convert this vector into a unit vector. Returns the length.
|
|
float Normalize()
|
|
{
|
|
float length = Length();
|
|
if (length < b2_epsilon)
|
|
{
|
|
return 0.0f;
|
|
}
|
|
float invLength = 1.0f / length;
|
|
x *= invLength;
|
|
y *= invLength;
|
|
|
|
return length;
|
|
}
|
|
|
|
/// Does this vector contain finite coordinates?
|
|
bool IsValid() const
|
|
{
|
|
return b2IsValid(x) && b2IsValid(y);
|
|
}
|
|
|
|
/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
|
|
b2Vec2 Skew() const
|
|
{
|
|
return b2Vec2(-y, x);
|
|
}
|
|
|
|
float x, y;
|
|
};
|
|
|
|
/// A 2D column vector with 3 elements.
|
|
struct B2_API b2Vec3
|
|
{
|
|
/// Default constructor does nothing (for performance).
|
|
b2Vec3() {}
|
|
|
|
/// Construct using coordinates.
|
|
b2Vec3(float xIn, float yIn, float zIn) : x(xIn), y(yIn), z(zIn) {}
|
|
|
|
/// Set this vector to all zeros.
|
|
void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
|
|
|
|
/// Set this vector to some specified coordinates.
|
|
void Set(float x_, float y_, float z_) { x = x_; y = y_; z = z_; }
|
|
|
|
/// Negate this vector.
|
|
b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
|
|
|
|
/// Add a vector to this vector.
|
|
void operator += (const b2Vec3& v)
|
|
{
|
|
x += v.x; y += v.y; z += v.z;
|
|
}
|
|
|
|
/// Subtract a vector from this vector.
|
|
void operator -= (const b2Vec3& v)
|
|
{
|
|
x -= v.x; y -= v.y; z -= v.z;
|
|
}
|
|
|
|
/// Multiply this vector by a scalar.
|
|
void operator *= (float s)
|
|
{
|
|
x *= s; y *= s; z *= s;
|
|
}
|
|
|
|
float x, y, z;
|
|
};
|
|
|
|
/// A 2-by-2 matrix. Stored in column-major order.
|
|
struct B2_API b2Mat22
|
|
{
|
|
/// The default constructor does nothing (for performance).
|
|
b2Mat22() {}
|
|
|
|
/// Construct this matrix using columns.
|
|
b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
|
|
{
|
|
ex = c1;
|
|
ey = c2;
|
|
}
|
|
|
|
/// Construct this matrix using scalars.
|
|
b2Mat22(float a11, float a12, float a21, float a22)
|
|
{
|
|
ex.x = a11; ex.y = a21;
|
|
ey.x = a12; ey.y = a22;
|
|
}
|
|
|
|
/// Initialize this matrix using columns.
|
|
void Set(const b2Vec2& c1, const b2Vec2& c2)
|
|
{
|
|
ex = c1;
|
|
ey = c2;
|
|
}
|
|
|
|
/// Set this to the identity matrix.
|
|
void SetIdentity()
|
|
{
|
|
ex.x = 1.0f; ey.x = 0.0f;
|
|
ex.y = 0.0f; ey.y = 1.0f;
|
|
}
|
|
|
|
/// Set this matrix to all zeros.
|
|
void SetZero()
|
|
{
|
|
ex.x = 0.0f; ey.x = 0.0f;
|
|
ex.y = 0.0f; ey.y = 0.0f;
|
|
}
|
|
|
|
b2Mat22 GetInverse() const
|
|
{
|
|
float a = ex.x, b = ey.x, c = ex.y, d = ey.y;
|
|
b2Mat22 B;
|
|
float det = a * d - b * c;
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
B.ex.x = det * d; B.ey.x = -det * b;
|
|
B.ex.y = -det * c; B.ey.y = det * a;
|
|
return B;
|
|
}
|
|
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases.
|
|
b2Vec2 Solve(const b2Vec2& b) const
|
|
{
|
|
float a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
|
|
float det = a11 * a22 - a12 * a21;
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
b2Vec2 x;
|
|
x.x = det * (a22 * b.x - a12 * b.y);
|
|
x.y = det * (a11 * b.y - a21 * b.x);
|
|
return x;
|
|
}
|
|
|
|
b2Vec2 ex, ey;
|
|
};
|
|
|
|
/// A 3-by-3 matrix. Stored in column-major order.
|
|
struct B2_API b2Mat33
|
|
{
|
|
/// The default constructor does nothing (for performance).
|
|
b2Mat33() {}
|
|
|
|
/// Construct this matrix using columns.
|
|
b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
|
|
{
|
|
ex = c1;
|
|
ey = c2;
|
|
ez = c3;
|
|
}
|
|
|
|
/// Set this matrix to all zeros.
|
|
void SetZero()
|
|
{
|
|
ex.SetZero();
|
|
ey.SetZero();
|
|
ez.SetZero();
|
|
}
|
|
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases.
|
|
b2Vec3 Solve33(const b2Vec3& b) const;
|
|
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases. Solve only the upper
|
|
/// 2-by-2 matrix equation.
|
|
b2Vec2 Solve22(const b2Vec2& b) const;
|
|
|
|
/// Get the inverse of this matrix as a 2-by-2.
|
|
/// Returns the zero matrix if singular.
|
|
void GetInverse22(b2Mat33* M) const;
|
|
|
|
/// Get the symmetric inverse of this matrix as a 3-by-3.
|
|
/// Returns the zero matrix if singular.
|
|
void GetSymInverse33(b2Mat33* M) const;
|
|
|
|
b2Vec3 ex, ey, ez;
|
|
};
|
|
|
|
/// Rotation
|
|
struct B2_API b2Rot
|
|
{
|
|
b2Rot() {}
|
|
|
|
/// Initialize from an angle in radians
|
|
explicit b2Rot(float angle)
|
|
{
|
|
/// TODO_ERIN optimize
|
|
s = sinf(angle);
|
|
c = cosf(angle);
|
|
}
|
|
|
|
/// Set using an angle in radians.
|
|
void Set(float angle)
|
|
{
|
|
/// TODO_ERIN optimize
|
|
s = sinf(angle);
|
|
c = cosf(angle);
|
|
}
|
|
|
|
/// Set to the identity rotation
|
|
void SetIdentity()
|
|
{
|
|
s = 0.0f;
|
|
c = 1.0f;
|
|
}
|
|
|
|
/// Get the angle in radians
|
|
float GetAngle() const
|
|
{
|
|
return b2Atan2(s, c);
|
|
}
|
|
|
|
/// Get the x-axis
|
|
b2Vec2 GetXAxis() const
|
|
{
|
|
return b2Vec2(c, s);
|
|
}
|
|
|
|
/// Get the u-axis
|
|
b2Vec2 GetYAxis() const
|
|
{
|
|
return b2Vec2(-s, c);
|
|
}
|
|
|
|
/// Sine and cosine
|
|
float s, c;
|
|
};
|
|
|
|
/// A transform contains translation and rotation. It is used to represent
|
|
/// the position and orientation of rigid frames.
|
|
struct B2_API b2Transform
|
|
{
|
|
/// The default constructor does nothing.
|
|
b2Transform() {}
|
|
|
|
/// Initialize using a position vector and a rotation.
|
|
b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
|
|
|
|
/// Set this to the identity transform.
|
|
void SetIdentity()
|
|
{
|
|
p.SetZero();
|
|
q.SetIdentity();
|
|
}
|
|
|
|
/// Set this based on the position and angle.
|
|
void Set(const b2Vec2& position, float angle)
|
|
{
|
|
p = position;
|
|
q.Set(angle);
|
|
}
|
|
|
|
b2Vec2 p;
|
|
b2Rot q;
|
|
};
|
|
|
|
/// This describes the motion of a body/shape for TOI computation.
|
|
/// Shapes are defined with respect to the body origin, which may
|
|
/// no coincide with the center of mass. However, to support dynamics
|
|
/// we must interpolate the center of mass position.
|
|
struct B2_API b2Sweep
|
|
{
|
|
/// Get the interpolated transform at a specific time.
|
|
/// @param transform the output transform
|
|
/// @param beta is a factor in [0,1], where 0 indicates alpha0.
|
|
void GetTransform(b2Transform* transform, float beta) const;
|
|
|
|
/// Advance the sweep forward, yielding a new initial state.
|
|
/// @param alpha the new initial time.
|
|
void Advance(float alpha);
|
|
|
|
/// Normalize the angles.
|
|
void Normalize();
|
|
|
|
b2Vec2 localCenter; ///< local center of mass position
|
|
b2Vec2 c0, c; ///< center world positions
|
|
float a0, a; ///< world angles
|
|
|
|
/// Fraction of the current time step in the range [0,1]
|
|
/// c0 and a0 are the positions at alpha0.
|
|
float alpha0;
|
|
};
|
|
|
|
/// Useful constant
|
|
extern B2_API const b2Vec2 b2Vec2_zero;
|
|
|
|
/// Perform the dot product on two vectors.
|
|
inline float b2Dot(const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return a.x * b.x + a.y * b.y;
|
|
}
|
|
|
|
/// Perform the cross product on two vectors. In 2D this produces a scalar.
|
|
inline float b2Cross(const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return a.x * b.y - a.y * b.x;
|
|
}
|
|
|
|
/// Perform the cross product on a vector and a scalar. In 2D this produces
|
|
/// a vector.
|
|
inline b2Vec2 b2Cross(const b2Vec2& a, float s)
|
|
{
|
|
return b2Vec2(s * a.y, -s * a.x);
|
|
}
|
|
|
|
/// Perform the cross product on a scalar and a vector. In 2D this produces
|
|
/// a vector.
|
|
inline b2Vec2 b2Cross(float s, const b2Vec2& a)
|
|
{
|
|
return b2Vec2(-s * a.y, s * a.x);
|
|
}
|
|
|
|
/// Multiply a matrix times a vector. If a rotation matrix is provided,
|
|
/// then this transforms the vector from one frame to another.
|
|
inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
|
|
{
|
|
return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
|
|
}
|
|
|
|
/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
|
|
/// then this transforms the vector from one frame to another (inverse transform).
|
|
inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
|
|
{
|
|
return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
|
|
}
|
|
|
|
/// Add two vectors component-wise.
|
|
inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return b2Vec2(a.x + b.x, a.y + b.y);
|
|
}
|
|
|
|
/// Subtract two vectors component-wise.
|
|
inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return b2Vec2(a.x - b.x, a.y - b.y);
|
|
}
|
|
|
|
inline b2Vec2 operator * (float s, const b2Vec2& a)
|
|
{
|
|
return b2Vec2(s * a.x, s * a.y);
|
|
}
|
|
|
|
inline bool operator == (const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return a.x == b.x && a.y == b.y;
|
|
}
|
|
|
|
inline bool operator != (const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return a.x != b.x || a.y != b.y;
|
|
}
|
|
|
|
inline float b2Distance(const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
b2Vec2 c = a - b;
|
|
return c.Length();
|
|
}
|
|
|
|
inline float b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
b2Vec2 c = a - b;
|
|
return b2Dot(c, c);
|
|
}
|
|
|
|
inline b2Vec3 operator * (float s, const b2Vec3& a)
|
|
{
|
|
return b2Vec3(s * a.x, s * a.y, s * a.z);
|
|
}
|
|
|
|
/// Add two vectors component-wise.
|
|
inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
|
|
{
|
|
return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
|
|
}
|
|
|
|
/// Subtract two vectors component-wise.
|
|
inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
|
|
{
|
|
return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
|
|
}
|
|
|
|
/// Perform the dot product on two vectors.
|
|
inline float b2Dot(const b2Vec3& a, const b2Vec3& b)
|
|
{
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
}
|
|
|
|
/// Perform the cross product on two vectors.
|
|
inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
|
|
{
|
|
return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
|
|
{
|
|
return b2Mat22(A.ex + B.ex, A.ey + B.ey);
|
|
}
|
|
|
|
// A * B
|
|
inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
|
|
{
|
|
return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
|
|
}
|
|
|
|
// A^T * B
|
|
inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
|
|
{
|
|
b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
|
|
b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
|
|
return b2Mat22(c1, c2);
|
|
}
|
|
|
|
/// Multiply a matrix times a vector.
|
|
inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
|
|
{
|
|
return v.x * A.ex + v.y * A.ey + v.z * A.ez;
|
|
}
|
|
|
|
/// Multiply a matrix times a vector.
|
|
inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
|
|
{
|
|
return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
|
|
}
|
|
|
|
/// Multiply two rotations: q * r
|
|
inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
|
|
{
|
|
// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
|
|
// [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
|
|
// s = qs * rc + qc * rs
|
|
// c = qc * rc - qs * rs
|
|
b2Rot qr;
|
|
qr.s = q.s * r.c + q.c * r.s;
|
|
qr.c = q.c * r.c - q.s * r.s;
|
|
return qr;
|
|
}
|
|
|
|
/// Transpose multiply two rotations: qT * r
|
|
inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
|
|
{
|
|
// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
|
|
// [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
|
|
// s = qc * rs - qs * rc
|
|
// c = qc * rc + qs * rs
|
|
b2Rot qr;
|
|
qr.s = q.c * r.s - q.s * r.c;
|
|
qr.c = q.c * r.c + q.s * r.s;
|
|
return qr;
|
|
}
|
|
|
|
/// Rotate a vector
|
|
inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
|
|
{
|
|
return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
|
|
}
|
|
|
|
/// Inverse rotate a vector
|
|
inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
|
|
{
|
|
return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
|
|
}
|
|
|
|
inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
|
|
{
|
|
float x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
|
|
float y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
|
|
|
|
return b2Vec2(x, y);
|
|
}
|
|
|
|
inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
|
|
{
|
|
float px = v.x - T.p.x;
|
|
float py = v.y - T.p.y;
|
|
float x = (T.q.c * px + T.q.s * py);
|
|
float y = (-T.q.s * px + T.q.c * py);
|
|
|
|
return b2Vec2(x, y);
|
|
}
|
|
|
|
// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
|
|
// = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
|
|
inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
|
|
{
|
|
b2Transform C;
|
|
C.q = b2Mul(A.q, B.q);
|
|
C.p = b2Mul(A.q, B.p) + A.p;
|
|
return C;
|
|
}
|
|
|
|
// v2 = A.q' * (B.q * v1 + B.p - A.p)
|
|
// = A.q' * B.q * v1 + A.q' * (B.p - A.p)
|
|
inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
|
|
{
|
|
b2Transform C;
|
|
C.q = b2MulT(A.q, B.q);
|
|
C.p = b2MulT(A.q, B.p - A.p);
|
|
return C;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T b2Abs(T a)
|
|
{
|
|
return a > T(0) ? a : -a;
|
|
}
|
|
|
|
inline b2Vec2 b2Abs(const b2Vec2& a)
|
|
{
|
|
return b2Vec2(b2Abs(a.x), b2Abs(a.y));
|
|
}
|
|
|
|
inline b2Mat22 b2Abs(const b2Mat22& A)
|
|
{
|
|
return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
|
|
}
|
|
|
|
template <typename T>
|
|
inline T b2Min(T a, T b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
|
|
}
|
|
|
|
template <typename T>
|
|
inline T b2Max(T a, T b)
|
|
{
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
|
|
{
|
|
return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
|
|
}
|
|
|
|
template <typename T>
|
|
inline T b2Clamp(T a, T low, T high)
|
|
{
|
|
return b2Max(low, b2Min(a, high));
|
|
}
|
|
|
|
inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
|
|
{
|
|
return b2Max(low, b2Min(a, high));
|
|
}
|
|
|
|
template<typename T> inline void b2Swap(T& a, T& b)
|
|
{
|
|
T tmp = a;
|
|
a = b;
|
|
b = tmp;
|
|
}
|
|
|
|
/// "Next Largest Power of 2
|
|
/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
|
|
/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
|
|
/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
|
|
/// largest power of 2. For a 32-bit value:"
|
|
inline uint32 b2NextPowerOfTwo(uint32 x)
|
|
{
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
return x + 1;
|
|
}
|
|
|
|
inline bool b2IsPowerOfTwo(uint32 x)
|
|
{
|
|
bool result = x > 0 && (x & (x - 1)) == 0;
|
|
return result;
|
|
}
|
|
|
|
// https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
|
|
inline void b2Sweep::GetTransform(b2Transform* xf, float beta) const
|
|
{
|
|
xf->p = (1.0f - beta) * c0 + beta * c;
|
|
float angle = (1.0f - beta) * a0 + beta * a;
|
|
xf->q.Set(angle);
|
|
|
|
// Shift to origin
|
|
xf->p -= b2Mul(xf->q, localCenter);
|
|
}
|
|
|
|
inline void b2Sweep::Advance(float alpha)
|
|
{
|
|
b2Assert(alpha0 < 1.0f);
|
|
float beta = (alpha - alpha0) / (1.0f - alpha0);
|
|
c0 += beta * (c - c0);
|
|
a0 += beta * (a - a0);
|
|
alpha0 = alpha;
|
|
}
|
|
|
|
/// Normalize an angle in radians to be between -pi and pi
|
|
inline void b2Sweep::Normalize()
|
|
{
|
|
float twoPi = 2.0f * b2_pi;
|
|
float d = twoPi * floorf(a0 / twoPi);
|
|
a0 -= d;
|
|
a -= d;
|
|
}
|
|
|
|
#endif
|