axmol/3rdparty/openal/core/ambidefs.h

212 lines
8.6 KiB
C++

#ifndef CORE_AMBIDEFS_H
#define CORE_AMBIDEFS_H
#include <array>
#include <stddef.h>
#include <stdint.h>
#include "alnumbers.h"
using uint = unsigned int;
/* The maximum number of Ambisonics channels. For a given order (o), the size
* needed will be (o+1)**2, thus zero-order has 1, first-order has 4, second-
* order has 9, third-order has 16, and fourth-order has 25.
*/
inline constexpr uint8_t MaxAmbiOrder{3};
constexpr inline size_t AmbiChannelsFromOrder(size_t order) noexcept
{ return (order+1) * (order+1); }
inline constexpr size_t MaxAmbiChannels{AmbiChannelsFromOrder(MaxAmbiOrder)};
/* A bitmask of ambisonic channels for 0 to 4th order. This only specifies up
* to 4th order, which is the highest order a 32-bit mask value can specify (a
* 64-bit mask could handle up to 7th order).
*/
inline constexpr uint Ambi0OrderMask{0x00000001};
inline constexpr uint Ambi1OrderMask{0x0000000f};
inline constexpr uint Ambi2OrderMask{0x000001ff};
inline constexpr uint Ambi3OrderMask{0x0000ffff};
inline constexpr uint Ambi4OrderMask{0x01ffffff};
/* A bitmask of ambisonic channels with height information. If none of these
* channels are used/needed, there's no height (e.g. with most surround sound
* speaker setups). This is ACN ordering, with bit 0 being ACN 0, etc.
*/
inline constexpr uint AmbiPeriphonicMask{0xfe7ce4};
/* The maximum number of ambisonic channels for 2D (non-periphonic)
* representation. This is 2 per each order above zero-order, plus 1 for zero-
* order. Or simply, o*2 + 1.
*/
constexpr inline size_t Ambi2DChannelsFromOrder(size_t order) noexcept
{ return order*2 + 1; }
inline constexpr size_t MaxAmbi2DChannels{Ambi2DChannelsFromOrder(MaxAmbiOrder)};
/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
* coefficients should be divided by these values to get proper scalings.
*/
struct AmbiScale {
static inline constexpr std::array<float,MaxAmbiChannels> FromN3D{{
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
}};
static inline constexpr std::array<float,MaxAmbiChannels> FromSN3D{{
1.000000000f, /* ACN 0, sqrt(1) */
1.732050808f, /* ACN 1, sqrt(3) */
1.732050808f, /* ACN 2, sqrt(3) */
1.732050808f, /* ACN 3, sqrt(3) */
2.236067978f, /* ACN 4, sqrt(5) */
2.236067978f, /* ACN 5, sqrt(5) */
2.236067978f, /* ACN 6, sqrt(5) */
2.236067978f, /* ACN 7, sqrt(5) */
2.236067978f, /* ACN 8, sqrt(5) */
2.645751311f, /* ACN 9, sqrt(7) */
2.645751311f, /* ACN 10, sqrt(7) */
2.645751311f, /* ACN 11, sqrt(7) */
2.645751311f, /* ACN 12, sqrt(7) */
2.645751311f, /* ACN 13, sqrt(7) */
2.645751311f, /* ACN 14, sqrt(7) */
2.645751311f, /* ACN 15, sqrt(7) */
}};
static inline constexpr std::array<float,MaxAmbiChannels> FromFuMa{{
1.414213562f, /* ACN 0 (W), sqrt(2) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
2.236067978f, /* ACN 6 (R), sqrt(5) */
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
}};
static inline constexpr std::array<float,MaxAmbiChannels> FromUHJ{{
1.000000000f, /* ACN 0 (W), sqrt(1) */
1.224744871f, /* ACN 1 (Y), sqrt(3/2) */
1.224744871f, /* ACN 2 (Z), sqrt(3/2) */
1.224744871f, /* ACN 3 (X), sqrt(3/2) */
/* Higher orders not relevant for UHJ. */
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
}};
/* Retrieves per-order HF scaling factors for "upsampling" ambisonic data. */
static std::array<float,MaxAmbiOrder+1> GetHFOrderScales(const uint src_order,
const uint dev_order, const bool horizontalOnly) noexcept;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrder2DUp;
static const std::array<std::array<float,MaxAmbiChannels>,9> SecondOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,9> SecondOrder2DUp;
static const std::array<std::array<float,MaxAmbiChannels>,16> ThirdOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,16> ThirdOrder2DUp;
static const std::array<std::array<float,MaxAmbiChannels>,25> FourthOrder2DUp;
};
struct AmbiIndex {
static inline constexpr std::array<uint8_t,MaxAmbiChannels> FromFuMa{{
0, /* W */
3, /* X */
1, /* Y */
2, /* Z */
6, /* R */
7, /* S */
5, /* T */
8, /* U */
4, /* V */
12, /* K */
13, /* L */
11, /* M */
14, /* N */
10, /* O */
15, /* P */
9, /* Q */
}};
static inline constexpr std::array<uint8_t,MaxAmbi2DChannels> FromFuMa2D{{
0, /* W */
3, /* X */
1, /* Y */
8, /* U */
4, /* V */
15, /* P */
9, /* Q */
}};
static inline constexpr std::array<uint8_t,MaxAmbiChannels> FromACN{{
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15
}};
static inline constexpr std::array<uint8_t,MaxAmbi2DChannels> FromACN2D{{
0, 1,3, 4,8, 9,15
}};
static inline constexpr std::array<uint8_t,MaxAmbiChannels> OrderFromChannel{{
0, 1,1,1, 2,2,2,2,2, 3,3,3,3,3,3,3,
}};
static inline constexpr std::array<uint8_t,MaxAmbi2DChannels> OrderFrom2DChannel{{
0, 1,1, 2,2, 3,3,
}};
};
/**
* Calculates ambisonic encoder coefficients using the X, Y, and Z direction
* components, which must represent a normalized (unit length) vector.
*
* NOTE: The components use ambisonic coordinates. As a result:
*
* Ambisonic Y = OpenAL -X
* Ambisonic Z = OpenAL Y
* Ambisonic X = OpenAL -Z
*
* The components are ordered such that OpenAL's X, Y, and Z are the first,
* second, and third parameters respectively -- simply negate X and Z.
*/
constexpr auto CalcAmbiCoeffs(const float y, const float z, const float x)
{
const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z};
return std::array<float,MaxAmbiChannels>{{
/* Zeroth-order */
1.0f, /* ACN 0 = 1 */
/* First-order */
al::numbers::sqrt3_v<float> * y, /* ACN 1 = sqrt(3) * Y */
al::numbers::sqrt3_v<float> * z, /* ACN 2 = sqrt(3) * Z */
al::numbers::sqrt3_v<float> * x, /* ACN 3 = sqrt(3) * X */
/* Second-order */
3.872983346e+00f * xy, /* ACN 4 = sqrt(15) * X * Y */
3.872983346e+00f * yz, /* ACN 5 = sqrt(15) * Y * Z */
1.118033989e+00f * (3.0f*zz - 1.0f), /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
3.872983346e+00f * xz, /* ACN 7 = sqrt(15) * X * Z */
1.936491673e+00f * (xx - yy), /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
/* Third-order */
2.091650066e+00f * (y*(3.0f*xx - yy)), /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
1.024695076e+01f * (z*xy), /* ACN 10 = sqrt(105) * Z * X * Y */
1.620185175e+00f * (y*(5.0f*zz - 1.0f)), /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
1.322875656e+00f * (z*(5.0f*zz - 3.0f)), /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
1.620185175e+00f * (x*(5.0f*zz - 1.0f)), /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
5.123475383e+00f * (z*(xx - yy)), /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
2.091650066e+00f * (x*(xx - 3.0f*yy)), /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
/* Fourth-order */
/* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */
/* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */
/* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */
/* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */
/* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */
/* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */
/* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */
/* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */
/* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */
}};
}
#endif /* CORE_AMBIDEFS_H */