mirror of https://github.com/axmolengine/axmol.git
688 lines
21 KiB
C++
688 lines
21 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_RIGIDBODY_H
|
|
#define BT_RIGIDBODY_H
|
|
|
|
#include "LinearMath/btAlignedObjectArray.h"
|
|
#include "LinearMath/btTransform.h"
|
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
|
|
|
class btCollisionShape;
|
|
class btMotionState;
|
|
class btTypedConstraint;
|
|
|
|
extern btScalar gDeactivationTime;
|
|
extern bool gDisableDeactivation;
|
|
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define btRigidBodyData btRigidBodyDoubleData
|
|
#define btRigidBodyDataName "btRigidBodyDoubleData"
|
|
#else
|
|
#define btRigidBodyData btRigidBodyFloatData
|
|
#define btRigidBodyDataName "btRigidBodyFloatData"
|
|
#endif //BT_USE_DOUBLE_PRECISION
|
|
|
|
enum btRigidBodyFlags
|
|
{
|
|
BT_DISABLE_WORLD_GRAVITY = 1,
|
|
///BT_ENABLE_GYROPSCOPIC_FORCE flags is enabled by default in Bullet 2.83 and onwards.
|
|
///and it BT_ENABLE_GYROPSCOPIC_FORCE becomes equivalent to BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY
|
|
///See Demos/GyroscopicDemo and computeGyroscopicImpulseImplicit
|
|
BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT = 2,
|
|
BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD = 4,
|
|
BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY = 8,
|
|
BT_ENABLE_GYROPSCOPIC_FORCE = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY,
|
|
};
|
|
|
|
///The btRigidBody is the main class for rigid body objects. It is derived from btCollisionObject, so it keeps a pointer to a btCollisionShape.
|
|
///It is recommended for performance and memory use to share btCollisionShape objects whenever possible.
|
|
///There are 3 types of rigid bodies:
|
|
///- A) Dynamic rigid bodies, with positive mass. Motion is controlled by rigid body dynamics.
|
|
///- B) Fixed objects with zero mass. They are not moving (basically collision objects)
|
|
///- C) Kinematic objects, which are objects without mass, but the user can move them. There is one-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform.
|
|
///Bullet automatically deactivates dynamic rigid bodies, when the velocity is below a threshold for a given time.
|
|
///Deactivated (sleeping) rigid bodies don't take any processing time, except a minor broadphase collision detection impact (to allow active objects to activate/wake up sleeping objects)
|
|
class btRigidBody : public btCollisionObject
|
|
{
|
|
btMatrix3x3 m_invInertiaTensorWorld;
|
|
btVector3 m_linearVelocity;
|
|
btVector3 m_angularVelocity;
|
|
btScalar m_inverseMass;
|
|
btVector3 m_linearFactor;
|
|
|
|
btVector3 m_gravity;
|
|
btVector3 m_gravity_acceleration;
|
|
btVector3 m_invInertiaLocal;
|
|
btVector3 m_totalForce;
|
|
btVector3 m_totalTorque;
|
|
|
|
btScalar m_linearDamping;
|
|
btScalar m_angularDamping;
|
|
|
|
bool m_additionalDamping;
|
|
btScalar m_additionalDampingFactor;
|
|
btScalar m_additionalLinearDampingThresholdSqr;
|
|
btScalar m_additionalAngularDampingThresholdSqr;
|
|
btScalar m_additionalAngularDampingFactor;
|
|
|
|
btScalar m_linearSleepingThreshold;
|
|
btScalar m_angularSleepingThreshold;
|
|
|
|
//m_optionalMotionState allows to automatic synchronize the world transform for active objects
|
|
btMotionState* m_optionalMotionState;
|
|
|
|
//keep track of typed constraints referencing this rigid body, to disable collision between linked bodies
|
|
btAlignedObjectArray<btTypedConstraint*> m_constraintRefs;
|
|
|
|
int m_rigidbodyFlags;
|
|
|
|
int m_debugBodyId;
|
|
|
|
protected:
|
|
ATTRIBUTE_ALIGNED16(btVector3 m_deltaLinearVelocity);
|
|
btVector3 m_deltaAngularVelocity;
|
|
btVector3 m_angularFactor;
|
|
btVector3 m_invMass;
|
|
btVector3 m_pushVelocity;
|
|
btVector3 m_turnVelocity;
|
|
|
|
public:
|
|
///The btRigidBodyConstructionInfo structure provides information to create a rigid body. Setting mass to zero creates a fixed (non-dynamic) rigid body.
|
|
///For dynamic objects, you can use the collision shape to approximate the local inertia tensor, otherwise use the zero vector (default argument)
|
|
///You can use the motion state to synchronize the world transform between physics and graphics objects.
|
|
///And if the motion state is provided, the rigid body will initialize its initial world transform from the motion state,
|
|
///m_startWorldTransform is only used when you don't provide a motion state.
|
|
struct btRigidBodyConstructionInfo
|
|
{
|
|
btScalar m_mass;
|
|
|
|
///When a motionState is provided, the rigid body will initialize its world transform from the motion state
|
|
///In this case, m_startWorldTransform is ignored.
|
|
btMotionState* m_motionState;
|
|
btTransform m_startWorldTransform;
|
|
|
|
btCollisionShape* m_collisionShape;
|
|
btVector3 m_localInertia;
|
|
btScalar m_linearDamping;
|
|
btScalar m_angularDamping;
|
|
|
|
///best simulation results when friction is non-zero
|
|
btScalar m_friction;
|
|
///the m_rollingFriction prevents rounded shapes, such as spheres, cylinders and capsules from rolling forever.
|
|
///See Bullet/Demos/RollingFrictionDemo for usage
|
|
btScalar m_rollingFriction;
|
|
btScalar m_spinningFriction; //torsional friction around contact normal
|
|
|
|
///best simulation results using zero restitution.
|
|
btScalar m_restitution;
|
|
|
|
btScalar m_linearSleepingThreshold;
|
|
btScalar m_angularSleepingThreshold;
|
|
|
|
//Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
|
|
//Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
|
|
bool m_additionalDamping;
|
|
btScalar m_additionalDampingFactor;
|
|
btScalar m_additionalLinearDampingThresholdSqr;
|
|
btScalar m_additionalAngularDampingThresholdSqr;
|
|
btScalar m_additionalAngularDampingFactor;
|
|
|
|
btRigidBodyConstructionInfo(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia = btVector3(0, 0, 0)) : m_mass(mass),
|
|
m_motionState(motionState),
|
|
m_collisionShape(collisionShape),
|
|
m_localInertia(localInertia),
|
|
m_linearDamping(btScalar(0.)),
|
|
m_angularDamping(btScalar(0.)),
|
|
m_friction(btScalar(0.5)),
|
|
m_rollingFriction(btScalar(0)),
|
|
m_spinningFriction(btScalar(0)),
|
|
m_restitution(btScalar(0.)),
|
|
m_linearSleepingThreshold(btScalar(0.8)),
|
|
m_angularSleepingThreshold(btScalar(1.f)),
|
|
m_additionalDamping(false),
|
|
m_additionalDampingFactor(btScalar(0.005)),
|
|
m_additionalLinearDampingThresholdSqr(btScalar(0.01)),
|
|
m_additionalAngularDampingThresholdSqr(btScalar(0.01)),
|
|
m_additionalAngularDampingFactor(btScalar(0.01))
|
|
{
|
|
m_startWorldTransform.setIdentity();
|
|
}
|
|
};
|
|
|
|
///btRigidBody constructor using construction info
|
|
btRigidBody(const btRigidBodyConstructionInfo& constructionInfo);
|
|
|
|
///btRigidBody constructor for backwards compatibility.
|
|
///To specify friction (etc) during rigid body construction, please use the other constructor (using btRigidBodyConstructionInfo)
|
|
btRigidBody(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia = btVector3(0, 0, 0));
|
|
|
|
virtual ~btRigidBody()
|
|
{
|
|
//No constraints should point to this rigidbody
|
|
//Remove constraints from the dynamics world before you delete the related rigidbodies.
|
|
btAssert(m_constraintRefs.size() == 0);
|
|
}
|
|
|
|
protected:
|
|
///setupRigidBody is only used internally by the constructor
|
|
void setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo);
|
|
|
|
public:
|
|
void proceedToTransform(const btTransform& newTrans);
|
|
|
|
///to keep collision detection and dynamics separate we don't store a rigidbody pointer
|
|
///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
|
|
static const btRigidBody* upcast(const btCollisionObject* colObj)
|
|
{
|
|
if (colObj->getInternalType() & btCollisionObject::CO_RIGID_BODY)
|
|
return (const btRigidBody*)colObj;
|
|
return 0;
|
|
}
|
|
static btRigidBody* upcast(btCollisionObject* colObj)
|
|
{
|
|
if (colObj->getInternalType() & btCollisionObject::CO_RIGID_BODY)
|
|
return (btRigidBody*)colObj;
|
|
return 0;
|
|
}
|
|
|
|
/// continuous collision detection needs prediction
|
|
void predictIntegratedTransform(btScalar step, btTransform& predictedTransform);
|
|
|
|
void saveKinematicState(btScalar step);
|
|
|
|
void applyGravity();
|
|
|
|
void clearGravity();
|
|
|
|
void setGravity(const btVector3& acceleration);
|
|
|
|
const btVector3& getGravity() const
|
|
{
|
|
return m_gravity_acceleration;
|
|
}
|
|
|
|
void setDamping(btScalar lin_damping, btScalar ang_damping);
|
|
|
|
btScalar getLinearDamping() const
|
|
{
|
|
return m_linearDamping;
|
|
}
|
|
|
|
btScalar getAngularDamping() const
|
|
{
|
|
return m_angularDamping;
|
|
}
|
|
|
|
btScalar getLinearSleepingThreshold() const
|
|
{
|
|
return m_linearSleepingThreshold;
|
|
}
|
|
|
|
btScalar getAngularSleepingThreshold() const
|
|
{
|
|
return m_angularSleepingThreshold;
|
|
}
|
|
|
|
void applyDamping(btScalar timeStep);
|
|
|
|
SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const
|
|
{
|
|
return m_collisionShape;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btCollisionShape* getCollisionShape()
|
|
{
|
|
return m_collisionShape;
|
|
}
|
|
|
|
void setMassProps(btScalar mass, const btVector3& inertia);
|
|
|
|
const btVector3& getLinearFactor() const
|
|
{
|
|
return m_linearFactor;
|
|
}
|
|
void setLinearFactor(const btVector3& linearFactor)
|
|
{
|
|
m_linearFactor = linearFactor;
|
|
m_invMass = m_linearFactor * m_inverseMass;
|
|
}
|
|
btScalar getInvMass() const { return m_inverseMass; }
|
|
btScalar getMass() const { return m_inverseMass == btScalar(0.) ? btScalar(0.) : btScalar(1.0) / m_inverseMass; }
|
|
const btMatrix3x3& getInvInertiaTensorWorld() const
|
|
{
|
|
return m_invInertiaTensorWorld;
|
|
}
|
|
|
|
void integrateVelocities(btScalar step);
|
|
|
|
void setCenterOfMassTransform(const btTransform& xform);
|
|
|
|
void applyCentralForce(const btVector3& force)
|
|
{
|
|
m_totalForce += force * m_linearFactor;
|
|
}
|
|
|
|
const btVector3& getTotalForce() const
|
|
{
|
|
return m_totalForce;
|
|
};
|
|
|
|
const btVector3& getTotalTorque() const
|
|
{
|
|
return m_totalTorque;
|
|
};
|
|
|
|
const btVector3& getInvInertiaDiagLocal() const
|
|
{
|
|
return m_invInertiaLocal;
|
|
};
|
|
|
|
void setInvInertiaDiagLocal(const btVector3& diagInvInertia)
|
|
{
|
|
m_invInertiaLocal = diagInvInertia;
|
|
}
|
|
|
|
void setSleepingThresholds(btScalar linear, btScalar angular)
|
|
{
|
|
m_linearSleepingThreshold = linear;
|
|
m_angularSleepingThreshold = angular;
|
|
}
|
|
|
|
void applyTorque(const btVector3& torque)
|
|
{
|
|
m_totalTorque += torque * m_angularFactor;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_totalTorque);
|
|
#endif
|
|
}
|
|
|
|
void applyForce(const btVector3& force, const btVector3& rel_pos)
|
|
{
|
|
applyCentralForce(force);
|
|
applyTorque(rel_pos.cross(force * m_linearFactor));
|
|
}
|
|
|
|
void applyCentralImpulse(const btVector3& impulse)
|
|
{
|
|
m_linearVelocity += impulse * m_linearFactor * m_inverseMass;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_linearVelocity);
|
|
#endif
|
|
}
|
|
|
|
void applyTorqueImpulse(const btVector3& torque)
|
|
{
|
|
m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_angularVelocity);
|
|
#endif
|
|
}
|
|
|
|
void applyImpulse(const btVector3& impulse, const btVector3& rel_pos)
|
|
{
|
|
if (m_inverseMass != btScalar(0.))
|
|
{
|
|
applyCentralImpulse(impulse);
|
|
if (m_angularFactor)
|
|
{
|
|
applyTorqueImpulse(rel_pos.cross(impulse * m_linearFactor));
|
|
}
|
|
}
|
|
}
|
|
|
|
void applyPushImpulse(const btVector3& impulse, const btVector3& rel_pos)
|
|
{
|
|
if (m_inverseMass != btScalar(0.))
|
|
{
|
|
applyCentralPushImpulse(impulse);
|
|
if (m_angularFactor)
|
|
{
|
|
applyTorqueTurnImpulse(rel_pos.cross(impulse * m_linearFactor));
|
|
}
|
|
}
|
|
}
|
|
|
|
btVector3 getPushVelocity() const
|
|
{
|
|
return m_pushVelocity;
|
|
}
|
|
|
|
btVector3 getTurnVelocity() const
|
|
{
|
|
return m_turnVelocity;
|
|
}
|
|
|
|
void setPushVelocity(const btVector3& v)
|
|
{
|
|
m_pushVelocity = v;
|
|
}
|
|
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
void clampVelocity(btVector3& v) const {
|
|
v.setX(
|
|
fmax(-BT_CLAMP_VELOCITY_TO,
|
|
fmin(BT_CLAMP_VELOCITY_TO, v.getX()))
|
|
);
|
|
v.setY(
|
|
fmax(-BT_CLAMP_VELOCITY_TO,
|
|
fmin(BT_CLAMP_VELOCITY_TO, v.getY()))
|
|
);
|
|
v.setZ(
|
|
fmax(-BT_CLAMP_VELOCITY_TO,
|
|
fmin(BT_CLAMP_VELOCITY_TO, v.getZ()))
|
|
);
|
|
}
|
|
#endif
|
|
|
|
void setTurnVelocity(const btVector3& v)
|
|
{
|
|
m_turnVelocity = v;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_turnVelocity);
|
|
#endif
|
|
}
|
|
|
|
void applyCentralPushImpulse(const btVector3& impulse)
|
|
{
|
|
m_pushVelocity += impulse * m_linearFactor * m_inverseMass;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_pushVelocity);
|
|
#endif
|
|
}
|
|
|
|
void applyTorqueTurnImpulse(const btVector3& torque)
|
|
{
|
|
m_turnVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_turnVelocity);
|
|
#endif
|
|
}
|
|
|
|
void clearForces()
|
|
{
|
|
m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
|
|
m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
|
|
}
|
|
|
|
void updateInertiaTensor();
|
|
|
|
const btVector3& getCenterOfMassPosition() const
|
|
{
|
|
return m_worldTransform.getOrigin();
|
|
}
|
|
btQuaternion getOrientation() const;
|
|
|
|
const btTransform& getCenterOfMassTransform() const
|
|
{
|
|
return m_worldTransform;
|
|
}
|
|
const btVector3& getLinearVelocity() const
|
|
{
|
|
return m_linearVelocity;
|
|
}
|
|
const btVector3& getAngularVelocity() const
|
|
{
|
|
return m_angularVelocity;
|
|
}
|
|
|
|
inline void setLinearVelocity(const btVector3& lin_vel)
|
|
{
|
|
m_updateRevision++;
|
|
m_linearVelocity = lin_vel;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_linearVelocity);
|
|
#endif
|
|
}
|
|
|
|
inline void setAngularVelocity(const btVector3& ang_vel)
|
|
{
|
|
m_updateRevision++;
|
|
m_angularVelocity = ang_vel;
|
|
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
|
clampVelocity(m_angularVelocity);
|
|
#endif
|
|
}
|
|
|
|
btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
|
|
{
|
|
//we also calculate lin/ang velocity for kinematic objects
|
|
return m_linearVelocity + m_angularVelocity.cross(rel_pos);
|
|
|
|
//for kinematic objects, we could also use use:
|
|
// return (m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
|
|
}
|
|
|
|
btVector3 getPushVelocityInLocalPoint(const btVector3& rel_pos) const
|
|
{
|
|
//we also calculate lin/ang velocity for kinematic objects
|
|
return m_pushVelocity + m_turnVelocity.cross(rel_pos);
|
|
}
|
|
|
|
void translate(const btVector3& v)
|
|
{
|
|
m_worldTransform.getOrigin() += v;
|
|
}
|
|
|
|
void getAabb(btVector3& aabbMin, btVector3& aabbMax) const;
|
|
|
|
SIMD_FORCE_INLINE btScalar computeImpulseDenominator(const btVector3& pos, const btVector3& normal) const
|
|
{
|
|
btVector3 r0 = pos - getCenterOfMassPosition();
|
|
|
|
btVector3 c0 = (r0).cross(normal);
|
|
|
|
btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0);
|
|
|
|
return m_inverseMass + normal.dot(vec);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis) const
|
|
{
|
|
btVector3 vec = axis * getInvInertiaTensorWorld();
|
|
return axis.dot(vec);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void updateDeactivation(btScalar timeStep)
|
|
{
|
|
if ((getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
|
|
return;
|
|
|
|
if ((getLinearVelocity().length2() < m_linearSleepingThreshold * m_linearSleepingThreshold) &&
|
|
(getAngularVelocity().length2() < m_angularSleepingThreshold * m_angularSleepingThreshold))
|
|
{
|
|
m_deactivationTime += timeStep;
|
|
}
|
|
else
|
|
{
|
|
m_deactivationTime = btScalar(0.);
|
|
setActivationState(0);
|
|
}
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool wantsSleeping()
|
|
{
|
|
if (getActivationState() == DISABLE_DEACTIVATION)
|
|
return false;
|
|
|
|
//disable deactivation
|
|
if (gDisableDeactivation || (gDeactivationTime == btScalar(0.)))
|
|
return false;
|
|
|
|
if ((getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
|
|
return true;
|
|
|
|
if (m_deactivationTime > gDeactivationTime)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const btBroadphaseProxy* getBroadphaseProxy() const
|
|
{
|
|
return m_broadphaseHandle;
|
|
}
|
|
btBroadphaseProxy* getBroadphaseProxy()
|
|
{
|
|
return m_broadphaseHandle;
|
|
}
|
|
void setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
|
|
{
|
|
m_broadphaseHandle = broadphaseProxy;
|
|
}
|
|
|
|
//btMotionState allows to automatic synchronize the world transform for active objects
|
|
btMotionState* getMotionState()
|
|
{
|
|
return m_optionalMotionState;
|
|
}
|
|
const btMotionState* getMotionState() const
|
|
{
|
|
return m_optionalMotionState;
|
|
}
|
|
void setMotionState(btMotionState* motionState)
|
|
{
|
|
m_optionalMotionState = motionState;
|
|
if (m_optionalMotionState)
|
|
motionState->getWorldTransform(m_worldTransform);
|
|
}
|
|
|
|
//for experimental overriding of friction/contact solver func
|
|
int m_contactSolverType;
|
|
int m_frictionSolverType;
|
|
|
|
void setAngularFactor(const btVector3& angFac)
|
|
{
|
|
m_updateRevision++;
|
|
m_angularFactor = angFac;
|
|
}
|
|
|
|
void setAngularFactor(btScalar angFac)
|
|
{
|
|
m_updateRevision++;
|
|
m_angularFactor.setValue(angFac, angFac, angFac);
|
|
}
|
|
const btVector3& getAngularFactor() const
|
|
{
|
|
return m_angularFactor;
|
|
}
|
|
|
|
//is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
|
|
bool isInWorld() const
|
|
{
|
|
return (getBroadphaseProxy() != 0);
|
|
}
|
|
|
|
void addConstraintRef(btTypedConstraint* c);
|
|
void removeConstraintRef(btTypedConstraint* c);
|
|
|
|
btTypedConstraint* getConstraintRef(int index)
|
|
{
|
|
return m_constraintRefs[index];
|
|
}
|
|
|
|
int getNumConstraintRefs() const
|
|
{
|
|
return m_constraintRefs.size();
|
|
}
|
|
|
|
void setFlags(int flags)
|
|
{
|
|
m_rigidbodyFlags = flags;
|
|
}
|
|
|
|
int getFlags() const
|
|
{
|
|
return m_rigidbodyFlags;
|
|
}
|
|
|
|
///perform implicit force computation in world space
|
|
btVector3 computeGyroscopicImpulseImplicit_World(btScalar dt) const;
|
|
|
|
///perform implicit force computation in body space (inertial frame)
|
|
btVector3 computeGyroscopicImpulseImplicit_Body(btScalar step) const;
|
|
|
|
///explicit version is best avoided, it gains energy
|
|
btVector3 computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const;
|
|
btVector3 getLocalInertia() const;
|
|
|
|
///////////////////////////////////////////////
|
|
|
|
virtual int calculateSerializeBufferSize() const;
|
|
|
|
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
|
virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
|
|
|
|
virtual void serializeSingleObject(class btSerializer* serializer) const;
|
|
};
|
|
|
|
//@todo add m_optionalMotionState and m_constraintRefs to btRigidBodyData
|
|
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
|
|
struct btRigidBodyFloatData
|
|
{
|
|
btCollisionObjectFloatData m_collisionObjectData;
|
|
btMatrix3x3FloatData m_invInertiaTensorWorld;
|
|
btVector3FloatData m_linearVelocity;
|
|
btVector3FloatData m_angularVelocity;
|
|
btVector3FloatData m_angularFactor;
|
|
btVector3FloatData m_linearFactor;
|
|
btVector3FloatData m_gravity;
|
|
btVector3FloatData m_gravity_acceleration;
|
|
btVector3FloatData m_invInertiaLocal;
|
|
btVector3FloatData m_totalForce;
|
|
btVector3FloatData m_totalTorque;
|
|
float m_inverseMass;
|
|
float m_linearDamping;
|
|
float m_angularDamping;
|
|
float m_additionalDampingFactor;
|
|
float m_additionalLinearDampingThresholdSqr;
|
|
float m_additionalAngularDampingThresholdSqr;
|
|
float m_additionalAngularDampingFactor;
|
|
float m_linearSleepingThreshold;
|
|
float m_angularSleepingThreshold;
|
|
int m_additionalDamping;
|
|
};
|
|
|
|
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
|
|
struct btRigidBodyDoubleData
|
|
{
|
|
btCollisionObjectDoubleData m_collisionObjectData;
|
|
btMatrix3x3DoubleData m_invInertiaTensorWorld;
|
|
btVector3DoubleData m_linearVelocity;
|
|
btVector3DoubleData m_angularVelocity;
|
|
btVector3DoubleData m_angularFactor;
|
|
btVector3DoubleData m_linearFactor;
|
|
btVector3DoubleData m_gravity;
|
|
btVector3DoubleData m_gravity_acceleration;
|
|
btVector3DoubleData m_invInertiaLocal;
|
|
btVector3DoubleData m_totalForce;
|
|
btVector3DoubleData m_totalTorque;
|
|
double m_inverseMass;
|
|
double m_linearDamping;
|
|
double m_angularDamping;
|
|
double m_additionalDampingFactor;
|
|
double m_additionalLinearDampingThresholdSqr;
|
|
double m_additionalAngularDampingThresholdSqr;
|
|
double m_additionalAngularDampingFactor;
|
|
double m_linearSleepingThreshold;
|
|
double m_angularSleepingThreshold;
|
|
int m_additionalDamping;
|
|
char m_padding[4];
|
|
};
|
|
|
|
#endif //BT_RIGIDBODY_H
|