axmol/external/edtaa3func/edtaa3func.cpp

574 lines
18 KiB
C++

/*
* edtaa3()
*
* Sweep-and-update Euclidean distance transform of an
* image. Positive pixels are treated as object pixels,
* zero or negative pixels are treated as background.
* An attempt is made to treat antialiased edges correctly.
* The input image must have pixels in the range [0,1],
* and the antialiased image should be a box-filter
* sampling of the ideal, crisp edge.
* If the antialias region is more than 1 pixel wide,
* the result from this transform will be inaccurate.
*
* By Stefan Gustavson (stefan.gustavson@gmail.com).
*
* Originally written in 1994, based on a verbal
* description of Per-Erik Danielsson's SSED8 algorithm
* as presented in the PhD dissertation of Ingemar
* Ragnemalm. This is Per-Erik Danielsson's scanline
* scheme from 1979 - I only implemented it in C.
*
* Updated in 2004 to treat border pixels correctly,
* and cleaned up the code to improve readability.
*
* Updated in 2009 to handle anti-aliased edges,
* as published in the article "Anti-aliased Euclidean
* distance transform" by Stefan Gustavson and Robin Strand,
* Pattern Recognition Letters 32 (2011) 252¨C257.
*
* Updated in 2011 to avoid a corner case causing an
* infinite loop for some input data.
*
*/
/*
Copyright (C) 2009-2011 Stefan Gustavson (stefan.gustavson@gmail.com)
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
The GNU General Public License is available on <http://www.gnu.org/licenses/>.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <math.h>
/*
* Compute the local gradient at edge pixels using convolution filters.
* The gradient is computed only at edge pixels. At other places in the
* image, it is never used, and it's mostly zero anyway.
*/
void computegradient(double *img, int w, int h, double *gx, double *gy)
{
int i,j,k;
double glength;
#define SQRT2 1.4142136
for(i = 1; i < h-1; i++) { // Avoid edges where the kernels would spill over
for(j = 1; j < w-1; j++) {
k = i*w + j;
if((img[k]>0.0) && (img[k]<1.0)) { // Compute gradient for edge pixels only
gx[k] = -img[k-w-1] - SQRT2*img[k-1] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+1] + img[k+w+1];
gy[k] = -img[k-w-1] - SQRT2*img[k-w] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+w] + img[k+w+1];
glength = gx[k]*gx[k] + gy[k]*gy[k];
if(glength > 0.0) { // Avoid division by zero
glength = sqrt(glength);
gx[k]=gx[k]/glength;
gy[k]=gy[k]/glength;
}
}
}
}
// TODO: Compute reasonable values for gx, gy also around the image edges.
// (These are zero now, which reduces the accuracy for a 1-pixel wide region
// around the image edge.) 2x2 kernels would be suitable for this.
}
/*
* A somewhat tricky function to approximate the distance to an edge in a
* certain pixel, with consideration to either the local gradient (gx,gy)
* or the direction to the pixel (dx,dy) and the pixel greyscale value a.
* The latter alternative, using (dx,dy), is the metric used by edtaa2().
* Using a local estimate of the edge gradient (gx,gy) yields much better
* accuracy at and near edges, and reduces the error even at distant pixels
* provided that the gradient direction is accurately estimated.
*/
double edgedf(double gx, double gy, double a)
{
double df, glength, temp, a1;
if ((gx == 0) || (gy == 0)) { // Either A) gu or gv are zero, or B) both
df = 0.5-a; // Linear approximation is A) correct or B) a fair guess
} else {
glength = sqrt(gx*gx + gy*gy);
if(glength>0) {
gx = gx/glength;
gy = gy/glength;
}
/* Everything is symmetric wrt sign and transposition,
* so move to first octant (gx>=0, gy>=0, gx>=gy) to
* avoid handling all possible edge directions.
*/
gx = fabs(gx);
gy = fabs(gy);
if(gx<gy) {
temp = gx;
gx = gy;
gy = temp;
}
a1 = 0.5*gy/gx;
if (a < a1) { // 0 <= a < a1
df = 0.5*(gx + gy) - sqrt(2.0*gx*gy*a);
} else if (a < (1.0-a1)) { // a1 <= a <= 1-a1
df = (0.5-a)*gx;
} else { // 1-a1 < a <= 1
df = -0.5*(gx + gy) + sqrt(2.0*gx*gy*(1.0-a));
}
}
return df;
}
double distaa3(double *img, double *gximg, double *gyimg, int w, int c, int xc, int yc, int xi, int yi)
{
double di, df, dx, dy, gx, gy, a;
int closest;
closest = c-xc-yc*w; // Index to the edge pixel pointed to from c
a = img[closest]; // Grayscale value at the edge pixel
gx = gximg[closest]; // X gradient component at the edge pixel
gy = gyimg[closest]; // Y gradient component at the edge pixel
if(a > 1.0) a = 1.0;
if(a < 0.0) a = 0.0; // Clip grayscale values outside the range [0,1]
if(a == 0.0) return 1000000.0; // Not an object pixel, return "very far" ("don't know yet")
dx = (double)xi;
dy = (double)yi;
di = sqrt(dx*dx + dy*dy); // Length of integer vector, like a traditional EDT
if(di==0) { // Use local gradient only at edges
// Estimate based on local gradient only
df = edgedf(gx, gy, a);
} else {
// Estimate gradient based on direction to edge (accurate for large di)
df = edgedf(dx, dy, a);
}
return di + df; // Same metric as edtaa2, except at edges (where di=0)
}
// Shorthand macro: add ubiquitous parameters img, gx, gy and w and call distaa3()
#define DISTAA(c,xc,yc,xi,yi) (distaa3(img, gx, gy, w, c, xc, yc, xi, yi))
void edtaa3(double *img, double *gx, double *gy, int w, int h, short *distx, short *disty, double *dist)
{
int x, y, i, c;
int offset_u, offset_ur, offset_r, offset_rd,
offset_d, offset_dl, offset_l, offset_lu;
double olddist, newdist;
int cdistx, cdisty, newdistx, newdisty;
int changed;
double epsilon = 1e-3; // Safeguard against errors due to limited precision
/* Initialize index offsets for the current image width */
offset_u = -w;
offset_ur = -w+1;
offset_r = 1;
offset_rd = w+1;
offset_d = w;
offset_dl = w-1;
offset_l = -1;
offset_lu = -w-1;
/* Initialize the distance images */
for(i=0; i<w*h; i++) {
distx[i] = 0; // At first, all pixels point to
disty[i] = 0; // themselves as the closest known.
if(img[i] <= 0.0)
{
dist[i]= 1000000.0; // Big value, means "not set yet"
}
else if (img[i]<1.0) {
dist[i] = edgedf(gx[i], gy[i], img[i]); // Gradient-assisted estimate
}
else {
dist[i]= 0.0; // Inside the object
}
}
/* Perform the transformation */
do
{
changed = 0;
/* Scan rows, except first row */
for(y=1; y<h; y++)
{
/* move index to leftmost pixel of current row */
i = y*w;
/* scan right, propagate distances from above & left */
/* Leftmost pixel is special, has no left neighbors */
olddist = dist[i];
if(olddist > 0) // If non-zero distance or not set yet
{
c = i + offset_u; // Index of candidate for testing
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_ur;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
i++;
/* Middle pixels have all neighbors */
for(x=1; x<w-1; x++, i++)
{
olddist = dist[i];
if(olddist <= 0) continue; // No need to update further
c = i+offset_l;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_lu;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_u;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_ur;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Rightmost pixel of row is special, has no right neighbors */
olddist = dist[i];
if(olddist > 0) // If not already zero distance
{
c = i+offset_l;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_lu;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_u;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Move index to second rightmost pixel of current row. */
/* Rightmost pixel is skipped, it has no right neighbor. */
i = y*w + w-2;
/* scan left, propagate distance from right */
for(x=w-2; x>=0; x--, i--)
{
olddist = dist[i];
if(olddist <= 0) continue; // Already zero distance
c = i+offset_r;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
}
/* Scan rows in reverse order, except last row */
for(y=h-2; y>=0; y--)
{
/* move index to rightmost pixel of current row */
i = y*w + w-1;
/* Scan left, propagate distances from below & right */
/* Rightmost pixel is special, has no right neighbors */
olddist = dist[i];
if(olddist > 0) // If not already zero distance
{
c = i+offset_d;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_dl;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
i--;
/* Middle pixels have all neighbors */
for(x=w-2; x>0; x--, i--)
{
olddist = dist[i];
if(olddist <= 0) continue; // Already zero distance
c = i+offset_r;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_rd;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_d;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_dl;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Leftmost pixel is special, has no left neighbors */
olddist = dist[i];
if(olddist > 0) // If not already zero distance
{
c = i+offset_r;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_rd;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_d;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Move index to second leftmost pixel of current row. */
/* Leftmost pixel is skipped, it has no left neighbor. */
i = y*w + 1;
for(x=1; x<w; x++, i++)
{
/* scan right, propagate distance from left */
olddist = dist[i];
if(olddist <= 0) continue; // Already zero distance
c = i+offset_l;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
}
}
while(changed); // Sweep until no more updates are made
/* The transformation is completed. */
}
#ifdef __cplusplus
}
#endif