axmol/3rdparty/openal/alc/alc.cpp

3475 lines
111 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "version.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <algorithm>
#include <array>
#include <atomic>
#include <bitset>
#include <cassert>
#include <cctype>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <csignal>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <mutex>
#include <new>
#include <optional>
#include <stddef.h>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "AL/efx.h"
#include "al/auxeffectslot.h"
#include "al/buffer.h"
#include "al/debug.h"
#include "al/effect.h"
#include "al/filter.h"
#include "al/listener.h"
#include "al/source.h"
#include "albit.h"
#include "alconfig.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "atomic.h"
#include "context.h"
#include "core/ambidefs.h"
#include "core/bformatdec.h"
#include "core/bs2b.h"
#include "core/context.h"
#include "core/cpu_caps.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/except.h"
#include "core/helpers.h"
#include "core/mastering.h"
#include "core/mixer/hrtfdefs.h"
#include "core/fpu_ctrl.h"
#include "core/front_stablizer.h"
#include "core/logging.h"
#include "core/uhjfilter.h"
#include "core/voice.h"
#include "core/voice_change.h"
#include "device.h"
#include "effects/base.h"
#include "export_list.h"
#include "inprogext.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
#include "strutils.h"
#include "backends/base.h"
#include "backends/null.h"
#include "backends/loopback.h"
#ifdef HAVE_PIPEWIRE
#include "backends/pipewire.h"
#endif
#ifdef HAVE_JACK
#include "backends/jack.h"
#endif
#ifdef HAVE_PULSEAUDIO
#include "backends/pulseaudio.h"
#endif
#ifdef HAVE_ALSA
#include "backends/alsa.h"
#endif
#ifdef HAVE_WASAPI
#include "backends/wasapi.h"
#endif
#ifdef HAVE_COREAUDIO
#include "backends/coreaudio.h"
#endif
#ifdef HAVE_OPENSL
#include "backends/opensl.h"
#endif
#ifdef HAVE_OBOE
#include "backends/oboe.h"
#endif
#ifdef HAVE_SOLARIS
#include "backends/solaris.h"
#endif
#ifdef HAVE_SNDIO
#include "backends/sndio.h"
#endif
#ifdef HAVE_OSS
#include "backends/oss.h"
#endif
#ifdef HAVE_DSOUND
#include "backends/dsound.h"
#endif
#ifdef HAVE_WINMM
#include "backends/winmm.h"
#endif
#ifdef HAVE_PORTAUDIO
#include "backends/portaudio.h"
#endif
#ifdef HAVE_SDL2
#include "backends/sdl2.h"
#endif
#ifdef HAVE_WAVE
#include "backends/wave.h"
#endif
#ifdef ALSOFT_EAX
#include "al/eax/globals.h"
#include "al/eax/x_ram.h"
#endif // ALSOFT_EAX
/************************************************
* Library initialization
************************************************/
#if defined(_WIN32) && !defined(AL_LIBTYPE_STATIC)
BOOL APIENTRY DllMain(HINSTANCE module, DWORD reason, LPVOID /*reserved*/)
{
switch(reason)
{
case DLL_PROCESS_ATTACH:
/* Pin the DLL so we won't get unloaded until the process terminates */
GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_PIN | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
al::bit_cast<WCHAR*>(module), &module);
break;
}
return TRUE;
}
#endif
namespace {
using namespace std::placeholders;
using std::chrono::seconds;
using std::chrono::nanoseconds;
using voidp = void*;
using float2 = std::array<float,2>;
/************************************************
* Backends
************************************************/
struct BackendInfo {
const char *name;
BackendFactory& (*getFactory)(void);
};
BackendInfo BackendList[] = {
#ifdef HAVE_PIPEWIRE
{ "pipewire", PipeWireBackendFactory::getFactory },
#endif
#ifdef HAVE_PULSEAUDIO
{ "pulse", PulseBackendFactory::getFactory },
#endif
#ifdef HAVE_WASAPI
{ "wasapi", WasapiBackendFactory::getFactory },
#endif
#ifdef HAVE_COREAUDIO
{ "core", CoreAudioBackendFactory::getFactory },
#endif
#ifdef HAVE_OBOE
{ "oboe", OboeBackendFactory::getFactory },
#endif
#ifdef HAVE_OPENSL
{ "opensl", OSLBackendFactory::getFactory },
#endif
#ifdef HAVE_ALSA
{ "alsa", AlsaBackendFactory::getFactory },
#endif
#ifdef HAVE_SOLARIS
{ "solaris", SolarisBackendFactory::getFactory },
#endif
#ifdef HAVE_SNDIO
{ "sndio", SndIOBackendFactory::getFactory },
#endif
#ifdef HAVE_OSS
{ "oss", OSSBackendFactory::getFactory },
#endif
#ifdef HAVE_JACK
{ "jack", JackBackendFactory::getFactory },
#endif
#ifdef HAVE_DSOUND
{ "dsound", DSoundBackendFactory::getFactory },
#endif
#ifdef HAVE_WINMM
{ "winmm", WinMMBackendFactory::getFactory },
#endif
#ifdef HAVE_PORTAUDIO
{ "port", PortBackendFactory::getFactory },
#endif
#ifdef HAVE_SDL2
{ "sdl2", SDL2BackendFactory::getFactory },
#endif
{ "null", NullBackendFactory::getFactory },
#ifdef HAVE_WAVE
{ "wave", WaveBackendFactory::getFactory },
#endif
};
BackendFactory *PlaybackFactory{};
BackendFactory *CaptureFactory{};
constexpr ALCchar alcNoError[] = "No Error";
constexpr ALCchar alcErrInvalidDevice[] = "Invalid Device";
constexpr ALCchar alcErrInvalidContext[] = "Invalid Context";
constexpr ALCchar alcErrInvalidEnum[] = "Invalid Enum";
constexpr ALCchar alcErrInvalidValue[] = "Invalid Value";
constexpr ALCchar alcErrOutOfMemory[] = "Out of Memory";
/************************************************
* Global variables
************************************************/
/* Enumerated device names */
constexpr ALCchar alcDefaultName[] = "OpenAL Soft\0";
std::string alcAllDevicesList;
std::string alcCaptureDeviceList;
/* Default is always the first in the list */
std::string alcDefaultAllDevicesSpecifier;
std::string alcCaptureDefaultDeviceSpecifier;
std::atomic<ALCenum> LastNullDeviceError{ALC_NO_ERROR};
/* Flag to trap ALC device errors */
bool TrapALCError{false};
/* One-time configuration init control */
std::once_flag alc_config_once{};
/* Flag to specify if alcSuspendContext/alcProcessContext should defer/process
* updates.
*/
bool SuspendDefers{true};
/* Initial seed for dithering. */
constexpr uint DitherRNGSeed{22222u};
/************************************************
* ALC information
************************************************/
constexpr ALCchar alcNoDeviceExtList[] =
"ALC_ENUMERATE_ALL_EXT "
"ALC_ENUMERATION_EXT "
"ALC_EXT_CAPTURE "
"ALC_EXTX_direct_context "
"ALC_EXT_EFX "
"ALC_EXT_thread_local_context "
"ALC_SOFT_loopback "
"ALC_SOFT_loopback_bformat "
"ALC_SOFT_reopen_device "
"ALC_SOFT_system_events";
constexpr ALCchar alcExtensionList[] =
"ALC_ENUMERATE_ALL_EXT "
"ALC_ENUMERATION_EXT "
"ALC_EXT_CAPTURE "
"ALC_EXT_debug "
"ALC_EXT_DEDICATED "
"ALC_EXTX_direct_context "
"ALC_EXT_disconnect "
"ALC_EXT_EFX "
"ALC_EXT_thread_local_context "
"ALC_SOFT_device_clock "
"ALC_SOFT_HRTF "
"ALC_SOFT_loopback "
"ALC_SOFT_loopback_bformat "
"ALC_SOFT_output_limiter "
"ALC_SOFT_output_mode "
"ALC_SOFT_pause_device "
"ALC_SOFT_reopen_device "
"ALC_SOFT_system_events";
constexpr int alcMajorVersion{1};
constexpr int alcMinorVersion{1};
constexpr int alcEFXMajorVersion{1};
constexpr int alcEFXMinorVersion{0};
using DeviceRef = al::intrusive_ptr<ALCdevice>;
/************************************************
* Device lists
************************************************/
std::vector<ALCdevice*> DeviceList;
std::vector<ALCcontext*> ContextList;
std::recursive_mutex ListLock;
void alc_initconfig(void)
{
if(auto loglevel = al::getenv("ALSOFT_LOGLEVEL"))
{
long lvl = strtol(loglevel->c_str(), nullptr, 0);
if(lvl >= static_cast<long>(LogLevel::Trace))
gLogLevel = LogLevel::Trace;
else if(lvl <= static_cast<long>(LogLevel::Disable))
gLogLevel = LogLevel::Disable;
else
gLogLevel = static_cast<LogLevel>(lvl);
}
#ifdef _WIN32
if(const auto logfile = al::getenv(L"ALSOFT_LOGFILE"))
{
FILE *logf{_wfopen(logfile->c_str(), L"wt")};
if(logf) gLogFile = logf;
else
{
auto u8name = wstr_to_utf8(*logfile);
ERR("Failed to open log file '%s'\n", u8name.c_str());
}
}
#else
if(const auto logfile = al::getenv("ALSOFT_LOGFILE"))
{
FILE *logf{fopen(logfile->c_str(), "wt")};
if(logf) gLogFile = logf;
else ERR("Failed to open log file '%s'\n", logfile->c_str());
}
#endif
TRACE("Initializing library v%s-%s %s\n", ALSOFT_VERSION, ALSOFT_GIT_COMMIT_HASH,
ALSOFT_GIT_BRANCH);
{
std::string names;
if(std::size(BackendList) < 1)
names = "(none)";
else
{
const al::span<const BackendInfo> infos{BackendList};
names = infos[0].name;
for(const auto &backend : infos.subspan<1>())
{
names += ", ";
names += backend.name;
}
}
TRACE("Supported backends: %s\n", names.c_str());
}
ReadALConfig();
if(auto suspendmode = al::getenv("__ALSOFT_SUSPEND_CONTEXT"))
{
if(al::strcasecmp(suspendmode->c_str(), "ignore") == 0)
{
SuspendDefers = false;
TRACE("Selected context suspend behavior, \"ignore\"\n");
}
else
ERR("Unhandled context suspend behavior setting: \"%s\"\n", suspendmode->c_str());
}
int capfilter{0};
#if defined(HAVE_SSE4_1)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3 | CPU_CAP_SSE4_1;
#elif defined(HAVE_SSE3)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3;
#elif defined(HAVE_SSE2)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2;
#elif defined(HAVE_SSE)
capfilter |= CPU_CAP_SSE;
#endif
#ifdef HAVE_NEON
capfilter |= CPU_CAP_NEON;
#endif
if(auto cpuopt = ConfigValueStr(nullptr, nullptr, "disable-cpu-exts"))
{
const char *str{cpuopt->c_str()};
if(al::strcasecmp(str, "all") == 0)
capfilter = 0;
else
{
const char *next = str;
do {
str = next;
while(isspace(str[0]))
str++;
next = strchr(str, ',');
if(!str[0] || str[0] == ',')
continue;
size_t len{next ? static_cast<size_t>(next-str) : strlen(str)};
while(len > 0 && isspace(str[len-1]))
len--;
if(len == 3 && al::strncasecmp(str, "sse", len) == 0)
capfilter &= ~CPU_CAP_SSE;
else if(len == 4 && al::strncasecmp(str, "sse2", len) == 0)
capfilter &= ~CPU_CAP_SSE2;
else if(len == 4 && al::strncasecmp(str, "sse3", len) == 0)
capfilter &= ~CPU_CAP_SSE3;
else if(len == 6 && al::strncasecmp(str, "sse4.1", len) == 0)
capfilter &= ~CPU_CAP_SSE4_1;
else if(len == 4 && al::strncasecmp(str, "neon", len) == 0)
capfilter &= ~CPU_CAP_NEON;
else
WARN("Invalid CPU extension \"%s\"\n", str);
} while(next++);
}
}
if(auto cpuopt = GetCPUInfo())
{
if(!cpuopt->mVendor.empty() || !cpuopt->mName.empty())
{
TRACE("Vendor ID: \"%s\"\n", cpuopt->mVendor.c_str());
TRACE("Name: \"%s\"\n", cpuopt->mName.c_str());
}
const int caps{cpuopt->mCaps};
TRACE("Extensions:%s%s%s%s%s%s\n",
((capfilter&CPU_CAP_SSE) ? ((caps&CPU_CAP_SSE) ? " +SSE" : " -SSE") : ""),
((capfilter&CPU_CAP_SSE2) ? ((caps&CPU_CAP_SSE2) ? " +SSE2" : " -SSE2") : ""),
((capfilter&CPU_CAP_SSE3) ? ((caps&CPU_CAP_SSE3) ? " +SSE3" : " -SSE3") : ""),
((capfilter&CPU_CAP_SSE4_1) ? ((caps&CPU_CAP_SSE4_1) ? " +SSE4.1" : " -SSE4.1") : ""),
((capfilter&CPU_CAP_NEON) ? ((caps&CPU_CAP_NEON) ? " +NEON" : " -NEON") : ""),
((!capfilter) ? " -none-" : ""));
CPUCapFlags = caps & capfilter;
}
if(auto priopt = ConfigValueInt(nullptr, nullptr, "rt-prio"))
RTPrioLevel = *priopt;
if(auto limopt = ConfigValueBool(nullptr, nullptr, "rt-time-limit"))
AllowRTTimeLimit = *limopt;
{
CompatFlagBitset compatflags{};
auto checkflag = [](const char *envname, const char *optname) -> bool
{
if(auto optval = al::getenv(envname))
{
if(al::strcasecmp(optval->c_str(), "true") == 0
|| strtol(optval->c_str(), nullptr, 0) == 1)
return true;
return false;
}
return GetConfigValueBool(nullptr, "game_compat", optname, false);
};
sBufferSubDataCompat = checkflag("__ALSOFT_ENABLE_SUB_DATA_EXT", "enable-sub-data-ext");
compatflags.set(CompatFlags::ReverseX, checkflag("__ALSOFT_REVERSE_X", "reverse-x"));
compatflags.set(CompatFlags::ReverseY, checkflag("__ALSOFT_REVERSE_Y", "reverse-y"));
compatflags.set(CompatFlags::ReverseZ, checkflag("__ALSOFT_REVERSE_Z", "reverse-z"));
aluInit(compatflags, ConfigValueFloat(nullptr, "game_compat", "nfc-scale").value_or(1.0f));
}
Voice::InitMixer(ConfigValueStr(nullptr, nullptr, "resampler"));
if(auto uhjfiltopt = ConfigValueStr(nullptr, "uhj", "decode-filter"))
{
if(al::strcasecmp(uhjfiltopt->c_str(), "fir256") == 0)
UhjDecodeQuality = UhjQualityType::FIR256;
else if(al::strcasecmp(uhjfiltopt->c_str(), "fir512") == 0)
UhjDecodeQuality = UhjQualityType::FIR512;
else if(al::strcasecmp(uhjfiltopt->c_str(), "iir") == 0)
UhjDecodeQuality = UhjQualityType::IIR;
else
WARN("Unsupported uhj/decode-filter: %s\n", uhjfiltopt->c_str());
}
if(auto uhjfiltopt = ConfigValueStr(nullptr, "uhj", "encode-filter"))
{
if(al::strcasecmp(uhjfiltopt->c_str(), "fir256") == 0)
UhjEncodeQuality = UhjQualityType::FIR256;
else if(al::strcasecmp(uhjfiltopt->c_str(), "fir512") == 0)
UhjEncodeQuality = UhjQualityType::FIR512;
else if(al::strcasecmp(uhjfiltopt->c_str(), "iir") == 0)
UhjEncodeQuality = UhjQualityType::IIR;
else
WARN("Unsupported uhj/encode-filter: %s\n", uhjfiltopt->c_str());
}
auto traperr = al::getenv("ALSOFT_TRAP_ERROR");
if(traperr && (al::strcasecmp(traperr->c_str(), "true") == 0
|| std::strtol(traperr->c_str(), nullptr, 0) == 1))
{
TrapALError = true;
TrapALCError = true;
}
else
{
traperr = al::getenv("ALSOFT_TRAP_AL_ERROR");
if(traperr)
TrapALError = al::strcasecmp(traperr->c_str(), "true") == 0
|| strtol(traperr->c_str(), nullptr, 0) == 1;
else
TrapALError = !!GetConfigValueBool(nullptr, nullptr, "trap-al-error", false);
traperr = al::getenv("ALSOFT_TRAP_ALC_ERROR");
if(traperr)
TrapALCError = al::strcasecmp(traperr->c_str(), "true") == 0
|| strtol(traperr->c_str(), nullptr, 0) == 1;
else
TrapALCError = !!GetConfigValueBool(nullptr, nullptr, "trap-alc-error", false);
}
if(auto boostopt = ConfigValueFloat(nullptr, "reverb", "boost"))
{
const float valf{std::isfinite(*boostopt) ? clampf(*boostopt, -24.0f, 24.0f) : 0.0f};
ReverbBoost *= std::pow(10.0f, valf / 20.0f);
}
auto BackendListEnd = std::end(BackendList);
auto devopt = al::getenv("ALSOFT_DRIVERS");
if(devopt || (devopt=ConfigValueStr(nullptr, nullptr, "drivers")))
{
auto backendlist_cur = std::begin(BackendList);
bool endlist{true};
const char *next{devopt->c_str()};
do {
const char *devs{next};
while(isspace(devs[0]))
devs++;
next = strchr(devs, ',');
const bool delitem{devs[0] == '-'};
if(devs[0] == '-') devs++;
if(!devs[0] || devs[0] == ',')
{
endlist = false;
continue;
}
endlist = true;
size_t len{next ? (static_cast<size_t>(next-devs)) : strlen(devs)};
while(len > 0 && isspace(devs[len-1])) --len;
#ifdef HAVE_WASAPI
/* HACK: For backwards compatibility, convert backend references of
* mmdevapi to wasapi. This should eventually be removed.
*/
if(len == 8 && strncmp(devs, "mmdevapi", len) == 0)
{
devs = "wasapi";
len = 6;
}
#endif
auto find_backend = [devs,len](const BackendInfo &backend) -> bool
{ return len == strlen(backend.name) && strncmp(backend.name, devs, len) == 0; };
auto this_backend = std::find_if(std::begin(BackendList), BackendListEnd,
find_backend);
if(this_backend == BackendListEnd)
continue;
if(delitem)
BackendListEnd = std::move(this_backend+1, BackendListEnd, this_backend);
else
backendlist_cur = std::rotate(backendlist_cur, this_backend, this_backend+1);
} while(next++);
if(endlist)
BackendListEnd = backendlist_cur;
}
auto init_backend = [](BackendInfo &backend) -> void
{
if(PlaybackFactory && CaptureFactory)
return;
BackendFactory &factory = backend.getFactory();
if(!factory.init())
{
WARN("Failed to initialize backend \"%s\"\n", backend.name);
return;
}
TRACE("Initialized backend \"%s\"\n", backend.name);
if(!PlaybackFactory && factory.querySupport(BackendType::Playback))
{
PlaybackFactory = &factory;
TRACE("Added \"%s\" for playback\n", backend.name);
}
if(!CaptureFactory && factory.querySupport(BackendType::Capture))
{
CaptureFactory = &factory;
TRACE("Added \"%s\" for capture\n", backend.name);
}
};
std::for_each(std::begin(BackendList), BackendListEnd, init_backend);
LoopbackBackendFactory::getFactory().init();
if(!PlaybackFactory)
WARN("No playback backend available!\n");
if(!CaptureFactory)
WARN("No capture backend available!\n");
if(auto exclopt = ConfigValueStr(nullptr, nullptr, "excludefx"))
{
const char *next{exclopt->c_str()};
do {
const char *str{next};
next = strchr(str, ',');
if(!str[0] || next == str)
continue;
size_t len{next ? static_cast<size_t>(next-str) : strlen(str)};
for(const EffectList &effectitem : gEffectList)
{
if(len == strlen(effectitem.name) &&
strncmp(effectitem.name, str, len) == 0)
DisabledEffects[effectitem.type] = true;
}
} while(next++);
}
InitEffect(&ALCcontext::sDefaultEffect);
auto defrevopt = al::getenv("ALSOFT_DEFAULT_REVERB");
if(defrevopt || (defrevopt=ConfigValueStr(nullptr, nullptr, "default-reverb")))
LoadReverbPreset(defrevopt->c_str(), &ALCcontext::sDefaultEffect);
#ifdef ALSOFT_EAX
{
static constexpr char eax_block_name[] = "eax";
if(const auto eax_enable_opt = ConfigValueBool(nullptr, eax_block_name, "enable"))
{
eax_g_is_enabled = *eax_enable_opt;
if(!eax_g_is_enabled)
TRACE("%s\n", "EAX disabled by a configuration.");
}
else
eax_g_is_enabled = true;
if((DisabledEffects[EAXREVERB_EFFECT] || DisabledEffects[CHORUS_EFFECT])
&& eax_g_is_enabled)
{
eax_g_is_enabled = false;
TRACE("EAX disabled because %s disabled.\n",
(DisabledEffects[EAXREVERB_EFFECT] && DisabledEffects[CHORUS_EFFECT])
? "EAXReverb and Chorus are" :
DisabledEffects[EAXREVERB_EFFECT] ? "EAXReverb is" :
DisabledEffects[CHORUS_EFFECT] ? "Chorus is" : "");
}
}
#endif // ALSOFT_EAX
}
inline void InitConfig()
{ std::call_once(alc_config_once, [](){alc_initconfig();}); }
/************************************************
* Device enumeration
************************************************/
void ProbeAllDevicesList()
{
InitConfig();
std::lock_guard<std::recursive_mutex> _{ListLock};
if(!PlaybackFactory)
decltype(alcAllDevicesList){}.swap(alcAllDevicesList);
else
{
std::string names{PlaybackFactory->probe(BackendType::Playback)};
if(names.empty()) names += '\0';
names.swap(alcAllDevicesList);
}
}
void ProbeCaptureDeviceList()
{
InitConfig();
std::lock_guard<std::recursive_mutex> _{ListLock};
if(!CaptureFactory)
decltype(alcCaptureDeviceList){}.swap(alcCaptureDeviceList);
else
{
std::string names{CaptureFactory->probe(BackendType::Capture)};
if(names.empty()) names += '\0';
names.swap(alcCaptureDeviceList);
}
}
struct DevFmtPair { DevFmtChannels chans; DevFmtType type; };
std::optional<DevFmtPair> DecomposeDevFormat(ALenum format)
{
static const struct {
ALenum format;
DevFmtChannels channels;
DevFmtType type;
} list[] = {
{ AL_FORMAT_MONO8, DevFmtMono, DevFmtUByte },
{ AL_FORMAT_MONO16, DevFmtMono, DevFmtShort },
{ AL_FORMAT_MONO_FLOAT32, DevFmtMono, DevFmtFloat },
{ AL_FORMAT_STEREO8, DevFmtStereo, DevFmtUByte },
{ AL_FORMAT_STEREO16, DevFmtStereo, DevFmtShort },
{ AL_FORMAT_STEREO_FLOAT32, DevFmtStereo, DevFmtFloat },
{ AL_FORMAT_QUAD8, DevFmtQuad, DevFmtUByte },
{ AL_FORMAT_QUAD16, DevFmtQuad, DevFmtShort },
{ AL_FORMAT_QUAD32, DevFmtQuad, DevFmtFloat },
{ AL_FORMAT_51CHN8, DevFmtX51, DevFmtUByte },
{ AL_FORMAT_51CHN16, DevFmtX51, DevFmtShort },
{ AL_FORMAT_51CHN32, DevFmtX51, DevFmtFloat },
{ AL_FORMAT_61CHN8, DevFmtX61, DevFmtUByte },
{ AL_FORMAT_61CHN16, DevFmtX61, DevFmtShort },
{ AL_FORMAT_61CHN32, DevFmtX61, DevFmtFloat },
{ AL_FORMAT_71CHN8, DevFmtX71, DevFmtUByte },
{ AL_FORMAT_71CHN16, DevFmtX71, DevFmtShort },
{ AL_FORMAT_71CHN32, DevFmtX71, DevFmtFloat },
};
for(const auto &item : list)
{
if(item.format == format)
return DevFmtPair{item.channels, item.type};
}
return std::nullopt;
}
std::optional<DevFmtType> DevFmtTypeFromEnum(ALCenum type)
{
switch(type)
{
case ALC_BYTE_SOFT: return DevFmtByte;
case ALC_UNSIGNED_BYTE_SOFT: return DevFmtUByte;
case ALC_SHORT_SOFT: return DevFmtShort;
case ALC_UNSIGNED_SHORT_SOFT: return DevFmtUShort;
case ALC_INT_SOFT: return DevFmtInt;
case ALC_UNSIGNED_INT_SOFT: return DevFmtUInt;
case ALC_FLOAT_SOFT: return DevFmtFloat;
}
WARN("Unsupported format type: 0x%04x\n", type);
return std::nullopt;
}
ALCenum EnumFromDevFmt(DevFmtType type)
{
switch(type)
{
case DevFmtByte: return ALC_BYTE_SOFT;
case DevFmtUByte: return ALC_UNSIGNED_BYTE_SOFT;
case DevFmtShort: return ALC_SHORT_SOFT;
case DevFmtUShort: return ALC_UNSIGNED_SHORT_SOFT;
case DevFmtInt: return ALC_INT_SOFT;
case DevFmtUInt: return ALC_UNSIGNED_INT_SOFT;
case DevFmtFloat: return ALC_FLOAT_SOFT;
}
throw std::runtime_error{"Invalid DevFmtType: "+std::to_string(int(type))};
}
std::optional<DevFmtChannels> DevFmtChannelsFromEnum(ALCenum channels)
{
switch(channels)
{
case ALC_MONO_SOFT: return DevFmtMono;
case ALC_STEREO_SOFT: return DevFmtStereo;
case ALC_QUAD_SOFT: return DevFmtQuad;
case ALC_5POINT1_SOFT: return DevFmtX51;
case ALC_6POINT1_SOFT: return DevFmtX61;
case ALC_7POINT1_SOFT: return DevFmtX71;
case ALC_BFORMAT3D_SOFT: return DevFmtAmbi3D;
}
WARN("Unsupported format channels: 0x%04x\n", channels);
return std::nullopt;
}
ALCenum EnumFromDevFmt(DevFmtChannels channels)
{
switch(channels)
{
case DevFmtMono: return ALC_MONO_SOFT;
case DevFmtStereo: return ALC_STEREO_SOFT;
case DevFmtQuad: return ALC_QUAD_SOFT;
case DevFmtX51: return ALC_5POINT1_SOFT;
case DevFmtX61: return ALC_6POINT1_SOFT;
case DevFmtX71: return ALC_7POINT1_SOFT;
case DevFmtAmbi3D: return ALC_BFORMAT3D_SOFT;
/* FIXME: Shouldn't happen. */
case DevFmtX714:
case DevFmtX3D71: break;
}
throw std::runtime_error{"Invalid DevFmtChannels: "+std::to_string(int(channels))};
}
std::optional<DevAmbiLayout> DevAmbiLayoutFromEnum(ALCenum layout)
{
switch(layout)
{
case ALC_FUMA_SOFT: return DevAmbiLayout::FuMa;
case ALC_ACN_SOFT: return DevAmbiLayout::ACN;
}
WARN("Unsupported ambisonic layout: 0x%04x\n", layout);
return std::nullopt;
}
ALCenum EnumFromDevAmbi(DevAmbiLayout layout)
{
switch(layout)
{
case DevAmbiLayout::FuMa: return ALC_FUMA_SOFT;
case DevAmbiLayout::ACN: return ALC_ACN_SOFT;
}
throw std::runtime_error{"Invalid DevAmbiLayout: "+std::to_string(int(layout))};
}
std::optional<DevAmbiScaling> DevAmbiScalingFromEnum(ALCenum scaling)
{
switch(scaling)
{
case ALC_FUMA_SOFT: return DevAmbiScaling::FuMa;
case ALC_SN3D_SOFT: return DevAmbiScaling::SN3D;
case ALC_N3D_SOFT: return DevAmbiScaling::N3D;
}
WARN("Unsupported ambisonic scaling: 0x%04x\n", scaling);
return std::nullopt;
}
ALCenum EnumFromDevAmbi(DevAmbiScaling scaling)
{
switch(scaling)
{
case DevAmbiScaling::FuMa: return ALC_FUMA_SOFT;
case DevAmbiScaling::SN3D: return ALC_SN3D_SOFT;
case DevAmbiScaling::N3D: return ALC_N3D_SOFT;
}
throw std::runtime_error{"Invalid DevAmbiScaling: "+std::to_string(int(scaling))};
}
/* Downmixing channel arrays, to map the given format's missing channels to
* existing ones. Based on Wine's DSound downmix values, which are based on
* PulseAudio's.
*/
constexpr std::array<InputRemixMap::TargetMix,2> FrontStereoSplit{{
{FrontLeft, 0.5f}, {FrontRight, 0.5f}
}};
constexpr std::array<InputRemixMap::TargetMix,1> FrontLeft9{{
{FrontLeft, 1.0f/9.0f}
}};
constexpr std::array<InputRemixMap::TargetMix,1> FrontRight9{{
{FrontRight, 1.0f/9.0f}
}};
constexpr std::array<InputRemixMap::TargetMix,2> BackMonoToFrontSplit{{
{FrontLeft, 0.5f/9.0f}, {FrontRight, 0.5f/9.0f}
}};
constexpr std::array<InputRemixMap::TargetMix,2> LeftStereoSplit{{
{FrontLeft, 0.5f}, {BackLeft, 0.5f}
}};
constexpr std::array<InputRemixMap::TargetMix,2> RightStereoSplit{{
{FrontRight, 0.5f}, {BackRight, 0.5f}
}};
constexpr std::array<InputRemixMap::TargetMix,2> BackStereoSplit{{
{BackLeft, 0.5f}, {BackRight, 0.5f}
}};
constexpr std::array<InputRemixMap::TargetMix,2> SideStereoSplit{{
{SideLeft, 0.5f}, {SideRight, 0.5f}
}};
constexpr std::array<InputRemixMap::TargetMix,1> ToSideLeft{{
{SideLeft, 1.0f}
}};
constexpr std::array<InputRemixMap::TargetMix,1> ToSideRight{{
{SideRight, 1.0f}
}};
constexpr std::array<InputRemixMap::TargetMix,2> BackLeftSplit{{
{SideLeft, 0.5f}, {BackCenter, 0.5f}
}};
constexpr std::array<InputRemixMap::TargetMix,2> BackRightSplit{{
{SideRight, 0.5f}, {BackCenter, 0.5f}
}};
const std::array<InputRemixMap,6> StereoDownmix{{
{ FrontCenter, FrontStereoSplit },
{ SideLeft, FrontLeft9 },
{ SideRight, FrontRight9 },
{ BackLeft, FrontLeft9 },
{ BackRight, FrontRight9 },
{ BackCenter, BackMonoToFrontSplit },
}};
const std::array<InputRemixMap,4> QuadDownmix{{
{ FrontCenter, FrontStereoSplit },
{ SideLeft, LeftStereoSplit },
{ SideRight, RightStereoSplit },
{ BackCenter, BackStereoSplit },
}};
const std::array<InputRemixMap,3> X51Downmix{{
{ BackLeft, ToSideLeft },
{ BackRight, ToSideRight },
{ BackCenter, SideStereoSplit },
}};
const std::array<InputRemixMap,2> X61Downmix{{
{ BackLeft, BackLeftSplit },
{ BackRight, BackRightSplit },
}};
const std::array<InputRemixMap,1> X71Downmix{{
{ BackCenter, BackStereoSplit },
}};
std::unique_ptr<Compressor> CreateDeviceLimiter(const ALCdevice *device, const float threshold)
{
static constexpr bool AutoKnee{true};
static constexpr bool AutoAttack{true};
static constexpr bool AutoRelease{true};
static constexpr bool AutoPostGain{true};
static constexpr bool AutoDeclip{true};
static constexpr float LookAheadTime{0.001f};
static constexpr float HoldTime{0.002f};
static constexpr float PreGainDb{0.0f};
static constexpr float PostGainDb{0.0f};
static constexpr float Ratio{std::numeric_limits<float>::infinity()};
static constexpr float KneeDb{0.0f};
static constexpr float AttackTime{0.02f};
static constexpr float ReleaseTime{0.2f};
return Compressor::Create(device->RealOut.Buffer.size(), static_cast<float>(device->Frequency),
AutoKnee, AutoAttack, AutoRelease, AutoPostGain, AutoDeclip, LookAheadTime, HoldTime,
PreGainDb, PostGainDb, threshold, Ratio, KneeDb, AttackTime, ReleaseTime);
}
/**
* Updates the device's base clock time with however many samples have been
* done. This is used so frequency changes on the device don't cause the time
* to jump forward or back. Must not be called while the device is running/
* mixing.
*/
inline void UpdateClockBase(ALCdevice *device)
{
IncrementRef(device->MixCount);
device->ClockBase += nanoseconds{seconds{device->SamplesDone}} / device->Frequency;
device->SamplesDone = 0;
IncrementRef(device->MixCount);
}
/**
* Updates device parameters according to the attribute list (caller is
* responsible for holding the list lock).
*/
ALCenum UpdateDeviceParams(ALCdevice *device, const int *attrList)
{
if((!attrList || !attrList[0]) && device->Type == DeviceType::Loopback)
{
WARN("Missing attributes for loopback device\n");
return ALC_INVALID_VALUE;
}
uint numMono{device->NumMonoSources};
uint numStereo{device->NumStereoSources};
uint numSends{device->NumAuxSends};
std::optional<StereoEncoding> stereomode;
std::optional<bool> optlimit;
std::optional<uint> optsrate;
std::optional<DevFmtChannels> optchans;
std::optional<DevFmtType> opttype;
std::optional<DevAmbiLayout> optlayout;
std::optional<DevAmbiScaling> optscale;
uint period_size{DEFAULT_UPDATE_SIZE};
uint buffer_size{DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES};
int hrtf_id{-1};
uint aorder{0u};
if(device->Type != DeviceType::Loopback)
{
/* Get default settings from the user configuration */
if(auto freqopt = device->configValue<uint>(nullptr, "frequency"))
{
optsrate = clampu(*freqopt, MIN_OUTPUT_RATE, MAX_OUTPUT_RATE);
const double scale{static_cast<double>(*optsrate) / DEFAULT_OUTPUT_RATE};
period_size = static_cast<uint>(period_size*scale + 0.5);
}
if(auto persizeopt = device->configValue<uint>(nullptr, "period_size"))
period_size = clampu(*persizeopt, 64, 8192);
if(auto numperopt = device->configValue<uint>(nullptr, "periods"))
buffer_size = clampu(*numperopt, 2, 16) * period_size;
else
buffer_size = period_size * DEFAULT_NUM_UPDATES;
if(auto typeopt = device->configValue<std::string>(nullptr, "sample-type"))
{
static constexpr struct TypeMap {
const char name[8];
DevFmtType type;
} typelist[] = {
{ "int8", DevFmtByte },
{ "uint8", DevFmtUByte },
{ "int16", DevFmtShort },
{ "uint16", DevFmtUShort },
{ "int32", DevFmtInt },
{ "uint32", DevFmtUInt },
{ "float32", DevFmtFloat },
};
const ALCchar *fmt{typeopt->c_str()};
auto iter = std::find_if(std::begin(typelist), std::end(typelist),
[fmt](const TypeMap &entry) -> bool
{ return al::strcasecmp(entry.name, fmt) == 0; });
if(iter == std::end(typelist))
ERR("Unsupported sample-type: %s\n", fmt);
else
opttype = iter->type;
}
if(auto chanopt = device->configValue<std::string>(nullptr, "channels"))
{
static constexpr struct ChannelMap {
const char name[16];
DevFmtChannels chans;
uint8_t order;
} chanlist[] = {
{ "mono", DevFmtMono, 0 },
{ "stereo", DevFmtStereo, 0 },
{ "quad", DevFmtQuad, 0 },
{ "surround51", DevFmtX51, 0 },
{ "surround61", DevFmtX61, 0 },
{ "surround71", DevFmtX71, 0 },
{ "surround714", DevFmtX714, 0 },
{ "surround3d71", DevFmtX3D71, 0 },
{ "surround51rear", DevFmtX51, 0 },
{ "ambi1", DevFmtAmbi3D, 1 },
{ "ambi2", DevFmtAmbi3D, 2 },
{ "ambi3", DevFmtAmbi3D, 3 },
};
const ALCchar *fmt{chanopt->c_str()};
auto iter = std::find_if(std::begin(chanlist), std::end(chanlist),
[fmt](const ChannelMap &entry) -> bool
{ return al::strcasecmp(entry.name, fmt) == 0; });
if(iter == std::end(chanlist))
ERR("Unsupported channels: %s\n", fmt);
else
{
optchans = iter->chans;
aorder = iter->order;
}
}
if(auto ambiopt = device->configValue<std::string>(nullptr, "ambi-format"))
{
const ALCchar *fmt{ambiopt->c_str()};
if(al::strcasecmp(fmt, "fuma") == 0)
{
optlayout = DevAmbiLayout::FuMa;
optscale = DevAmbiScaling::FuMa;
}
else if(al::strcasecmp(fmt, "acn+fuma") == 0)
{
optlayout = DevAmbiLayout::ACN;
optscale = DevAmbiScaling::FuMa;
}
else if(al::strcasecmp(fmt, "ambix") == 0 || al::strcasecmp(fmt, "acn+sn3d") == 0)
{
optlayout = DevAmbiLayout::ACN;
optscale = DevAmbiScaling::SN3D;
}
else if(al::strcasecmp(fmt, "acn+n3d") == 0)
{
optlayout = DevAmbiLayout::ACN;
optscale = DevAmbiScaling::N3D;
}
else
ERR("Unsupported ambi-format: %s\n", fmt);
}
if(auto hrtfopt = device->configValue<std::string>(nullptr, "hrtf"))
{
WARN("general/hrtf is deprecated, please use stereo-encoding instead\n");
const char *hrtf{hrtfopt->c_str()};
if(al::strcasecmp(hrtf, "true") == 0)
stereomode = StereoEncoding::Hrtf;
else if(al::strcasecmp(hrtf, "false") == 0)
{
if(!stereomode || *stereomode == StereoEncoding::Hrtf)
stereomode = StereoEncoding::Default;
}
else if(al::strcasecmp(hrtf, "auto") != 0)
ERR("Unexpected hrtf value: %s\n", hrtf);
}
}
if(auto encopt = device->configValue<std::string>(nullptr, "stereo-encoding"))
{
const char *mode{encopt->c_str()};
if(al::strcasecmp(mode, "basic") == 0 || al::strcasecmp(mode, "panpot") == 0)
stereomode = StereoEncoding::Basic;
else if(al::strcasecmp(mode, "uhj") == 0)
stereomode = StereoEncoding::Uhj;
else if(al::strcasecmp(mode, "hrtf") == 0)
stereomode = StereoEncoding::Hrtf;
else
ERR("Unexpected stereo-encoding: %s\n", mode);
}
// Check for app-specified attributes
if(attrList && attrList[0])
{
ALenum outmode{ALC_ANY_SOFT};
std::optional<bool> opthrtf;
int freqAttr{};
#define ATTRIBUTE(a) a: TRACE("%s = %d\n", #a, attrList[attrIdx + 1]);
size_t attrIdx{0};
while(attrList[attrIdx])
{
switch(attrList[attrIdx])
{
case ATTRIBUTE(ALC_FORMAT_CHANNELS_SOFT)
if(device->Type == DeviceType::Loopback)
optchans = DevFmtChannelsFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_FORMAT_TYPE_SOFT)
if(device->Type == DeviceType::Loopback)
opttype = DevFmtTypeFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_FREQUENCY)
freqAttr = attrList[attrIdx + 1];
break;
case ATTRIBUTE(ALC_AMBISONIC_LAYOUT_SOFT)
if(device->Type == DeviceType::Loopback)
optlayout = DevAmbiLayoutFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_AMBISONIC_SCALING_SOFT)
if(device->Type == DeviceType::Loopback)
optscale = DevAmbiScalingFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_AMBISONIC_ORDER_SOFT)
if(device->Type == DeviceType::Loopback)
aorder = static_cast<uint>(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_MONO_SOURCES)
numMono = static_cast<uint>(attrList[attrIdx + 1]);
if(numMono > INT_MAX) numMono = 0;
break;
case ATTRIBUTE(ALC_STEREO_SOURCES)
numStereo = static_cast<uint>(attrList[attrIdx + 1]);
if(numStereo > INT_MAX) numStereo = 0;
break;
case ATTRIBUTE(ALC_MAX_AUXILIARY_SENDS)
numSends = static_cast<uint>(attrList[attrIdx + 1]);
if(numSends > INT_MAX) numSends = 0;
else numSends = minu(numSends, MAX_SENDS);
break;
case ATTRIBUTE(ALC_HRTF_SOFT)
if(attrList[attrIdx + 1] == ALC_FALSE)
opthrtf = false;
else if(attrList[attrIdx + 1] == ALC_TRUE)
opthrtf = true;
else if(attrList[attrIdx + 1] == ALC_DONT_CARE_SOFT)
opthrtf = std::nullopt;
break;
case ATTRIBUTE(ALC_HRTF_ID_SOFT)
hrtf_id = attrList[attrIdx + 1];
break;
case ATTRIBUTE(ALC_OUTPUT_LIMITER_SOFT)
if(attrList[attrIdx + 1] == ALC_FALSE)
optlimit = false;
else if(attrList[attrIdx + 1] == ALC_TRUE)
optlimit = true;
else if(attrList[attrIdx + 1] == ALC_DONT_CARE_SOFT)
optlimit = std::nullopt;
break;
case ATTRIBUTE(ALC_OUTPUT_MODE_SOFT)
outmode = attrList[attrIdx + 1];
break;
default:
TRACE("0x%04X = %d (0x%x)\n", attrList[attrIdx],
attrList[attrIdx + 1], attrList[attrIdx + 1]);
break;
}
attrIdx += 2;
}
#undef ATTRIBUTE
if(device->Type == DeviceType::Loopback)
{
if(!optchans || !opttype)
return ALC_INVALID_VALUE;
if(freqAttr < MIN_OUTPUT_RATE || freqAttr > MAX_OUTPUT_RATE)
return ALC_INVALID_VALUE;
if(*optchans == DevFmtAmbi3D)
{
if(!optlayout || !optscale)
return ALC_INVALID_VALUE;
if(aorder < 1 || aorder > MaxAmbiOrder)
return ALC_INVALID_VALUE;
if((*optlayout == DevAmbiLayout::FuMa || *optscale == DevAmbiScaling::FuMa)
&& aorder > 3)
return ALC_INVALID_VALUE;
}
else if(*optchans == DevFmtStereo)
{
if(opthrtf)
{
if(*opthrtf)
stereomode = StereoEncoding::Hrtf;
else
{
if(stereomode.value_or(StereoEncoding::Hrtf) == StereoEncoding::Hrtf)
stereomode = StereoEncoding::Default;
}
}
if(outmode == ALC_STEREO_BASIC_SOFT)
stereomode = StereoEncoding::Basic;
else if(outmode == ALC_STEREO_UHJ_SOFT)
stereomode = StereoEncoding::Uhj;
else if(outmode == ALC_STEREO_HRTF_SOFT)
stereomode = StereoEncoding::Hrtf;
}
optsrate = static_cast<uint>(freqAttr);
}
else
{
if(opthrtf)
{
if(*opthrtf)
stereomode = StereoEncoding::Hrtf;
else
{
if(stereomode.value_or(StereoEncoding::Hrtf) == StereoEncoding::Hrtf)
stereomode = StereoEncoding::Default;
}
}
if(outmode != ALC_ANY_SOFT)
{
using OutputMode = ALCdevice::OutputMode;
switch(OutputMode(outmode))
{
case OutputMode::Any: break;
case OutputMode::Mono: optchans = DevFmtMono; break;
case OutputMode::Stereo: optchans = DevFmtStereo; break;
case OutputMode::StereoBasic:
optchans = DevFmtStereo;
stereomode = StereoEncoding::Basic;
break;
case OutputMode::Uhj2:
optchans = DevFmtStereo;
stereomode = StereoEncoding::Uhj;
break;
case OutputMode::Hrtf:
optchans = DevFmtStereo;
stereomode = StereoEncoding::Hrtf;
break;
case OutputMode::Quad: optchans = DevFmtQuad; break;
case OutputMode::X51: optchans = DevFmtX51; break;
case OutputMode::X61: optchans = DevFmtX61; break;
case OutputMode::X71: optchans = DevFmtX71; break;
}
}
if(freqAttr)
{
uint oldrate = optsrate.value_or(DEFAULT_OUTPUT_RATE);
freqAttr = clampi(freqAttr, MIN_OUTPUT_RATE, MAX_OUTPUT_RATE);
const double scale{static_cast<double>(freqAttr) / oldrate};
period_size = static_cast<uint>(period_size*scale + 0.5);
buffer_size = static_cast<uint>(buffer_size*scale + 0.5);
optsrate = static_cast<uint>(freqAttr);
}
}
/* If a context is already running on the device, stop playback so the
* device attributes can be updated.
*/
if(device->Flags.test(DeviceRunning))
device->Backend->stop();
device->Flags.reset(DeviceRunning);
UpdateClockBase(device);
}
if(device->Flags.test(DeviceRunning))
return ALC_NO_ERROR;
device->AvgSpeakerDist = 0.0f;
device->mNFCtrlFilter = NfcFilter{};
device->mUhjEncoder = nullptr;
device->AmbiDecoder = nullptr;
device->Bs2b = nullptr;
device->PostProcess = nullptr;
device->Limiter = nullptr;
device->ChannelDelays = nullptr;
std::fill(std::begin(device->HrtfAccumData), std::end(device->HrtfAccumData), float2{});
device->Dry.AmbiMap.fill(BFChannelConfig{});
device->Dry.Buffer = {};
std::fill(std::begin(device->NumChannelsPerOrder), std::end(device->NumChannelsPerOrder), 0u);
device->RealOut.RemixMap = {};
device->RealOut.ChannelIndex.fill(InvalidChannelIndex);
device->RealOut.Buffer = {};
device->MixBuffer.clear();
device->MixBuffer.shrink_to_fit();
UpdateClockBase(device);
device->FixedLatency = nanoseconds::zero();
device->DitherDepth = 0.0f;
device->DitherSeed = DitherRNGSeed;
device->mHrtfStatus = ALC_HRTF_DISABLED_SOFT;
/*************************************************************************
* Update device format request
*/
if(device->Type == DeviceType::Loopback)
{
device->Frequency = *optsrate;
device->FmtChans = *optchans;
device->FmtType = *opttype;
if(device->FmtChans == DevFmtAmbi3D)
{
device->mAmbiOrder = aorder;
device->mAmbiLayout = *optlayout;
device->mAmbiScale = *optscale;
}
device->Flags.set(FrequencyRequest).set(ChannelsRequest).set(SampleTypeRequest);
}
else
{
device->FmtType = opttype.value_or(DevFmtTypeDefault);
device->FmtChans = optchans.value_or(DevFmtChannelsDefault);
device->mAmbiOrder = 0;
device->BufferSize = buffer_size;
device->UpdateSize = period_size;
device->Frequency = optsrate.value_or(DEFAULT_OUTPUT_RATE);
device->Flags.set(FrequencyRequest, optsrate.has_value())
.set(ChannelsRequest, optchans.has_value())
.set(SampleTypeRequest, opttype.has_value());
if(device->FmtChans == DevFmtAmbi3D)
{
device->mAmbiOrder = clampu(aorder, 1, MaxAmbiOrder);
device->mAmbiLayout = optlayout.value_or(DevAmbiLayout::Default);
device->mAmbiScale = optscale.value_or(DevAmbiScaling::Default);
if(device->mAmbiOrder > 3
&& (device->mAmbiLayout == DevAmbiLayout::FuMa
|| device->mAmbiScale == DevAmbiScaling::FuMa))
{
ERR("FuMa is incompatible with %d%s order ambisonics (up to 3rd order only)\n",
device->mAmbiOrder,
(((device->mAmbiOrder%100)/10) == 1) ? "th" :
((device->mAmbiOrder%10) == 1) ? "st" :
((device->mAmbiOrder%10) == 2) ? "nd" :
((device->mAmbiOrder%10) == 3) ? "rd" : "th");
device->mAmbiOrder = 3;
}
}
}
TRACE("Pre-reset: %s%s, %s%s, %s%uhz, %u / %u buffer\n",
device->Flags.test(ChannelsRequest)?"*":"", DevFmtChannelsString(device->FmtChans),
device->Flags.test(SampleTypeRequest)?"*":"", DevFmtTypeString(device->FmtType),
device->Flags.test(FrequencyRequest)?"*":"", device->Frequency,
device->UpdateSize, device->BufferSize);
const uint oldFreq{device->Frequency};
const DevFmtChannels oldChans{device->FmtChans};
const DevFmtType oldType{device->FmtType};
try {
auto backend = device->Backend.get();
if(!backend->reset())
throw al::backend_exception{al::backend_error::DeviceError, "Device reset failure"};
}
catch(std::exception &e) {
ERR("Device error: %s\n", e.what());
device->handleDisconnect("%s", e.what());
return ALC_INVALID_DEVICE;
}
if(device->FmtChans != oldChans && device->Flags.test(ChannelsRequest))
{
ERR("Failed to set %s, got %s instead\n", DevFmtChannelsString(oldChans),
DevFmtChannelsString(device->FmtChans));
device->Flags.reset(ChannelsRequest);
}
if(device->FmtType != oldType && device->Flags.test(SampleTypeRequest))
{
ERR("Failed to set %s, got %s instead\n", DevFmtTypeString(oldType),
DevFmtTypeString(device->FmtType));
device->Flags.reset(SampleTypeRequest);
}
if(device->Frequency != oldFreq && device->Flags.test(FrequencyRequest))
{
WARN("Failed to set %uhz, got %uhz instead\n", oldFreq, device->Frequency);
device->Flags.reset(FrequencyRequest);
}
TRACE("Post-reset: %s, %s, %uhz, %u / %u buffer\n",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->Frequency, device->UpdateSize, device->BufferSize);
if(device->Type != DeviceType::Loopback)
{
if(auto modeopt = device->configValue<std::string>(nullptr, "stereo-mode"))
{
const char *mode{modeopt->c_str()};
if(al::strcasecmp(mode, "headphones") == 0)
device->Flags.set(DirectEar);
else if(al::strcasecmp(mode, "speakers") == 0)
device->Flags.reset(DirectEar);
else if(al::strcasecmp(mode, "auto") != 0)
ERR("Unexpected stereo-mode: %s\n", mode);
}
}
aluInitRenderer(device, hrtf_id, stereomode);
/* Calculate the max number of sources, and split them between the mono and
* stereo count given the requested number of stereo sources.
*/
if(auto srcsopt = device->configValue<uint>(nullptr, "sources"))
{
if(*srcsopt <= 0) numMono = 256;
else numMono = maxu(*srcsopt, 16);
}
else
{
numMono = minu(numMono, INT_MAX-numStereo);
numMono = maxu(numMono+numStereo, 256);
}
numStereo = minu(numStereo, numMono);
numMono -= numStereo;
device->SourcesMax = numMono + numStereo;
device->NumMonoSources = numMono;
device->NumStereoSources = numStereo;
if(auto sendsopt = device->configValue<int>(nullptr, "sends"))
numSends = minu(numSends, static_cast<uint>(clampi(*sendsopt, 0, MAX_SENDS)));
device->NumAuxSends = numSends;
TRACE("Max sources: %d (%d + %d), effect slots: %d, sends: %d\n",
device->SourcesMax, device->NumMonoSources, device->NumStereoSources,
device->AuxiliaryEffectSlotMax, device->NumAuxSends);
switch(device->FmtChans)
{
case DevFmtMono: break;
case DevFmtStereo:
if(!device->mUhjEncoder)
device->RealOut.RemixMap = StereoDownmix;
break;
case DevFmtQuad: device->RealOut.RemixMap = QuadDownmix; break;
case DevFmtX51: device->RealOut.RemixMap = X51Downmix; break;
case DevFmtX61: device->RealOut.RemixMap = X61Downmix; break;
case DevFmtX71: device->RealOut.RemixMap = X71Downmix; break;
case DevFmtX714: device->RealOut.RemixMap = X71Downmix; break;
case DevFmtX3D71: device->RealOut.RemixMap = X51Downmix; break;
case DevFmtAmbi3D: break;
}
nanoseconds::rep sample_delay{0};
if(auto *encoder{device->mUhjEncoder.get()})
sample_delay += encoder->getDelay();
if(device->getConfigValueBool(nullptr, "dither", true))
{
int depth{device->configValue<int>(nullptr, "dither-depth").value_or(0)};
if(depth <= 0)
{
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
depth = 8;
break;
case DevFmtShort:
case DevFmtUShort:
depth = 16;
break;
case DevFmtInt:
case DevFmtUInt:
case DevFmtFloat:
break;
}
}
if(depth > 0)
{
depth = clampi(depth, 2, 24);
device->DitherDepth = std::pow(2.0f, static_cast<float>(depth-1));
}
}
if(!(device->DitherDepth > 0.0f))
TRACE("Dithering disabled\n");
else
TRACE("Dithering enabled (%d-bit, %g)\n", float2int(std::log2(device->DitherDepth)+0.5f)+1,
device->DitherDepth);
if(!optlimit)
optlimit = device->configValue<bool>(nullptr, "output-limiter");
/* If the gain limiter is unset, use the limiter for integer-based output
* (where samples must be clamped), and don't for floating-point (which can
* take unclamped samples).
*/
if(!optlimit)
{
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
case DevFmtShort:
case DevFmtUShort:
case DevFmtInt:
case DevFmtUInt:
optlimit = true;
break;
case DevFmtFloat:
break;
}
}
if(optlimit.value_or(false) == false)
TRACE("Output limiter disabled\n");
else
{
float thrshld{1.0f};
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
thrshld = 127.0f / 128.0f;
break;
case DevFmtShort:
case DevFmtUShort:
thrshld = 32767.0f / 32768.0f;
break;
case DevFmtInt:
case DevFmtUInt:
case DevFmtFloat:
break;
}
if(device->DitherDepth > 0.0f)
thrshld -= 1.0f / device->DitherDepth;
const float thrshld_dB{std::log10(thrshld) * 20.0f};
auto limiter = CreateDeviceLimiter(device, thrshld_dB);
sample_delay += limiter->getLookAhead();
device->Limiter = std::move(limiter);
TRACE("Output limiter enabled, %.4fdB limit\n", thrshld_dB);
}
/* Convert the sample delay from samples to nanosamples to nanoseconds. */
device->FixedLatency += nanoseconds{seconds{sample_delay}} / device->Frequency;
TRACE("Fixed device latency: %" PRId64 "ns\n", int64_t{device->FixedLatency.count()});
FPUCtl mixer_mode{};
for(ContextBase *ctxbase : *device->mContexts.load())
{
auto *context = static_cast<ALCcontext*>(ctxbase);
std::unique_lock<std::mutex> proplock{context->mPropLock};
std::unique_lock<std::mutex> slotlock{context->mEffectSlotLock};
/* Clear out unused effect slot clusters. */
auto slot_cluster_not_in_use = [](ContextBase::EffectSlotCluster &cluster)
{
for(size_t i{0};i < ContextBase::EffectSlotClusterSize;++i)
{
if(cluster[i].InUse)
return false;
}
return true;
};
auto slotcluster_iter = std::remove_if(context->mEffectSlotClusters.begin(),
context->mEffectSlotClusters.end(), slot_cluster_not_in_use);
context->mEffectSlotClusters.erase(slotcluster_iter, context->mEffectSlotClusters.end());
/* Free all wet buffers. Any in use will be reallocated with an updated
* configuration in aluInitEffectPanning.
*/
for(auto&& slots : context->mEffectSlotClusters)
{
for(size_t i{0};i < ContextBase::EffectSlotClusterSize;++i)
{
slots[i].mWetBuffer.clear();
slots[i].mWetBuffer.shrink_to_fit();
slots[i].Wet.Buffer = {};
}
}
if(ALeffectslot *slot{context->mDefaultSlot.get()})
{
aluInitEffectPanning(slot->mSlot, context);
EffectState *state{slot->Effect.State.get()};
state->mOutTarget = device->Dry.Buffer;
state->deviceUpdate(device, slot->Buffer);
slot->updateProps(context);
}
if(EffectSlotArray *curarray{context->mActiveAuxSlots.load(std::memory_order_relaxed)})
std::fill_n(curarray->end(), curarray->size(), nullptr);
for(auto &sublist : context->mEffectSlotList)
{
uint64_t usemask{~sublist.FreeMask};
while(usemask)
{
const int idx{al::countr_zero(usemask)};
ALeffectslot *slot{sublist.EffectSlots + idx};
usemask &= ~(1_u64 << idx);
aluInitEffectPanning(slot->mSlot, context);
EffectState *state{slot->Effect.State.get()};
state->mOutTarget = device->Dry.Buffer;
state->deviceUpdate(device, slot->Buffer);
slot->updateProps(context);
}
}
slotlock.unlock();
const uint num_sends{device->NumAuxSends};
std::unique_lock<std::mutex> srclock{context->mSourceLock};
for(auto &sublist : context->mSourceList)
{
uint64_t usemask{~sublist.FreeMask};
while(usemask)
{
const int idx{al::countr_zero(usemask)};
ALsource *source{sublist.Sources + idx};
usemask &= ~(1_u64 << idx);
auto clear_send = [](ALsource::SendData &send) -> void
{
if(send.Slot)
DecrementRef(send.Slot->ref);
send.Slot = nullptr;
send.Gain = 1.0f;
send.GainHF = 1.0f;
send.HFReference = LOWPASSFREQREF;
send.GainLF = 1.0f;
send.LFReference = HIGHPASSFREQREF;
};
auto send_begin = source->Send.begin() + static_cast<ptrdiff_t>(num_sends);
std::for_each(send_begin, source->Send.end(), clear_send);
source->mPropsDirty = true;
}
}
auto voicelist = context->getVoicesSpan();
for(Voice *voice : voicelist)
{
/* Clear extraneous property set sends. */
std::fill(std::begin(voice->mProps.Send)+num_sends, std::end(voice->mProps.Send),
VoiceProps::SendData{});
std::fill(voice->mSend.begin()+num_sends, voice->mSend.end(), Voice::TargetData{});
for(auto &chandata : voice->mChans)
{
std::fill(chandata.mWetParams.begin()+num_sends, chandata.mWetParams.end(),
SendParams{});
}
if(VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_relaxed)})
AtomicReplaceHead(context->mFreeVoiceProps, props);
/* Force the voice to stopped if it was stopping. */
Voice::State vstate{Voice::Stopping};
voice->mPlayState.compare_exchange_strong(vstate, Voice::Stopped,
std::memory_order_acquire, std::memory_order_acquire);
if(voice->mSourceID.load(std::memory_order_relaxed) == 0u)
continue;
voice->prepare(device);
}
/* Clear all voice props to let them get allocated again. */
context->mVoicePropClusters.clear();
context->mFreeVoiceProps.store(nullptr, std::memory_order_relaxed);
srclock.unlock();
context->mPropsDirty = false;
UpdateContextProps(context);
UpdateAllSourceProps(context);
}
mixer_mode.leave();
if(!device->Flags.test(DevicePaused))
{
try {
auto backend = device->Backend.get();
backend->start();
device->Flags.set(DeviceRunning);
}
catch(al::backend_exception& e) {
ERR("%s\n", e.what());
device->handleDisconnect("%s", e.what());
return ALC_INVALID_DEVICE;
}
TRACE("Post-start: %s, %s, %uhz, %u / %u buffer\n",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->Frequency, device->UpdateSize, device->BufferSize);
}
return ALC_NO_ERROR;
}
/**
* Updates device parameters as above, and also first clears the disconnected
* status, if set.
*/
bool ResetDeviceParams(ALCdevice *device, const int *attrList)
{
/* If the device was disconnected, reset it since we're opened anew. */
if(!device->Connected.load(std::memory_order_relaxed)) UNLIKELY
{
/* Make sure disconnection is finished before continuing on. */
device->waitForMix();
for(ContextBase *ctxbase : *device->mContexts.load(std::memory_order_acquire))
{
auto *ctx = static_cast<ALCcontext*>(ctxbase);
if(!ctx->mStopVoicesOnDisconnect.load(std::memory_order_acquire))
continue;
/* Clear any pending voice changes and reallocate voices to get a
* clean restart.
*/
std::lock_guard<std::mutex> __{ctx->mSourceLock};
auto *vchg = ctx->mCurrentVoiceChange.load(std::memory_order_acquire);
while(auto *next = vchg->mNext.load(std::memory_order_acquire))
vchg = next;
ctx->mCurrentVoiceChange.store(vchg, std::memory_order_release);
ctx->mVoicePropClusters.clear();
ctx->mFreeVoiceProps.store(nullptr, std::memory_order_relaxed);
ctx->mVoiceClusters.clear();
ctx->allocVoices(std::max<size_t>(256,
ctx->mActiveVoiceCount.load(std::memory_order_relaxed)));
}
device->Connected.store(true);
}
ALCenum err{UpdateDeviceParams(device, attrList)};
if(err == ALC_NO_ERROR) LIKELY return ALC_TRUE;
alcSetError(device, err);
return ALC_FALSE;
}
/** Checks if the device handle is valid, and returns a new reference if so. */
DeviceRef VerifyDevice(ALCdevice *device)
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter != DeviceList.end() && *iter == device)
{
(*iter)->add_ref();
return DeviceRef{*iter};
}
return nullptr;
}
/**
* Checks if the given context is valid, returning a new reference to it if so.
*/
ContextRef VerifyContext(ALCcontext *context)
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context);
if(iter != ContextList.end() && *iter == context)
{
(*iter)->add_ref();
return ContextRef{*iter};
}
return nullptr;
}
} // namespace
FORCE_ALIGN void ALC_APIENTRY alsoft_set_log_callback(LPALSOFTLOGCALLBACK callback, void *userptr) noexcept
{
al_set_log_callback(callback, userptr);
}
/** Returns a new reference to the currently active context for this thread. */
ContextRef GetContextRef(void)
{
ALCcontext *context{ALCcontext::getThreadContext()};
if(context)
context->add_ref();
else
{
while(ALCcontext::sGlobalContextLock.exchange(true, std::memory_order_acquire)) {
/* Wait to make sure another thread isn't trying to change the
* current context and bring its refcount to 0.
*/
}
context = ALCcontext::sGlobalContext.load(std::memory_order_acquire);
if(context) LIKELY context->add_ref();
ALCcontext::sGlobalContextLock.store(false, std::memory_order_release);
}
return ContextRef{context};
}
void alcSetError(ALCdevice *device, ALCenum errorCode)
{
WARN("Error generated on device %p, code 0x%04x\n", voidp{device}, errorCode);
if(TrapALCError)
{
#ifdef _WIN32
/* DebugBreak() will cause an exception if there is no debugger */
if(IsDebuggerPresent())
DebugBreak();
#elif defined(SIGTRAP)
raise(SIGTRAP);
#endif
}
if(device)
device->LastError.store(errorCode);
else
LastNullDeviceError.store(errorCode);
}
/************************************************
* Standard ALC functions
************************************************/
ALC_API ALCenum ALC_APIENTRY alcGetError(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(dev) return dev->LastError.exchange(ALC_NO_ERROR);
return LastNullDeviceError.exchange(ALC_NO_ERROR);
}
ALC_API void ALC_APIENTRY alcSuspendContext(ALCcontext *context) noexcept
{
ContextRef ctx{VerifyContext(context)};
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return;
}
if(context->mContextFlags.test(ContextFlags::DebugBit)) UNLIKELY
ctx->debugMessage(DebugSource::API, DebugType::Portability, 0, DebugSeverity::Medium,
"alcSuspendContext behavior is not portable -- some implementations suspend all "
"rendering, some only defer property changes, and some are completely no-op; consider "
"using alcDevicePauseSOFT to suspend all rendering, or alDeferUpdatesSOFT to only "
"defer property changes");
if(SuspendDefers)
{
std::lock_guard<std::mutex> _{ctx->mPropLock};
ctx->deferUpdates();
}
}
ALC_API void ALC_APIENTRY alcProcessContext(ALCcontext *context) noexcept
{
ContextRef ctx{VerifyContext(context)};
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return;
}
if(context->mContextFlags.test(ContextFlags::DebugBit)) UNLIKELY
ctx->debugMessage(DebugSource::API, DebugType::Portability, 0, DebugSeverity::Medium,
"alcProcessContext behavior is not portable -- some implementations resume rendering, "
"some apply deferred property changes, and some are completely no-op; consider using "
"alcDeviceResumeSOFT to resume rendering, or alProcessUpdatesSOFT to apply deferred "
"property changes");
if(SuspendDefers)
{
std::lock_guard<std::mutex> _{ctx->mPropLock};
ctx->processUpdates();
}
}
ALC_API const ALCchar* ALC_APIENTRY alcGetString(ALCdevice *Device, ALCenum param) noexcept
{
const ALCchar *value{nullptr};
switch(param)
{
case ALC_NO_ERROR:
value = alcNoError;
break;
case ALC_INVALID_ENUM:
value = alcErrInvalidEnum;
break;
case ALC_INVALID_VALUE:
value = alcErrInvalidValue;
break;
case ALC_INVALID_DEVICE:
value = alcErrInvalidDevice;
break;
case ALC_INVALID_CONTEXT:
value = alcErrInvalidContext;
break;
case ALC_OUT_OF_MEMORY:
value = alcErrOutOfMemory;
break;
case ALC_DEVICE_SPECIFIER:
value = alcDefaultName;
break;
case ALC_ALL_DEVICES_SPECIFIER:
if(DeviceRef dev{VerifyDevice(Device)})
{
if(dev->Type == DeviceType::Capture)
alcSetError(dev.get(), ALC_INVALID_ENUM);
else if(dev->Type == DeviceType::Loopback)
value = alcDefaultName;
else
{
std::lock_guard<std::mutex> _{dev->StateLock};
value = dev->DeviceName.c_str();
}
}
else
{
ProbeAllDevicesList();
value = alcAllDevicesList.c_str();
}
break;
case ALC_CAPTURE_DEVICE_SPECIFIER:
if(DeviceRef dev{VerifyDevice(Device)})
{
if(dev->Type != DeviceType::Capture)
alcSetError(dev.get(), ALC_INVALID_ENUM);
else
{
std::lock_guard<std::mutex> _{dev->StateLock};
value = dev->DeviceName.c_str();
}
}
else
{
ProbeCaptureDeviceList();
value = alcCaptureDeviceList.c_str();
}
break;
/* Default devices are always first in the list */
case ALC_DEFAULT_DEVICE_SPECIFIER:
value = alcDefaultName;
break;
case ALC_DEFAULT_ALL_DEVICES_SPECIFIER:
if(alcAllDevicesList.empty())
ProbeAllDevicesList();
/* Copy first entry as default. */
alcDefaultAllDevicesSpecifier = alcAllDevicesList.c_str();
value = alcDefaultAllDevicesSpecifier.c_str();
break;
case ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER:
if(alcCaptureDeviceList.empty())
ProbeCaptureDeviceList();
/* Copy first entry as default. */
alcCaptureDefaultDeviceSpecifier = alcCaptureDeviceList.c_str();
value = alcCaptureDefaultDeviceSpecifier.c_str();
break;
case ALC_EXTENSIONS:
if(VerifyDevice(Device))
value = alcExtensionList;
else
value = alcNoDeviceExtList;
break;
case ALC_HRTF_SPECIFIER_SOFT:
if(DeviceRef dev{VerifyDevice(Device)})
{
std::lock_guard<std::mutex> _{dev->StateLock};
value = (dev->mHrtf ? dev->mHrtfName.c_str() : "");
}
else
alcSetError(nullptr, ALC_INVALID_DEVICE);
break;
default:
alcSetError(VerifyDevice(Device).get(), ALC_INVALID_ENUM);
break;
}
return value;
}
static size_t GetIntegerv(ALCdevice *device, ALCenum param, const al::span<int> values)
{
size_t i;
if(values.empty())
{
alcSetError(device, ALC_INVALID_VALUE);
return 0;
}
if(!device)
{
switch(param)
{
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_EFX_MAJOR_VERSION:
values[0] = alcEFXMajorVersion;
return 1;
case ALC_EFX_MINOR_VERSION:
values[0] = alcEFXMinorVersion;
return 1;
case ALC_MAX_AUXILIARY_SENDS:
values[0] = MAX_SENDS;
return 1;
case ALC_ATTRIBUTES_SIZE:
case ALC_ALL_ATTRIBUTES:
case ALC_FREQUENCY:
case ALC_REFRESH:
case ALC_SYNC:
case ALC_MONO_SOURCES:
case ALC_STEREO_SOURCES:
case ALC_CAPTURE_SAMPLES:
case ALC_FORMAT_CHANNELS_SOFT:
case ALC_FORMAT_TYPE_SOFT:
case ALC_AMBISONIC_LAYOUT_SOFT:
case ALC_AMBISONIC_SCALING_SOFT:
case ALC_AMBISONIC_ORDER_SOFT:
case ALC_MAX_AMBISONIC_ORDER_SOFT:
alcSetError(nullptr, ALC_INVALID_DEVICE);
return 0;
default:
alcSetError(nullptr, ALC_INVALID_ENUM);
}
return 0;
}
std::lock_guard<std::mutex> _{device->StateLock};
if(device->Type == DeviceType::Capture)
{
static constexpr int MaxCaptureAttributes{9};
switch(param)
{
case ALC_ATTRIBUTES_SIZE:
values[0] = MaxCaptureAttributes;
return 1;
case ALC_ALL_ATTRIBUTES:
i = 0;
if(values.size() < MaxCaptureAttributes)
alcSetError(device, ALC_INVALID_VALUE);
else
{
values[i++] = ALC_MAJOR_VERSION;
values[i++] = alcMajorVersion;
values[i++] = ALC_MINOR_VERSION;
values[i++] = alcMinorVersion;
values[i++] = ALC_CAPTURE_SAMPLES;
values[i++] = static_cast<int>(device->Backend->availableSamples());
values[i++] = ALC_CONNECTED;
values[i++] = device->Connected.load(std::memory_order_relaxed);
values[i++] = 0;
assert(i == MaxCaptureAttributes);
}
return i;
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_CAPTURE_SAMPLES:
values[0] = static_cast<int>(device->Backend->availableSamples());
return 1;
case ALC_CONNECTED:
values[0] = device->Connected.load(std::memory_order_acquire);
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
}
return 0;
}
/* render device */
auto NumAttrsForDevice = [](ALCdevice *aldev) noexcept
{
if(aldev->Type == DeviceType::Loopback && aldev->FmtChans == DevFmtAmbi3D)
return 37;
return 31;
};
switch(param)
{
case ALC_ATTRIBUTES_SIZE:
values[0] = NumAttrsForDevice(device);
return 1;
case ALC_ALL_ATTRIBUTES:
i = 0;
if(values.size() < static_cast<size_t>(NumAttrsForDevice(device)))
alcSetError(device, ALC_INVALID_VALUE);
else
{
values[i++] = ALC_MAJOR_VERSION;
values[i++] = alcMajorVersion;
values[i++] = ALC_MINOR_VERSION;
values[i++] = alcMinorVersion;
values[i++] = ALC_EFX_MAJOR_VERSION;
values[i++] = alcEFXMajorVersion;
values[i++] = ALC_EFX_MINOR_VERSION;
values[i++] = alcEFXMinorVersion;
values[i++] = ALC_FREQUENCY;
values[i++] = static_cast<int>(device->Frequency);
if(device->Type != DeviceType::Loopback)
{
values[i++] = ALC_REFRESH;
values[i++] = static_cast<int>(device->Frequency / device->UpdateSize);
values[i++] = ALC_SYNC;
values[i++] = ALC_FALSE;
}
else
{
if(device->FmtChans == DevFmtAmbi3D)
{
values[i++] = ALC_AMBISONIC_LAYOUT_SOFT;
values[i++] = EnumFromDevAmbi(device->mAmbiLayout);
values[i++] = ALC_AMBISONIC_SCALING_SOFT;
values[i++] = EnumFromDevAmbi(device->mAmbiScale);
values[i++] = ALC_AMBISONIC_ORDER_SOFT;
values[i++] = static_cast<int>(device->mAmbiOrder);
}
values[i++] = ALC_FORMAT_CHANNELS_SOFT;
values[i++] = EnumFromDevFmt(device->FmtChans);
values[i++] = ALC_FORMAT_TYPE_SOFT;
values[i++] = EnumFromDevFmt(device->FmtType);
}
values[i++] = ALC_MONO_SOURCES;
values[i++] = static_cast<int>(device->NumMonoSources);
values[i++] = ALC_STEREO_SOURCES;
values[i++] = static_cast<int>(device->NumStereoSources);
values[i++] = ALC_MAX_AUXILIARY_SENDS;
values[i++] = static_cast<int>(device->NumAuxSends);
values[i++] = ALC_HRTF_SOFT;
values[i++] = (device->mHrtf ? ALC_TRUE : ALC_FALSE);
values[i++] = ALC_HRTF_STATUS_SOFT;
values[i++] = device->mHrtfStatus;
values[i++] = ALC_OUTPUT_LIMITER_SOFT;
values[i++] = device->Limiter ? ALC_TRUE : ALC_FALSE;
values[i++] = ALC_MAX_AMBISONIC_ORDER_SOFT;
values[i++] = MaxAmbiOrder;
values[i++] = ALC_OUTPUT_MODE_SOFT;
values[i++] = static_cast<ALCenum>(device->getOutputMode1());
values[i++] = 0;
}
return i;
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_EFX_MAJOR_VERSION:
values[0] = alcEFXMajorVersion;
return 1;
case ALC_EFX_MINOR_VERSION:
values[0] = alcEFXMinorVersion;
return 1;
case ALC_FREQUENCY:
values[0] = static_cast<int>(device->Frequency);
return 1;
case ALC_REFRESH:
if(device->Type == DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = static_cast<int>(device->Frequency / device->UpdateSize);
return 1;
case ALC_SYNC:
if(device->Type == DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = ALC_FALSE;
return 1;
case ALC_FORMAT_CHANNELS_SOFT:
if(device->Type != DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevFmt(device->FmtChans);
return 1;
case ALC_FORMAT_TYPE_SOFT:
if(device->Type != DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevFmt(device->FmtType);
return 1;
case ALC_AMBISONIC_LAYOUT_SOFT:
if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevAmbi(device->mAmbiLayout);
return 1;
case ALC_AMBISONIC_SCALING_SOFT:
if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevAmbi(device->mAmbiScale);
return 1;
case ALC_AMBISONIC_ORDER_SOFT:
if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = static_cast<int>(device->mAmbiOrder);
return 1;
case ALC_MONO_SOURCES:
values[0] = static_cast<int>(device->NumMonoSources);
return 1;
case ALC_STEREO_SOURCES:
values[0] = static_cast<int>(device->NumStereoSources);
return 1;
case ALC_MAX_AUXILIARY_SENDS:
values[0] = static_cast<int>(device->NumAuxSends);
return 1;
case ALC_CONNECTED:
values[0] = device->Connected.load(std::memory_order_acquire);
return 1;
case ALC_HRTF_SOFT:
values[0] = (device->mHrtf ? ALC_TRUE : ALC_FALSE);
return 1;
case ALC_HRTF_STATUS_SOFT:
values[0] = device->mHrtfStatus;
return 1;
case ALC_NUM_HRTF_SPECIFIERS_SOFT:
device->enumerateHrtfs();
values[0] = static_cast<int>(minz(device->mHrtfList.size(),
std::numeric_limits<int>::max()));
return 1;
case ALC_OUTPUT_LIMITER_SOFT:
values[0] = device->Limiter ? ALC_TRUE : ALC_FALSE;
return 1;
case ALC_MAX_AMBISONIC_ORDER_SOFT:
values[0] = MaxAmbiOrder;
return 1;
case ALC_OUTPUT_MODE_SOFT:
values[0] = static_cast<ALCenum>(device->getOutputMode1());
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
}
return 0;
}
ALC_API void ALC_APIENTRY alcGetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(size <= 0 || values == nullptr)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
GetIntegerv(dev.get(), param, {values, static_cast<uint>(size)});
}
ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALCsizei size, ALCint64SOFT *values) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(size <= 0 || values == nullptr)
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
if(!dev || dev->Type == DeviceType::Capture)
{
auto ivals = std::vector<int>(static_cast<uint>(size));
if(size_t got{GetIntegerv(dev.get(), pname, ivals)})
std::copy_n(ivals.begin(), got, values);
return;
}
/* render device */
auto NumAttrsForDevice = [](ALCdevice *aldev) noexcept
{
if(aldev->Type == DeviceType::Loopback && aldev->FmtChans == DevFmtAmbi3D)
return 41;
return 35;
};
std::lock_guard<std::mutex> _{dev->StateLock};
switch(pname)
{
case ALC_ATTRIBUTES_SIZE:
*values = NumAttrsForDevice(dev.get());
break;
case ALC_ALL_ATTRIBUTES:
if(size < NumAttrsForDevice(dev.get()))
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
size_t i{0};
values[i++] = ALC_FREQUENCY;
values[i++] = dev->Frequency;
if(dev->Type != DeviceType::Loopback)
{
values[i++] = ALC_REFRESH;
values[i++] = dev->Frequency / dev->UpdateSize;
values[i++] = ALC_SYNC;
values[i++] = ALC_FALSE;
}
else
{
values[i++] = ALC_FORMAT_CHANNELS_SOFT;
values[i++] = EnumFromDevFmt(dev->FmtChans);
values[i++] = ALC_FORMAT_TYPE_SOFT;
values[i++] = EnumFromDevFmt(dev->FmtType);
if(dev->FmtChans == DevFmtAmbi3D)
{
values[i++] = ALC_AMBISONIC_LAYOUT_SOFT;
values[i++] = EnumFromDevAmbi(dev->mAmbiLayout);
values[i++] = ALC_AMBISONIC_SCALING_SOFT;
values[i++] = EnumFromDevAmbi(dev->mAmbiScale);
values[i++] = ALC_AMBISONIC_ORDER_SOFT;
values[i++] = dev->mAmbiOrder;
}
}
values[i++] = ALC_MONO_SOURCES;
values[i++] = dev->NumMonoSources;
values[i++] = ALC_STEREO_SOURCES;
values[i++] = dev->NumStereoSources;
values[i++] = ALC_MAX_AUXILIARY_SENDS;
values[i++] = dev->NumAuxSends;
values[i++] = ALC_HRTF_SOFT;
values[i++] = (dev->mHrtf ? ALC_TRUE : ALC_FALSE);
values[i++] = ALC_HRTF_STATUS_SOFT;
values[i++] = dev->mHrtfStatus;
values[i++] = ALC_OUTPUT_LIMITER_SOFT;
values[i++] = dev->Limiter ? ALC_TRUE : ALC_FALSE;
ClockLatency clock{GetClockLatency(dev.get(), dev->Backend.get())};
values[i++] = ALC_DEVICE_CLOCK_SOFT;
values[i++] = clock.ClockTime.count();
values[i++] = ALC_DEVICE_LATENCY_SOFT;
values[i++] = clock.Latency.count();
values[i++] = ALC_OUTPUT_MODE_SOFT;
values[i++] = static_cast<ALCenum>(device->getOutputMode1());
values[i++] = 0;
}
break;
case ALC_DEVICE_CLOCK_SOFT:
{
uint samplecount, refcount;
nanoseconds basecount;
do {
refcount = dev->waitForMix();
basecount = dev->ClockBase;
samplecount = dev->SamplesDone;
} while(refcount != ReadRef(dev->MixCount));
basecount += nanoseconds{seconds{samplecount}} / dev->Frequency;
*values = basecount.count();
}
break;
case ALC_DEVICE_LATENCY_SOFT:
*values = GetClockLatency(dev.get(), dev->Backend.get()).Latency.count();
break;
case ALC_DEVICE_CLOCK_LATENCY_SOFT:
if(size < 2)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
ClockLatency clock{GetClockLatency(dev.get(), dev->Backend.get())};
values[0] = clock.ClockTime.count();
values[1] = clock.Latency.count();
}
break;
default:
auto ivals = std::vector<int>(static_cast<uint>(size));
if(size_t got{GetIntegerv(dev.get(), pname, ivals)})
std::copy_n(ivals.begin(), got, values);
break;
}
}
ALC_API ALCboolean ALC_APIENTRY alcIsExtensionPresent(ALCdevice *device, const ALCchar *extName) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!extName)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
size_t len = strlen(extName);
const char *ptr = (dev ? alcExtensionList : alcNoDeviceExtList);
while(ptr && *ptr)
{
if(al::strncasecmp(ptr, extName, len) == 0 && (ptr[len] == '\0' || isspace(ptr[len])))
return ALC_TRUE;
if((ptr=strchr(ptr, ' ')) != nullptr)
{
do {
++ptr;
} while(isspace(*ptr));
}
}
}
return ALC_FALSE;
}
ALCvoid* ALC_APIENTRY alcGetProcAddress2(ALCdevice *device, const ALCchar *funcName) noexcept
{ return alcGetProcAddress(device, funcName); }
ALC_API ALCvoid* ALC_APIENTRY alcGetProcAddress(ALCdevice *device, const ALCchar *funcName) noexcept
{
if(!funcName)
{
DeviceRef dev{VerifyDevice(device)};
alcSetError(dev.get(), ALC_INVALID_VALUE);
return nullptr;
}
#ifdef ALSOFT_EAX
if(eax_g_is_enabled)
{
for(const auto &func : eaxFunctions)
{
if(strcmp(func.funcName, funcName) == 0)
return func.address;
}
}
#endif
for(const auto &func : alcFunctions)
{
if(strcmp(func.funcName, funcName) == 0)
return func.address;
}
return nullptr;
}
ALC_API ALCenum ALC_APIENTRY alcGetEnumValue(ALCdevice *device, const ALCchar *enumName) noexcept
{
if(!enumName)
{
DeviceRef dev{VerifyDevice(device)};
alcSetError(dev.get(), ALC_INVALID_VALUE);
return 0;
}
#ifdef ALSOFT_EAX
if(eax_g_is_enabled)
{
for(const auto &enm : eaxEnumerations)
{
if(strcmp(enm.enumName, enumName) == 0)
return enm.value;
}
}
#endif
for(const auto &enm : alcEnumerations)
{
if(strcmp(enm.enumName, enumName) == 0)
return enm.value;
}
return 0;
}
ALC_API ALCcontext* ALC_APIENTRY alcCreateContext(ALCdevice *device, const ALCint *attrList) noexcept
{
/* Explicitly hold the list lock while taking the StateLock in case the
* device is asynchronously destroyed, to ensure this new context is
* properly cleaned up after being made.
*/
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == DeviceType::Capture || !dev->Connected.load(std::memory_order_relaxed))
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return nullptr;
}
std::unique_lock<std::mutex> statelock{dev->StateLock};
listlock.unlock();
dev->LastError.store(ALC_NO_ERROR);
ALCenum err{UpdateDeviceParams(dev.get(), attrList)};
if(err != ALC_NO_ERROR)
{
alcSetError(dev.get(), err);
return nullptr;
}
ContextFlagBitset ctxflags{0};
if(attrList)
{
for(size_t i{0};attrList[i];i+=2)
{
if(attrList[i] == ALC_CONTEXT_FLAGS_EXT)
{
ctxflags = static_cast<ALuint>(attrList[i+1]);
break;
}
}
}
ContextRef context{[](auto&& ...args) -> ContextRef
{
try {
return ContextRef{new ALCcontext{std::forward<decltype(args)>(args)...}};
}
catch(std::exception& e) {
ERR("Failed to create ALCcontext: %s\n", e.what());
return ContextRef{};
}
}(dev, ctxflags)};
if(!context)
{
alcSetError(dev.get(), ALC_OUT_OF_MEMORY);
return nullptr;
}
context->init();
if(auto volopt = dev->configValue<float>(nullptr, "volume-adjust"))
{
const float valf{*volopt};
if(!std::isfinite(valf))
ERR("volume-adjust must be finite: %f\n", valf);
else
{
const float db{clampf(valf, -24.0f, 24.0f)};
if(db != valf)
WARN("volume-adjust clamped: %f, range: +/-%f\n", valf, 24.0f);
context->mGainBoost = std::pow(10.0f, db/20.0f);
TRACE("volume-adjust gain: %f\n", context->mGainBoost);
}
}
{
using ContextArray = al::FlexArray<ContextBase*>;
/* Allocate a new context array, which holds 1 more than the current/
* old array.
*/
auto *oldarray = device->mContexts.load();
const size_t newcount{oldarray->size()+1};
std::unique_ptr<ContextArray> newarray{ContextArray::Create(newcount)};
/* Copy the current/old context handles to the new array, appending the
* new context.
*/
auto iter = std::copy(oldarray->begin(), oldarray->end(), newarray->begin());
*iter = context.get();
/* Store the new context array in the device. Wait for any current mix
* to finish before deleting the old array.
*/
dev->mContexts.store(newarray.release());
if(oldarray != &DeviceBase::sEmptyContextArray)
{
dev->waitForMix();
delete oldarray;
}
}
statelock.unlock();
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(ContextList.cbegin(), ContextList.cend(), context.get());
ContextList.emplace(iter, context.get());
}
if(ALeffectslot *slot{context->mDefaultSlot.get()})
{
ALenum sloterr{slot->initEffect(0, ALCcontext::sDefaultEffect.type,
ALCcontext::sDefaultEffect.Props, context.get())};
if(sloterr == AL_NO_ERROR)
slot->updateProps(context.get());
else
ERR("Failed to initialize the default effect\n");
}
TRACE("Created context %p\n", voidp{context.get()});
return context.release();
}
ALC_API void ALC_APIENTRY alcDestroyContext(ALCcontext *context) noexcept
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context);
if(iter == ContextList.end() || *iter != context)
{
listlock.unlock();
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return;
}
/* Hold a reference to this context so it remains valid until the ListLock
* is released.
*/
ContextRef ctx{*iter};
ContextList.erase(iter);
ALCdevice *Device{ctx->mALDevice.get()};
std::lock_guard<std::mutex> _{Device->StateLock};
if(!ctx->deinit() && Device->Flags.test(DeviceRunning))
{
Device->Backend->stop();
Device->Flags.reset(DeviceRunning);
}
}
ALC_API ALCcontext* ALC_APIENTRY alcGetCurrentContext(void) noexcept
{
ALCcontext *Context{ALCcontext::getThreadContext()};
if(!Context) Context = ALCcontext::sGlobalContext.load();
return Context;
}
/** Returns the currently active thread-local context. */
ALC_API ALCcontext* ALC_APIENTRY alcGetThreadContext(void) noexcept
{ return ALCcontext::getThreadContext(); }
ALC_API ALCboolean ALC_APIENTRY alcMakeContextCurrent(ALCcontext *context) noexcept
{
/* context must be valid or nullptr */
ContextRef ctx;
if(context)
{
ctx = VerifyContext(context);
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
}
/* Release this reference (if any) to store it in the GlobalContext
* pointer. Take ownership of the reference (if any) that was previously
* stored there, and let the reference go.
*/
while(ALCcontext::sGlobalContextLock.exchange(true, std::memory_order_acquire)) {
/* Wait to make sure another thread isn't getting or trying to change
* the current context as its refcount is decremented.
*/
}
ContextRef{ALCcontext::sGlobalContext.exchange(ctx.release())};
ALCcontext::sGlobalContextLock.store(false, std::memory_order_release);
/* Take ownership of the thread-local context reference (if any), clearing
* the storage to null.
*/
ctx = ContextRef{ALCcontext::getThreadContext()};
if(ctx) ALCcontext::setThreadContext(nullptr);
/* Reset (decrement) the previous thread-local reference. */
return ALC_TRUE;
}
/** Makes the given context the active context for the current thread. */
ALC_API ALCboolean ALC_APIENTRY alcSetThreadContext(ALCcontext *context) noexcept
{
/* context must be valid or nullptr */
ContextRef ctx;
if(context)
{
ctx = VerifyContext(context);
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
}
/* context's reference count is already incremented */
ContextRef old{ALCcontext::getThreadContext()};
ALCcontext::setThreadContext(ctx.release());
return ALC_TRUE;
}
ALC_API ALCdevice* ALC_APIENTRY alcGetContextsDevice(ALCcontext *Context) noexcept
{
ContextRef ctx{VerifyContext(Context)};
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return nullptr;
}
return ctx->mALDevice.get();
}
ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName) noexcept
{
InitConfig();
if(!PlaybackFactory)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
if(deviceName)
{
TRACE("Opening playback device \"%s\"\n", deviceName);
if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0
#ifdef _WIN32
/* Some old Windows apps hardcode these expecting OpenAL to use a
* specific audio API, even when they're not enumerated. Creative's
* router effectively ignores them too.
*/
|| al::strcasecmp(deviceName, "DirectSound3D") == 0
|| al::strcasecmp(deviceName, "DirectSound") == 0
|| al::strcasecmp(deviceName, "MMSYSTEM") == 0
#endif
/* Some old Linux apps hardcode configuration strings that were
* supported by the OpenAL SI. We can't really do anything useful
* with them, so just ignore.
*/
|| (deviceName[0] == '\'' && deviceName[1] == '(')
|| al::strcasecmp(deviceName, "openal-soft") == 0)
deviceName = nullptr;
}
else
TRACE("Opening default playback device\n");
const uint DefaultSends{
#ifdef ALSOFT_EAX
eax_g_is_enabled ? uint{EAX_MAX_FXSLOTS} :
#endif // ALSOFT_EAX
DEFAULT_SENDS
};
DeviceRef device{new ALCdevice{DeviceType::Playback}};
/* Set output format */
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
device->Frequency = DEFAULT_OUTPUT_RATE;
device->UpdateSize = DEFAULT_UPDATE_SIZE;
device->BufferSize = DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES;
device->SourcesMax = 256;
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
device->AuxiliaryEffectSlotMax = 64;
device->NumAuxSends = DefaultSends;
try {
/* We need to ensure the device name isn't too long. The string_view is
* printed using the "%.*s" formatter, which uses an int for the
* precision/length. It wouldn't be a significant problem if larger
* values simply printed fewer characters due to truncation, but
* negative values are ignored, treating it like a normal null-
* terminated string, and string_views don't need to be null-
* terminated.
*
* Other than the annoyance of checking, this shouldn't be a problem.
* Two billion bytes is enough for a device name.
*/
const std::string_view devname{deviceName ? deviceName : ""};
if(devname.length() >= std::numeric_limits<int>::max())
throw al::backend_exception{al::backend_error::NoDevice,
"Device name too long (%zu >= %d)", devname.length(),
std::numeric_limits<int>::max()};
auto backend = PlaybackFactory->createBackend(device.get(), BackendType::Playback);
std::lock_guard<std::recursive_mutex> _{ListLock};
backend->open(devname);
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open playback device: %s\n", e.what());
alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
return nullptr;
}
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created device %p, \"%s\"\n", voidp{device.get()}, device->DeviceName.c_str());
return device.release();
}
ALC_API ALCboolean ALC_APIENTRY alcCloseDevice(ALCdevice *device) noexcept
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter == DeviceList.end() || *iter != device)
{
alcSetError(nullptr, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
if((*iter)->Type == DeviceType::Capture)
{
alcSetError(*iter, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
/* Erase the device, and any remaining contexts left on it, from their
* respective lists.
*/
DeviceRef dev{*iter};
DeviceList.erase(iter);
std::unique_lock<std::mutex> statelock{dev->StateLock};
std::vector<ContextRef> orphanctxs;
for(ContextBase *ctx : *dev->mContexts.load())
{
auto ctxiter = std::lower_bound(ContextList.begin(), ContextList.end(), ctx);
if(ctxiter != ContextList.end() && *ctxiter == ctx)
{
orphanctxs.emplace_back(ContextRef{*ctxiter});
ContextList.erase(ctxiter);
}
}
listlock.unlock();
for(ContextRef &context : orphanctxs)
{
WARN("Releasing orphaned context %p\n", voidp{context.get()});
context->deinit();
}
orphanctxs.clear();
if(dev->Flags.test(DeviceRunning))
dev->Backend->stop();
dev->Flags.reset(DeviceRunning);
return ALC_TRUE;
}
/************************************************
* ALC capture functions
************************************************/
ALC_API ALCdevice* ALC_APIENTRY alcCaptureOpenDevice(const ALCchar *deviceName, ALCuint frequency, ALCenum format, ALCsizei samples) noexcept
{
InitConfig();
if(!CaptureFactory)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
if(samples <= 0)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
if(deviceName)
{
TRACE("Opening capture device \"%s\"\n", deviceName);
if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0
|| al::strcasecmp(deviceName, "openal-soft") == 0)
deviceName = nullptr;
}
else
TRACE("Opening default capture device\n");
DeviceRef device{new ALCdevice{DeviceType::Capture}};
auto decompfmt = DecomposeDevFormat(format);
if(!decompfmt)
{
alcSetError(nullptr, ALC_INVALID_ENUM);
return nullptr;
}
device->Frequency = frequency;
device->FmtChans = decompfmt->chans;
device->FmtType = decompfmt->type;
device->Flags.set(FrequencyRequest);
device->Flags.set(ChannelsRequest);
device->Flags.set(SampleTypeRequest);
device->UpdateSize = static_cast<uint>(samples);
device->BufferSize = static_cast<uint>(samples);
TRACE("Capture format: %s, %s, %uhz, %u / %u buffer\n", DevFmtChannelsString(device->FmtChans),
DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize,
device->BufferSize);
try {
const std::string_view devname{deviceName ? deviceName : ""};
if(devname.length() >= std::numeric_limits<int>::max())
throw al::backend_exception{al::backend_error::NoDevice,
"Device name too long (%zu >= %d)", devname.length(),
std::numeric_limits<int>::max()};
auto backend = CaptureFactory->createBackend(device.get(), BackendType::Capture);
std::lock_guard<std::recursive_mutex> _{ListLock};
backend->open(devname);
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open capture device: %s\n", e.what());
alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
return nullptr;
}
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created capture device %p, \"%s\"\n", voidp{device.get()}, device->DeviceName.c_str());
return device.release();
}
ALC_API ALCboolean ALC_APIENTRY alcCaptureCloseDevice(ALCdevice *device) noexcept
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter == DeviceList.end() || *iter != device)
{
alcSetError(nullptr, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
if((*iter)->Type != DeviceType::Capture)
{
alcSetError(*iter, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
DeviceRef dev{*iter};
DeviceList.erase(iter);
listlock.unlock();
std::lock_guard<std::mutex> _{dev->StateLock};
if(dev->Flags.test(DeviceRunning))
dev->Backend->stop();
dev->Flags.reset(DeviceRunning);
return ALC_TRUE;
}
ALC_API void ALC_APIENTRY alcCaptureStart(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Capture)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
std::lock_guard<std::mutex> _{dev->StateLock};
if(!dev->Connected.load(std::memory_order_acquire))
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else if(!dev->Flags.test(DeviceRunning))
{
try {
auto backend = dev->Backend.get();
backend->start();
dev->Flags.set(DeviceRunning);
}
catch(al::backend_exception& e) {
ERR("%s\n", e.what());
dev->handleDisconnect("%s", e.what());
alcSetError(dev.get(), ALC_INVALID_DEVICE);
}
}
}
ALC_API void ALC_APIENTRY alcCaptureStop(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Capture)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else
{
std::lock_guard<std::mutex> _{dev->StateLock};
if(dev->Flags.test(DeviceRunning))
dev->Backend->stop();
dev->Flags.reset(DeviceRunning);
}
}
ALC_API void ALC_APIENTRY alcCaptureSamples(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Capture)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
if(samples < 0 || (samples > 0 && buffer == nullptr))
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
if(samples < 1)
return;
std::lock_guard<std::mutex> _{dev->StateLock};
BackendBase *backend{dev->Backend.get()};
const auto usamples = static_cast<uint>(samples);
if(usamples > backend->availableSamples())
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
backend->captureSamples(static_cast<std::byte*>(buffer), usamples);
}
/************************************************
* ALC loopback functions
************************************************/
/** Open a loopback device, for manual rendering. */
ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceName) noexcept
{
InitConfig();
/* Make sure the device name, if specified, is us. */
if(deviceName && strcmp(deviceName, alcDefaultName) != 0)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
const uint DefaultSends{
#ifdef ALSOFT_EAX
eax_g_is_enabled ? uint{EAX_MAX_FXSLOTS} :
#endif // ALSOFT_EAX
DEFAULT_SENDS
};
DeviceRef device{new ALCdevice{DeviceType::Loopback}};
device->SourcesMax = 256;
device->AuxiliaryEffectSlotMax = 64;
device->NumAuxSends = DefaultSends;
//Set output format
device->BufferSize = 0;
device->UpdateSize = 0;
device->Frequency = DEFAULT_OUTPUT_RATE;
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
try {
auto backend = LoopbackBackendFactory::getFactory().createBackend(device.get(),
BackendType::Playback);
backend->open("Loopback");
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open loopback device: %s\n", e.what());
alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
return nullptr;
}
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created loopback device %p\n", voidp{device.get()});
return device.release();
}
/**
* Determines if the loopback device supports the given format for rendering.
*/
ALC_API ALCboolean ALC_APIENTRY alcIsRenderFormatSupportedSOFT(ALCdevice *device, ALCsizei freq, ALCenum channels, ALCenum type) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Loopback)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else if(freq <= 0)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
if(DevFmtTypeFromEnum(type).has_value() && DevFmtChannelsFromEnum(channels).has_value()
&& freq >= MIN_OUTPUT_RATE && freq <= MAX_OUTPUT_RATE)
return ALC_TRUE;
}
return ALC_FALSE;
}
/**
* Renders some samples into a buffer, using the format last set by the
* attributes given to alcCreateContext.
*/
#if defined(__GNUC__) && defined(__i386__)
/* Needed on x86-32 even without SSE codegen, since the mixer may still use SSE
* and GCC assumes the stack is aligned (x86-64 ABI guarantees alignment).
*/
[[gnu::force_align_arg_pointer]]
#endif
ALC_API void ALC_APIENTRY alcRenderSamplesSOFT(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) noexcept
{
if(!device || device->Type != DeviceType::Loopback) UNLIKELY
alcSetError(device, ALC_INVALID_DEVICE);
else if(samples < 0 || (samples > 0 && buffer == nullptr)) UNLIKELY
alcSetError(device, ALC_INVALID_VALUE);
else
device->renderSamples(buffer, static_cast<uint>(samples), device->channelsFromFmt());
}
/************************************************
* ALC DSP pause/resume functions
************************************************/
/** Pause the DSP to stop audio processing. */
ALC_API void ALC_APIENTRY alcDevicePauseSOFT(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Playback)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else
{
std::lock_guard<std::mutex> _{dev->StateLock};
if(dev->Flags.test(DeviceRunning))
dev->Backend->stop();
dev->Flags.reset(DeviceRunning);
dev->Flags.set(DevicePaused);
}
}
/** Resume the DSP to restart audio processing. */
ALC_API void ALC_APIENTRY alcDeviceResumeSOFT(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Playback)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
std::lock_guard<std::mutex> _{dev->StateLock};
if(!dev->Flags.test(DevicePaused))
return;
dev->Flags.reset(DevicePaused);
if(dev->mContexts.load()->empty())
return;
try {
auto backend = dev->Backend.get();
backend->start();
dev->Flags.set(DeviceRunning);
}
catch(al::backend_exception& e) {
ERR("%s\n", e.what());
dev->handleDisconnect("%s", e.what());
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
TRACE("Post-resume: %s, %s, %uhz, %u / %u buffer\n",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->Frequency, device->UpdateSize, device->BufferSize);
}
/************************************************
* ALC HRTF functions
************************************************/
/** Gets a string parameter at the given index. */
ALC_API const ALCchar* ALC_APIENTRY alcGetStringiSOFT(ALCdevice *device, ALCenum paramName, ALCsizei index) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == DeviceType::Capture)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else switch(paramName)
{
case ALC_HRTF_SPECIFIER_SOFT:
if(index >= 0 && static_cast<uint>(index) < dev->mHrtfList.size())
return dev->mHrtfList[static_cast<uint>(index)].c_str();
alcSetError(dev.get(), ALC_INVALID_VALUE);
break;
default:
alcSetError(dev.get(), ALC_INVALID_ENUM);
break;
}
return nullptr;
}
/** Resets the given device output, using the specified attribute list. */
ALC_API ALCboolean ALC_APIENTRY alcResetDeviceSOFT(ALCdevice *device, const ALCint *attribs) noexcept
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == DeviceType::Capture)
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return ALC_FALSE;
}
std::lock_guard<std::mutex> _{dev->StateLock};
listlock.unlock();
/* Force the backend to stop mixing first since we're resetting. Also reset
* the connected state so lost devices can attempt recover.
*/
if(dev->Flags.test(DeviceRunning))
dev->Backend->stop();
dev->Flags.reset(DeviceRunning);
return ResetDeviceParams(dev.get(), attribs) ? ALC_TRUE : ALC_FALSE;
}
/************************************************
* ALC device reopen functions
************************************************/
/** Reopens the given device output, using the specified name and attribute list. */
FORCE_ALIGN ALCboolean ALC_APIENTRY alcReopenDeviceSOFT(ALCdevice *device,
const ALCchar *deviceName, const ALCint *attribs) noexcept
{
if(deviceName)
{
if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0)
deviceName = nullptr;
}
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Playback)
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return ALC_FALSE;
}
std::lock_guard<std::mutex> _{dev->StateLock};
/* Force the backend to stop mixing first since we're reopening. */
if(dev->Flags.test(DeviceRunning))
{
auto backend = dev->Backend.get();
backend->stop();
dev->Flags.reset(DeviceRunning);
}
BackendPtr newbackend;
try {
const std::string_view devname{deviceName ? deviceName : ""};
if(devname.length() >= std::numeric_limits<int>::max())
throw al::backend_exception{al::backend_error::NoDevice,
"Device name too long (%zu >= %d)", devname.length(),
std::numeric_limits<int>::max()};
newbackend = PlaybackFactory->createBackend(dev.get(), BackendType::Playback);
newbackend->open(devname);
}
catch(al::backend_exception &e) {
listlock.unlock();
newbackend = nullptr;
WARN("Failed to reopen playback device: %s\n", e.what());
alcSetError(dev.get(), (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
/* If the device is connected, not paused, and has contexts, ensure it
* continues playing.
*/
if(dev->Connected.load(std::memory_order_relaxed) && !dev->Flags.test(DevicePaused)
&& !dev->mContexts.load(std::memory_order_relaxed)->empty())
{
try {
auto backend = dev->Backend.get();
backend->start();
dev->Flags.set(DeviceRunning);
}
catch(al::backend_exception &be) {
ERR("%s\n", be.what());
dev->handleDisconnect("%s", be.what());
}
}
return ALC_FALSE;
}
listlock.unlock();
dev->Backend = std::move(newbackend);
TRACE("Reopened device %p, \"%s\"\n", voidp{dev.get()}, dev->DeviceName.c_str());
/* Always return true even if resetting fails. It shouldn't fail, but this
* is primarily to avoid confusion by the app seeing the function return
* false while the device is on the new output anyway. We could try to
* restore the old backend if this fails, but the configuration would be
* changed with the new backend and would need to be reset again with the
* old one, and the provided attributes may not be appropriate or desirable
* for the old device.
*
* In this way, we essentially act as if the function succeeded, but
* immediately disconnects following it.
*/
ResetDeviceParams(dev.get(), attribs);
return ALC_TRUE;
}