axmol/cocos/renderer/CCRenderer.cpp

880 lines
27 KiB
C++

/****************************************************************************
Copyright (c) 2013-2014 Chukong Technologies Inc.
http://www.cocos2d-x.org
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "renderer/CCRenderer.h"
#include <algorithm>
#include "renderer/CCTrianglesCommand.h"
#include "renderer/CCQuadCommand.h"
#include "renderer/CCBatchCommand.h"
#include "renderer/CCCustomCommand.h"
#include "renderer/CCGroupCommand.h"
#include "renderer/CCPrimitiveCommand.h"
#include "renderer/CCGLProgramCache.h"
#include "renderer/ccGLStateCache.h"
#include "renderer/CCMeshCommand.h"
#include "base/CCConfiguration.h"
#include "base/CCDirector.h"
#include "base/CCEventDispatcher.h"
#include "base/CCEventListenerCustom.h"
#include "base/CCEventType.h"
#include "2d/CCCamera.h"
#include "2d/CCScene.h"
NS_CC_BEGIN
// helper
static bool compareRenderCommand(RenderCommand* a, RenderCommand* b)
{
return a->getGlobalOrder() < b->getGlobalOrder();
}
// queue
void RenderQueue::push_back(RenderCommand* command)
{
float z = command->getGlobalOrder();
if(z < 0)
_queueNegZ.push_back(command);
else if(z > 0)
_queuePosZ.push_back(command);
else
_queue0.push_back(command);
}
ssize_t RenderQueue::size() const
{
return _queueNegZ.size() + _queue0.size() + _queuePosZ.size();
}
void RenderQueue::sort()
{
// Don't sort _queue0, it already comes sorted
std::sort(std::begin(_queueNegZ), std::end(_queueNegZ), compareRenderCommand);
std::sort(std::begin(_queuePosZ), std::end(_queuePosZ), compareRenderCommand);
}
RenderCommand* RenderQueue::operator[](ssize_t index) const
{
if(index < static_cast<ssize_t>(_queueNegZ.size()))
return _queueNegZ[index];
index -= _queueNegZ.size();
if(index < static_cast<ssize_t>(_queue0.size()))
return _queue0[index];
index -= _queue0.size();
if(index < static_cast<ssize_t>(_queuePosZ.size()))
return _queuePosZ[index];
CCASSERT(false, "invalid index");
return nullptr;
}
void RenderQueue::clear()
{
_queueNegZ.clear();
_queue0.clear();
_queuePosZ.clear();
}
// helper
static bool compareTransparentRenderCommand(RenderCommand* a, RenderCommand* b)
{
return a->getGlobalOrder() > b->getGlobalOrder();
}
void TransparentRenderQueue::push_back(RenderCommand* command)
{
_queueCmd.push_back(command);
}
void TransparentRenderQueue::sort()
{
std::sort(std::begin(_queueCmd), std::end(_queueCmd), compareTransparentRenderCommand);
}
RenderCommand* TransparentRenderQueue::operator[](ssize_t index) const
{
return _queueCmd[index];
}
void TransparentRenderQueue::clear()
{
_queueCmd.clear();
}
//
//
//
static const int DEFAULT_RENDER_QUEUE = 0;
//
// constructors, destructors, init
//
Renderer::Renderer()
:_lastMaterialID(0)
,_lastBatchedMeshCommand(nullptr)
,_filledVertex(0)
,_filledIndex(0)
,_numberQuads(0)
,_glViewAssigned(false)
,_isRendering(false)
#if CC_ENABLE_CACHE_TEXTURE_DATA
,_cacheTextureListener(nullptr)
#endif
{
_groupCommandManager = new (std::nothrow) GroupCommandManager();
_commandGroupStack.push(DEFAULT_RENDER_QUEUE);
RenderQueue defaultRenderQueue;
_renderGroups.push_back(defaultRenderQueue);
_batchedCommands.reserve(BATCH_QUADCOMMAND_RESEVER_SIZE);
}
Renderer::~Renderer()
{
_renderGroups.clear();
_groupCommandManager->release();
glDeleteBuffers(2, _buffersVBO);
glDeleteBuffers(2, _quadbuffersVBO);
if (Configuration::getInstance()->supportsShareableVAO())
{
glDeleteVertexArrays(1, &_buffersVAO);
glDeleteVertexArrays(1, &_quadVAO);
GL::bindVAO(0);
}
#if CC_ENABLE_CACHE_TEXTURE_DATA
Director::getInstance()->getEventDispatcher()->removeEventListener(_cacheTextureListener);
#endif
}
void Renderer::initGLView()
{
#if CC_ENABLE_CACHE_TEXTURE_DATA
_cacheTextureListener = EventListenerCustom::create(EVENT_RENDERER_RECREATED, [this](EventCustom* event){
/** listen the event that renderer was recreated on Android/WP8 */
this->setupBuffer();
});
Director::getInstance()->getEventDispatcher()->addEventListenerWithFixedPriority(_cacheTextureListener, -1);
#endif
//setup index data for quads
for( int i=0; i < VBO_SIZE/4; i++)
{
_quadIndices[i*6+0] = (GLushort) (i*4+0);
_quadIndices[i*6+1] = (GLushort) (i*4+1);
_quadIndices[i*6+2] = (GLushort) (i*4+2);
_quadIndices[i*6+3] = (GLushort) (i*4+3);
_quadIndices[i*6+4] = (GLushort) (i*4+2);
_quadIndices[i*6+5] = (GLushort) (i*4+1);
}
setupBuffer();
_glViewAssigned = true;
}
void Renderer::setupBuffer()
{
if(Configuration::getInstance()->supportsShareableVAO())
{
setupVBOAndVAO();
}
else
{
setupVBO();
}
}
void Renderer::setupVBOAndVAO()
{
//generate vbo and vao for trianglesCommand
glGenVertexArrays(1, &_buffersVAO);
GL::bindVAO(_buffersVAO);
glGenBuffers(2, &_buffersVBO[0]);
glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * VBO_SIZE, _verts, GL_DYNAMIC_DRAW);
// vertices
glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_POSITION);
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, vertices));
// colors
glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_COLOR);
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, colors));
// tex coords
glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_TEX_COORD);
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, texCoords));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * INDEX_VBO_SIZE, _indices, GL_STATIC_DRAW);
// Must unbind the VAO before changing the element buffer.
GL::bindVAO(0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
//generate vbo and vao for quadCommand
glGenVertexArrays(1, &_quadVAO);
GL::bindVAO(_quadVAO);
glGenBuffers(2, &_quadbuffersVBO[0]);
glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * VBO_SIZE, _quadVerts, GL_DYNAMIC_DRAW);
// vertices
glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_POSITION);
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, vertices));
// colors
glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_COLOR);
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, colors));
// tex coords
glEnableVertexAttribArray(GLProgram::VERTEX_ATTRIB_TEX_COORD);
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, sizeof(V3F_C4B_T2F), (GLvoid*) offsetof( V3F_C4B_T2F, texCoords));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_quadIndices[0]) * INDEX_VBO_SIZE, _quadIndices, GL_STATIC_DRAW);
// Must unbind the VAO before changing the element buffer.
GL::bindVAO(0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
CHECK_GL_ERROR_DEBUG();
}
void Renderer::setupVBO()
{
glGenBuffers(2, &_buffersVBO[0]);
glGenBuffers(2, &_quadbuffersVBO[0]);
mapBuffers();
}
void Renderer::mapBuffers()
{
// Avoid changing the element buffer for whatever VAO might be bound.
GL::bindVAO(0);
glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * VBO_SIZE, _verts, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * VBO_SIZE, _quadVerts, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * INDEX_VBO_SIZE, _indices, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_quadIndices[0]) * INDEX_VBO_SIZE, _quadIndices, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
CHECK_GL_ERROR_DEBUG();
}
void Renderer::addCommand(RenderCommand* command)
{
int renderQueue =_commandGroupStack.top();
addCommand(command, renderQueue);
}
void Renderer::addCommand(RenderCommand* command, int renderQueue)
{
CCASSERT(!_isRendering, "Cannot add command while rendering");
CCASSERT(renderQueue >=0, "Invalid render queue");
CCASSERT(command->getType() != RenderCommand::Type::UNKNOWN_COMMAND, "Invalid Command Type");
if (command->isTransparent())
_transparentRenderGroups.push_back(command);
else
_renderGroups[renderQueue].push_back(command);
}
void Renderer::pushGroup(int renderQueueID)
{
CCASSERT(!_isRendering, "Cannot change render queue while rendering");
_commandGroupStack.push(renderQueueID);
}
void Renderer::popGroup()
{
CCASSERT(!_isRendering, "Cannot change render queue while rendering");
_commandGroupStack.pop();
}
int Renderer::createRenderQueue()
{
RenderQueue newRenderQueue;
_renderGroups.push_back(newRenderQueue);
return (int)_renderGroups.size() - 1;
}
void Renderer::visitRenderQueue(const RenderQueue& queue)
{
ssize_t size = queue.size();
for (ssize_t index = 0; index < size; ++index)
{
auto command = queue[index];
auto commandType = command->getType();
if( RenderCommand::Type::TRIANGLES_COMMAND == commandType)
{
flush3D();
if(_numberQuads > 0)
{
drawBatchedQuads();
_lastMaterialID = 0;
}
auto cmd = static_cast<TrianglesCommand*>(command);
//Batch Triangles
if( _filledVertex + cmd->getVertexCount() > VBO_SIZE || _filledIndex + cmd->getIndexCount() > INDEX_VBO_SIZE)
{
CCASSERT(cmd->getVertexCount()>= 0 && cmd->getVertexCount() < VBO_SIZE, "VBO for vertex is not big enough, please break the data down or use customized render command");
CCASSERT(cmd->getIndexCount()>= 0 && cmd->getIndexCount() < INDEX_VBO_SIZE, "VBO for index is not big enough, please break the data down or use customized render command");
//Draw batched Triangles if VBO is full
drawBatchedTriangles();
}
_batchedCommands.push_back(cmd);
fillVerticesAndIndices(cmd);
}
else if ( RenderCommand::Type::QUAD_COMMAND == commandType )
{
flush3D();
if(_filledIndex > 0)
{
drawBatchedTriangles();
_lastMaterialID = 0;
}
auto cmd = static_cast<QuadCommand*>(command);
//Batch quads
if( (_numberQuads + cmd->getQuadCount()) * 4 > VBO_SIZE )
{
CCASSERT(cmd->getQuadCount()>= 0 && cmd->getQuadCount() * 4 < VBO_SIZE, "VBO for vertex is not big enough, please break the data down or use customized render command");
//Draw batched quads if VBO is full
drawBatchedQuads();
}
_batchQuadCommands.push_back(cmd);
fillQuads(cmd);
}
else if(RenderCommand::Type::GROUP_COMMAND == commandType)
{
flush();
int renderQueueID = ((GroupCommand*) command)->getRenderQueueID();
visitRenderQueue(_renderGroups[renderQueueID]);
}
else if(RenderCommand::Type::CUSTOM_COMMAND == commandType)
{
flush();
auto cmd = static_cast<CustomCommand*>(command);
cmd->execute();
}
else if(RenderCommand::Type::BATCH_COMMAND == commandType)
{
flush();
auto cmd = static_cast<BatchCommand*>(command);
cmd->execute();
}
else if(RenderCommand::Type::PRIMITIVE_COMMAND == commandType)
{
flush();
auto cmd = static_cast<PrimitiveCommand*>(command);
cmd->execute();
}
else if (RenderCommand::Type::MESH_COMMAND == commandType)
{
flush2D();
auto cmd = static_cast<MeshCommand*>(command);
if (_lastBatchedMeshCommand == nullptr || _lastBatchedMeshCommand->getMaterialID() != cmd->getMaterialID())
{
flush3D();
cmd->preBatchDraw();
cmd->batchDraw();
_lastBatchedMeshCommand = cmd;
}
else
{
cmd->batchDraw();
}
}
else
{
CCLOGERROR("Unknown commands in renderQueue");
}
}
}
void Renderer::visitTransparentRenderQueue(const TransparentRenderQueue& queue)
{
// do not batch for transparent objects
ssize_t size = queue.size();
_batchedCommands.clear();
_filledVertex = 0;
_filledIndex = 0;
for (ssize_t index = 0; index < size; ++index)
{
auto command = queue[index];
auto commandType = command->getType();
if( RenderCommand::Type::TRIANGLES_COMMAND == commandType)
{
auto cmd = static_cast<TrianglesCommand*>(command);
_batchedCommands.push_back(cmd);
fillVerticesAndIndices(cmd);
drawBatchedTriangles();
}
else if(RenderCommand::Type::QUAD_COMMAND == commandType)
{
auto cmd = static_cast<QuadCommand*>(command);
_batchQuadCommands.push_back(cmd);
fillQuads(cmd);
drawBatchedQuads();
}
else if(RenderCommand::Type::GROUP_COMMAND == commandType)
{
int renderQueueID = (static_cast<GroupCommand*>(command))->getRenderQueueID();
visitRenderQueue(_renderGroups[renderQueueID]);
}
else if(RenderCommand::Type::CUSTOM_COMMAND == commandType)
{
auto cmd = static_cast<CustomCommand*>(command);
cmd->execute();
}
else if(RenderCommand::Type::BATCH_COMMAND == commandType)
{
auto cmd = static_cast<BatchCommand*>(command);
cmd->execute();
}
else if(RenderCommand::Type::PRIMITIVE_COMMAND == commandType)
{
auto cmd = static_cast<PrimitiveCommand*>(command);
cmd->execute();
}
else if (RenderCommand::Type::MESH_COMMAND == commandType)
{
auto cmd = static_cast<MeshCommand*>(command);
cmd->execute();
}
else
{
CCLOGERROR("Unknown commands in renderQueue");
}
}
}
void Renderer::render()
{
//Uncomment this once everything is rendered by new renderer
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//TODO: setup camera or MVP
_isRendering = true;
if (_glViewAssigned)
{
//Process render commands
//1. Sort render commands based on ID
for (auto &renderqueue : _renderGroups)
{
renderqueue.sort();
}
visitRenderQueue(_renderGroups[0]);
flush();
//Process render commands
//draw transparent objects here, do not batch for transparent objects
if (0 < _transparentRenderGroups.size())
{
_transparentRenderGroups.sort();
glEnable(GL_DEPTH_TEST);
visitTransparentRenderQueue(_transparentRenderGroups);
glDisable(GL_DEPTH_TEST);
}
}
clean();
_isRendering = false;
}
void Renderer::clean()
{
// Clear render group
for (size_t j = 0 ; j < _renderGroups.size(); j++)
{
//commands are owned by nodes
// for (const auto &cmd : _renderGroups[j])
// {
// cmd->releaseToCommandPool();
// }
_renderGroups[j].clear();
}
// Clear batch commands
_batchedCommands.clear();
_batchQuadCommands.clear();
_filledVertex = 0;
_filledIndex = 0;
_numberQuads = 0;
_lastMaterialID = 0;
_lastBatchedMeshCommand = nullptr;
_transparentRenderGroups.clear();
}
void Renderer::fillVerticesAndIndices(const TrianglesCommand* cmd)
{
memcpy(_verts + _filledVertex, cmd->getVertices(), sizeof(V3F_C4B_T2F) * cmd->getVertexCount());
const Mat4& modelView = cmd->getModelView();
for(ssize_t i=0; i< cmd->getVertexCount(); ++i)
{
V3F_C4B_T2F *q = &_verts[i + _filledVertex];
Vec3 *vec1 = (Vec3*)&q->vertices;
modelView.transformPoint(vec1);
}
const unsigned short* indices = cmd->getIndices();
//fill index
for(ssize_t i=0; i< cmd->getIndexCount(); ++i)
{
_indices[_filledIndex + i] = _filledVertex + indices[i];
}
_filledVertex += cmd->getVertexCount();
_filledIndex += cmd->getIndexCount();
}
void Renderer::fillQuads(const QuadCommand *cmd)
{
memcpy(_quadVerts + _numberQuads * 4, cmd->getQuads(), sizeof(V3F_C4B_T2F_Quad) * cmd->getQuadCount());
const Mat4& modelView = cmd->getModelView();
for(ssize_t i=0; i< cmd->getQuadCount() * 4; ++i)
{
V3F_C4B_T2F *q = &_quadVerts[i + _numberQuads * 4];
Vec3 *vec1 = (Vec3*)&q->vertices;
modelView.transformPoint(vec1);
}
_numberQuads += cmd->getQuadCount();
}
void Renderer::drawBatchedTriangles()
{
//TODO: we can improve the draw performance by insert material switching command before hand.
int indexToDraw = 0;
int startIndex = 0;
//Upload buffer to VBO
if(_filledVertex <= 0 || _filledIndex <= 0 || _batchedCommands.empty())
{
return;
}
if (Configuration::getInstance()->supportsShareableVAO())
{
//Bind VAO
GL::bindVAO(_buffersVAO);
//Set VBO data
glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]);
// option 1: subdata
// glBufferSubData(GL_ARRAY_BUFFER, sizeof(_quads[0])*start, sizeof(_quads[0]) * n , &_quads[start] );
// option 2: data
// glBufferData(GL_ARRAY_BUFFER, sizeof(quads_[0]) * (n-start), &quads_[start], GL_DYNAMIC_DRAW);
// option 3: orphaning + glMapBuffer
glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * _filledVertex, nullptr, GL_DYNAMIC_DRAW);
void *buf = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
memcpy(buf, _verts, sizeof(_verts[0])* _filledVertex);
glUnmapBuffer(GL_ARRAY_BUFFER);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * _filledIndex, _indices, GL_STATIC_DRAW);
}
else
{
#define kQuadSize sizeof(_verts[0])
glBindBuffer(GL_ARRAY_BUFFER, _buffersVBO[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(_verts[0]) * _filledVertex , _verts, GL_DYNAMIC_DRAW);
GL::enableVertexAttribs(GL::VERTEX_ATTRIB_FLAG_POS_COLOR_TEX);
// vertices
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices));
// colors
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors));
// tex coords
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * _filledIndex, _indices, GL_STATIC_DRAW);
}
//Start drawing verties in batch
for(const auto& cmd : _batchedCommands)
{
auto newMaterialID = cmd->getMaterialID();
if(_lastMaterialID != newMaterialID || newMaterialID == MATERIAL_ID_DO_NOT_BATCH)
{
//Draw quads
if(indexToDraw > 0)
{
glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) );
_drawnBatches++;
_drawnVertices += indexToDraw;
startIndex += indexToDraw;
indexToDraw = 0;
}
//Use new material
cmd->useMaterial();
_lastMaterialID = newMaterialID;
}
indexToDraw += cmd->getIndexCount();
}
//Draw any remaining triangles
if(indexToDraw > 0)
{
glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) );
_drawnBatches++;
_drawnVertices += indexToDraw;
}
if (Configuration::getInstance()->supportsShareableVAO())
{
//Unbind VAO
GL::bindVAO(0);
}
else
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
_batchedCommands.clear();
_filledVertex = 0;
_filledIndex = 0;
}
void Renderer::drawBatchedQuads()
{
//TODO: we can improve the draw performance by insert material switching command before hand.
int indexToDraw = 0;
int startIndex = 0;
//Upload buffer to VBO
if(_numberQuads <= 0 || _batchQuadCommands.empty())
{
return;
}
if (Configuration::getInstance()->supportsShareableVAO())
{
//Bind VAO
GL::bindVAO(_quadVAO);
//Set VBO data
glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]);
// option 1: subdata
// glBufferSubData(GL_ARRAY_BUFFER, sizeof(_quads[0])*start, sizeof(_quads[0]) * n , &_quads[start] );
// option 2: data
// glBufferData(GL_ARRAY_BUFFER, sizeof(quads_[0]) * (n-start), &quads_[start], GL_DYNAMIC_DRAW);
// option 3: orphaning + glMapBuffer
glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * _numberQuads * 4, nullptr, GL_DYNAMIC_DRAW);
void *buf = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
memcpy(buf, _quadVerts, sizeof(_quadVerts[0])* _numberQuads * 4);
glUnmapBuffer(GL_ARRAY_BUFFER);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]);
}
else
{
#define kQuadSize sizeof(_verts[0])
glBindBuffer(GL_ARRAY_BUFFER, _quadbuffersVBO[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(_quadVerts[0]) * _numberQuads * 4 , _quadVerts, GL_DYNAMIC_DRAW);
GL::enableVertexAttribs(GL::VERTEX_ATTRIB_FLAG_POS_COLOR_TEX);
// vertices
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices));
// colors
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors));
// tex coords
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _quadbuffersVBO[1]);
}
//Start drawing verties in batch
for(const auto& cmd : _batchQuadCommands)
{
auto newMaterialID = cmd->getMaterialID();
if(_lastMaterialID != newMaterialID || newMaterialID == MATERIAL_ID_DO_NOT_BATCH)
{
//Draw quads
if(indexToDraw > 0)
{
glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) );
_drawnBatches++;
_drawnVertices += indexToDraw;
startIndex += indexToDraw;
indexToDraw = 0;
}
//Use new material
cmd->useMaterial();
_lastMaterialID = newMaterialID;
}
indexToDraw += cmd->getQuadCount() * 6;
}
//Draw any remaining quad
if(indexToDraw > 0)
{
glDrawElements(GL_TRIANGLES, (GLsizei) indexToDraw, GL_UNSIGNED_SHORT, (GLvoid*) (startIndex*sizeof(_indices[0])) );
_drawnBatches++;
_drawnVertices += indexToDraw;
}
if (Configuration::getInstance()->supportsShareableVAO())
{
//Unbind VAO
GL::bindVAO(0);
}
else
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
_batchQuadCommands.clear();
_numberQuads = 0;
}
void Renderer::flush()
{
flush2D();
flush3D();
}
void Renderer::flush2D()
{
drawBatchedQuads();
_lastMaterialID = 0;
drawBatchedTriangles();
_lastMaterialID = 0;
}
void Renderer::flush3D()
{
if (_lastBatchedMeshCommand)
{
_lastBatchedMeshCommand->postBatchDraw();
_lastBatchedMeshCommand = nullptr;
}
}
// helpers
bool Renderer::checkVisibility(const Mat4 &transform, const Size &size)
{
auto scene = Director::getInstance()->getRunningScene();
// only cull the default camera. The culling algorithm is valid for default camera.
if (scene && scene->_defaultCamera != Camera::getVisitingCamera())
return true;
// half size of the screen
Size screen_half = Director::getInstance()->getWinSize();
screen_half.width /= 2;
screen_half.height /= 2;
float hSizeX = size.width/2;
float hSizeY = size.height/2;
Vec4 v4world, v4local;
v4local.set(hSizeX, hSizeY, 0, 1);
transform.transformVector(v4local, &v4world);
// center of screen is (0,0)
v4world.x -= screen_half.width;
v4world.y -= screen_half.height;
// convert content size to world coordinates
float wshw = std::max(fabsf(hSizeX * transform.m[0] + hSizeY * transform.m[4]), fabsf(hSizeX * transform.m[0] - hSizeY * transform.m[4]));
float wshh = std::max(fabsf(hSizeX * transform.m[1] + hSizeY * transform.m[5]), fabsf(hSizeX * transform.m[1] - hSizeY * transform.m[5]));
// compare if it in the positive quadrant of the screen
float tmpx = (fabsf(v4world.x)-wshw);
float tmpy = (fabsf(v4world.y)-wshh);
bool ret = (tmpx < screen_half.width && tmpy < screen_half.height);
return ret;
}
NS_CC_END