axmol/3rdparty/openal/core/bformatdec.cpp

185 lines
6.7 KiB
C++

#include "config.h"
#include "bformatdec.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <utility>
#include "almalloc.h"
#include "alnumbers.h"
#include "filters/splitter.h"
#include "front_stablizer.h"
#include "mixer.h"
#include "opthelpers.h"
namespace {
template<typename... Ts>
struct overloaded : Ts... { using Ts::operator()...; };
template<typename... Ts>
overloaded(Ts...) -> overloaded<Ts...>;
} // namespace
BFormatDec::BFormatDec(const size_t inchans, const al::span<const ChannelDec> coeffs,
const al::span<const ChannelDec> coeffslf, const float xover_f0norm,
std::unique_ptr<FrontStablizer> stablizer)
: mStablizer{std::move(stablizer)}
{
if(coeffslf.empty())
{
auto &decoder = mChannelDec.emplace<std::vector<ChannelDecoderSingle>>(inchans);
for(size_t j{0};j < decoder.size();++j)
{
float *outcoeffs{decoder[j].mGains};
for(const ChannelDec &incoeffs : coeffs)
*(outcoeffs++) = incoeffs[j];
}
}
else
{
auto &decoder = mChannelDec.emplace<std::vector<ChannelDecoderDual>>(inchans);
decoder[0].mXOver.init(xover_f0norm);
for(size_t j{1};j < decoder.size();++j)
decoder[j].mXOver = decoder[0].mXOver;
for(size_t j{0};j < decoder.size();++j)
{
float *outcoeffs{decoder[j].mGains[sHFBand]};
for(const ChannelDec &incoeffs : coeffs)
*(outcoeffs++) = incoeffs[j];
outcoeffs = decoder[j].mGains[sLFBand];
for(const ChannelDec &incoeffs : coeffslf)
*(outcoeffs++) = incoeffs[j];
}
}
}
void BFormatDec::process(const al::span<FloatBufferLine> OutBuffer,
const FloatBufferLine *InSamples, const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
auto decode_dualband = [=](std::vector<ChannelDecoderDual> &decoder)
{
auto *input = InSamples;
const al::span<float> hfSamples{mSamples[sHFBand].data(), SamplesToDo};
const al::span<float> lfSamples{mSamples[sLFBand].data(), SamplesToDo};
for(auto &chandec : decoder)
{
chandec.mXOver.process({input->data(), SamplesToDo}, hfSamples.data(),
lfSamples.data());
MixSamples(hfSamples, OutBuffer, chandec.mGains[sHFBand], chandec.mGains[sHFBand],0,0);
MixSamples(lfSamples, OutBuffer, chandec.mGains[sLFBand], chandec.mGains[sLFBand],0,0);
++input;
}
};
auto decode_singleband = [=](std::vector<ChannelDecoderSingle> &decoder)
{
auto *input = InSamples;
for(auto &chandec : decoder)
{
MixSamples({input->data(), SamplesToDo}, OutBuffer, chandec.mGains, chandec.mGains,
0, 0);
++input;
}
};
std::visit(overloaded{decode_dualband, decode_singleband}, mChannelDec);
}
void BFormatDec::processStablize(const al::span<FloatBufferLine> OutBuffer,
const FloatBufferLine *InSamples, const size_t lidx, const size_t ridx, const size_t cidx,
const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
/* Move the existing direct L/R signal out so it doesn't get processed by
* the stablizer.
*/
float *RESTRICT mid{al::assume_aligned<16>(mStablizer->MidDirect.data())};
float *RESTRICT side{al::assume_aligned<16>(mStablizer->Side.data())};
for(size_t i{0};i < SamplesToDo;++i)
{
mid[i] = OutBuffer[lidx][i] + OutBuffer[ridx][i];
side[i] = OutBuffer[lidx][i] - OutBuffer[ridx][i];
}
std::fill_n(OutBuffer[lidx].begin(), SamplesToDo, 0.0f);
std::fill_n(OutBuffer[ridx].begin(), SamplesToDo, 0.0f);
/* Decode the B-Format input to OutBuffer. */
process(OutBuffer, InSamples, SamplesToDo);
/* Include the decoded side signal with the direct side signal. */
for(size_t i{0};i < SamplesToDo;++i)
side[i] += OutBuffer[lidx][i] - OutBuffer[ridx][i];
/* Get the decoded mid signal and band-split it. */
std::transform(OutBuffer[lidx].cbegin(), OutBuffer[lidx].cbegin()+SamplesToDo,
OutBuffer[ridx].cbegin(), mStablizer->Temp.begin(),
[](const float l, const float r) noexcept { return l + r; });
mStablizer->MidFilter.process({mStablizer->Temp.data(), SamplesToDo}, mStablizer->MidHF.data(),
mStablizer->MidLF.data());
/* Apply an all-pass to all channels to match the band-splitter's phase
* shift. This is to keep the phase synchronized between the existing
* signal and the split mid signal.
*/
const size_t NumChannels{OutBuffer.size()};
for(size_t i{0u};i < NumChannels;i++)
{
/* Skip the left and right channels, which are going to get overwritten,
* and substitute the direct mid signal and direct+decoded side signal.
*/
if(i == lidx)
mStablizer->ChannelFilters[i].processAllPass({mid, SamplesToDo});
else if(i == ridx)
mStablizer->ChannelFilters[i].processAllPass({side, SamplesToDo});
else
mStablizer->ChannelFilters[i].processAllPass({OutBuffer[i].data(), SamplesToDo});
}
/* This pans the separate low- and high-frequency signals between being on
* the center channel and the left+right channels. The low-frequency signal
* is panned 1/3rd toward center and the high-frequency signal is panned
* 1/4th toward center. These values can be tweaked.
*/
const float cos_lf{std::cos(1.0f/3.0f * (al::numbers::pi_v<float>*0.5f))};
const float cos_hf{std::cos(1.0f/4.0f * (al::numbers::pi_v<float>*0.5f))};
const float sin_lf{std::sin(1.0f/3.0f * (al::numbers::pi_v<float>*0.5f))};
const float sin_hf{std::sin(1.0f/4.0f * (al::numbers::pi_v<float>*0.5f))};
for(size_t i{0};i < SamplesToDo;i++)
{
/* Add the direct mid signal to the processed mid signal so it can be
* properly combined with the direct+decoded side signal.
*/
const float m{mStablizer->MidLF[i]*cos_lf + mStablizer->MidHF[i]*cos_hf + mid[i]};
const float c{mStablizer->MidLF[i]*sin_lf + mStablizer->MidHF[i]*sin_hf};
const float s{side[i]};
/* The generated center channel signal adds to the existing signal,
* while the modified left and right channels replace.
*/
OutBuffer[lidx][i] = (m + s) * 0.5f;
OutBuffer[ridx][i] = (m - s) * 0.5f;
OutBuffer[cidx][i] += c * 0.5f;
}
}
std::unique_ptr<BFormatDec> BFormatDec::Create(const size_t inchans,
const al::span<const ChannelDec> coeffs, const al::span<const ChannelDec> coeffslf,
const float xover_f0norm, std::unique_ptr<FrontStablizer> stablizer)
{
return std::make_unique<BFormatDec>(inchans, coeffs, coeffslf, xover_f0norm,
std::move(stablizer));
}