axmol/external/chipmunk/src/cpCollision.c

423 lines
12 KiB
C

/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "chipmunk_private.h"
typedef int (*collisionFunc)(const cpShape *, const cpShape *, cpContact *);
// Add contact points for circle to circle collisions.
// Used by several collision tests.
static int
circle2circleQuery(const cpVect p1, const cpVect p2, const cpFloat r1, const cpFloat r2, cpContact *con)
{
cpFloat mindist = r1 + r2;
cpVect delta = cpvsub(p2, p1);
cpFloat distsq = cpvlengthsq(delta);
if(distsq >= mindist*mindist) return 0;
cpFloat dist = cpfsqrt(distsq);
// Allocate and initialize the contact.
cpContactInit(
con,
cpvadd(p1, cpvmult(delta, 0.5f + (r1 - 0.5f*mindist)/(dist ? dist : INFINITY))),
(dist ? cpvmult(delta, 1.0f/dist) : cpv(1.0f, 0.0f)),
dist - mindist,
0
);
return 1;
}
// Collide circle shapes.
static int
circle2circle(const cpShape *shape1, const cpShape *shape2, cpContact *arr)
{
cpCircleShape *circ1 = (cpCircleShape *)shape1; //TODO
cpCircleShape *circ2 = (cpCircleShape *)shape2;
return circle2circleQuery(circ1->tc, circ2->tc, circ1->r, circ2->r, arr);
}
static int
circle2segment(const cpCircleShape *circleShape, const cpSegmentShape *segmentShape, cpContact *con)
{
cpVect seg_a = segmentShape->ta;
cpVect seg_b = segmentShape->tb;
cpVect center = circleShape->tc;
cpVect seg_delta = cpvsub(seg_b, seg_a);
cpFloat closest_t = cpfclamp01(cpvdot(seg_delta, cpvsub(center, seg_a))/cpvlengthsq(seg_delta));
cpVect closest = cpvadd(seg_a, cpvmult(seg_delta, closest_t));
if(circle2circleQuery(center, closest, circleShape->r, segmentShape->r, con)){
cpVect n = con[0].n;
// Reject endcap collisions if tangents are provided.
if(
(closest_t == 0.0f && cpvdot(n, segmentShape->a_tangent) < 0.0) ||
(closest_t == 1.0f && cpvdot(n, segmentShape->b_tangent) < 0.0)
) return 0;
return 1;
} else {
return 0;
}
}
// Helper function for working with contact buffers
// This used to malloc/realloc memory on the fly but was repurposed.
static cpContact *
nextContactPoint(cpContact *arr, int *numPtr)
{
int index = *numPtr;
if(index < CP_MAX_CONTACTS_PER_ARBITER){
(*numPtr) = index + 1;
return &arr[index];
} else {
return &arr[CP_MAX_CONTACTS_PER_ARBITER - 1];
}
}
// Find the minimum separating axis for the give poly and axis list.
static inline int
findMSA(const cpPolyShape *poly, const cpSplittingPlane *planes, const int num, cpFloat *min_out)
{
int min_index = 0;
cpFloat min = cpPolyShapeValueOnAxis(poly, planes->n, planes->d);
if(min > 0.0f) return -1;
for(int i=1; i<num; i++){
cpFloat dist = cpPolyShapeValueOnAxis(poly, planes[i].n, planes[i].d);
if(dist > 0.0f) {
return -1;
} else if(dist > min){
min = dist;
min_index = i;
}
}
(*min_out) = min;
return min_index;
}
// Add contacts for probably penetrating vertexes.
// This handles the degenerate case where an overlap was detected, but no vertexes fall inside
// the opposing polygon. (like a star of david)
static inline int
findVertsFallback(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist)
{
int num = 0;
for(int i=0; i<poly1->numVerts; i++){
cpVect v = poly1->tVerts[i];
if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n)))
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
}
for(int i=0; i<poly2->numVerts; i++){
cpVect v = poly2->tVerts[i];
if(cpPolyShapeContainsVertPartial(poly1, v, n))
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
}
return num;
}
// Add contacts for penetrating vertexes.
static inline int
findVerts(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist)
{
int num = 0;
for(int i=0; i<poly1->numVerts; i++){
cpVect v = poly1->tVerts[i];
if(cpPolyShapeContainsVert(poly2, v))
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
}
for(int i=0; i<poly2->numVerts; i++){
cpVect v = poly2->tVerts[i];
if(cpPolyShapeContainsVert(poly1, v))
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
}
return (num ? num : findVertsFallback(arr, poly1, poly2, n, dist));
}
// Collide poly shapes together.
static int
poly2poly(const cpShape *shape1, const cpShape *shape2, cpContact *arr)
{
cpPolyShape *poly1 = (cpPolyShape *)shape1;
cpPolyShape *poly2 = (cpPolyShape *)shape2;
cpFloat min1;
int mini1 = findMSA(poly2, poly1->tPlanes, poly1->numVerts, &min1);
if(mini1 == -1) return 0;
cpFloat min2;
int mini2 = findMSA(poly1, poly2->tPlanes, poly2->numVerts, &min2);
if(mini2 == -1) return 0;
// There is overlap, find the penetrating verts
if(min1 > min2)
return findVerts(arr, poly1, poly2, poly1->tPlanes[mini1].n, min1);
else
return findVerts(arr, poly1, poly2, cpvneg(poly2->tPlanes[mini2].n), min2);
}
// Like cpPolyValueOnAxis(), but for segments.
static inline cpFloat
segValueOnAxis(const cpSegmentShape *seg, const cpVect n, const cpFloat d)
{
cpFloat a = cpvdot(n, seg->ta) - seg->r;
cpFloat b = cpvdot(n, seg->tb) - seg->r;
return cpfmin(a, b) - d;
}
// Identify vertexes that have penetrated the segment.
static inline void
findPointsBehindSeg(cpContact *arr, int *num, const cpSegmentShape *seg, const cpPolyShape *poly, const cpFloat pDist, const cpFloat coef)
{
cpFloat dta = cpvcross(seg->tn, seg->ta);
cpFloat dtb = cpvcross(seg->tn, seg->tb);
cpVect n = cpvmult(seg->tn, coef);
for(int i=0; i<poly->numVerts; i++){
cpVect v = poly->tVerts[i];
if(cpvdot(v, n) < cpvdot(seg->tn, seg->ta)*coef + seg->r){
cpFloat dt = cpvcross(seg->tn, v);
if(dta >= dt && dt >= dtb){
cpContactInit(nextContactPoint(arr, num), v, n, pDist, CP_HASH_PAIR(poly->shape.hashid, i));
}
}
}
}
// This one is complicated and gross. Just don't go there...
// TODO: Comment me!
static int
seg2poly(const cpShape *shape1, const cpShape *shape2, cpContact *arr)
{
cpSegmentShape *seg = (cpSegmentShape *)shape1;
cpPolyShape *poly = (cpPolyShape *)shape2;
cpSplittingPlane *planes = poly->tPlanes;
cpFloat segD = cpvdot(seg->tn, seg->ta);
cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r;
cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r;
if(minNeg > 0.0f || minNorm > 0.0f) return 0;
int mini = 0;
cpFloat poly_min = segValueOnAxis(seg, planes->n, planes->d);
if(poly_min > 0.0f) return 0;
for(int i=0; i<poly->numVerts; i++){
cpFloat dist = segValueOnAxis(seg, planes[i].n, planes[i].d);
if(dist > 0.0f){
return 0;
} else if(dist > poly_min){
poly_min = dist;
mini = i;
}
}
int num = 0;
cpVect poly_n = cpvneg(planes[mini].n);
cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r));
cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r));
if(cpPolyShapeContainsVert(poly, va))
cpContactInit(nextContactPoint(arr, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 0));
if(cpPolyShapeContainsVert(poly, vb))
cpContactInit(nextContactPoint(arr, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 1));
// Floating point precision problems here.
// This will have to do for now.
// poly_min -= cp_collision_slop; // TODO is this needed anymore?
if(minNorm >= poly_min || minNeg >= poly_min) {
if(minNorm > minNeg)
findPointsBehindSeg(arr, &num, seg, poly, minNorm, 1.0f);
else
findPointsBehindSeg(arr, &num, seg, poly, minNeg, -1.0f);
}
// If no other collision points are found, try colliding endpoints.
if(num == 0){
cpVect poly_a = poly->tVerts[mini];
cpVect poly_b = poly->tVerts[(mini + 1)%poly->numVerts];
if(circle2circleQuery(seg->ta, poly_a, seg->r, 0.0f, arr)) return 1;
if(circle2circleQuery(seg->tb, poly_a, seg->r, 0.0f, arr)) return 1;
if(circle2circleQuery(seg->ta, poly_b, seg->r, 0.0f, arr)) return 1;
if(circle2circleQuery(seg->tb, poly_b, seg->r, 0.0f, arr)) return 1;
}
return num;
}
// This one is less gross, but still gross.
// TODO: Comment me!
static int
circle2poly(const cpShape *shape1, const cpShape *shape2, cpContact *con)
{
cpCircleShape *circ = (cpCircleShape *)shape1;
cpPolyShape *poly = (cpPolyShape *)shape2;
cpSplittingPlane *planes = poly->tPlanes;
int mini = 0;
cpFloat min = cpSplittingPlaneCompare(planes[0], circ->tc) - circ->r;
for(int i=0; i<poly->numVerts; i++){
cpFloat dist = cpSplittingPlaneCompare(planes[i], circ->tc) - circ->r;
if(dist > 0.0f){
return 0;
} else if(dist > min) {
min = dist;
mini = i;
}
}
cpVect n = planes[mini].n;
cpVect a = poly->tVerts[mini];
cpVect b = poly->tVerts[(mini + 1)%poly->numVerts];
cpFloat dta = cpvcross(n, a);
cpFloat dtb = cpvcross(n, b);
cpFloat dt = cpvcross(n, circ->tc);
if(dt < dtb){
return circle2circleQuery(circ->tc, b, circ->r, 0.0f, con);
} else if(dt < dta) {
cpContactInit(
con,
cpvsub(circ->tc, cpvmult(n, circ->r + min/2.0f)),
cpvneg(n),
min,
0
);
return 1;
} else {
return circle2circleQuery(circ->tc, a, circ->r, 0.0f, con);
}
}
// Submitted by LegoCyclon
static int
seg2seg(const cpShape* shape1, const cpShape* shape2, cpContact* con)
{
cpSegmentShape* seg1 = (cpSegmentShape *)shape1;
cpSegmentShape* seg2 = (cpSegmentShape *)shape2;
cpVect v1 = cpvsub(seg1->tb, seg1->ta);
cpVect v2 = cpvsub(seg2->tb, seg2->ta);
cpFloat v1lsq = cpvlengthsq(v1);
cpFloat v2lsq = cpvlengthsq(v2);
// project seg2 onto seg1
cpVect p1a = cpvproject(cpvsub(seg2->ta, seg1->ta), v1);
cpVect p1b = cpvproject(cpvsub(seg2->tb, seg1->ta), v1);
// project seg1 onto seg2
cpVect p2a = cpvproject(cpvsub(seg1->ta, seg2->ta), v2);
cpVect p2b = cpvproject(cpvsub(seg1->tb, seg2->ta), v2);
// clamp projections to segment endcaps
if (cpvdot(p1a, v1) < 0.0f)
p1a = cpvzero;
else if (cpvdot(p1a, v1) > 0.0f && cpvlengthsq(p1a) > v1lsq)
p1a = v1;
if (cpvdot(p1b, v1) < 0.0f)
p1b = cpvzero;
else if (cpvdot(p1b, v1) > 0.0f && cpvlengthsq(p1b) > v1lsq)
p1b = v1;
if (cpvdot(p2a, v2) < 0.0f)
p2a = cpvzero;
else if (cpvdot(p2a, v2) > 0.0f && cpvlengthsq(p2a) > v2lsq)
p2a = v2;
if (cpvdot(p2b, v2) < 0.0f)
p2b = cpvzero;
else if (cpvdot(p2b, v2) > 0.0f && cpvlengthsq(p2b) > v2lsq)
p2b = v2;
p1a = cpvadd(p1a, seg1->ta);
p1b = cpvadd(p1b, seg1->ta);
p2a = cpvadd(p2a, seg2->ta);
p2b = cpvadd(p2b, seg2->ta);
int num = 0;
if (!circle2circleQuery(p1a, p2a, seg1->r, seg2->r, nextContactPoint(con, &num)))
--num;
if (!circle2circleQuery(p1b, p2b, seg1->r, seg2->r, nextContactPoint(con, &num)))
--num;
if (!circle2circleQuery(p1a, p2b, seg1->r, seg2->r, nextContactPoint(con, &num)))
--num;
if (!circle2circleQuery(p1b, p2a, seg1->r, seg2->r, nextContactPoint(con, &num)))
--num;
return num;
}
static const collisionFunc builtinCollisionFuncs[9] = {
circle2circle,
NULL,
NULL,
(collisionFunc)circle2segment,
NULL,
NULL,
circle2poly,
seg2poly,
poly2poly,
};
static const collisionFunc *colfuncs = builtinCollisionFuncs;
static const collisionFunc segmentCollisions[9] = {
circle2circle,
NULL,
NULL,
(collisionFunc)circle2segment,
seg2seg,
NULL,
circle2poly,
seg2poly,
poly2poly,
};
void
cpEnableSegmentToSegmentCollisions(void)
{
colfuncs = segmentCollisions;
}
int
cpCollideShapes(const cpShape *a, const cpShape *b, cpContact *arr)
{
// Their shape types must be in order.
cpAssertSoft(a->klass->type <= b->klass->type, "Collision shapes passed to cpCollideShapes() are not sorted.");
collisionFunc cfunc = colfuncs[a->klass->type + b->klass->type*CP_NUM_SHAPES];
return (cfunc) ? cfunc(a, b, arr) : 0;
}