axmol/thirdparty/recast/DetourCommon.h

572 lines
19 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURCOMMON_H
#define DETOURCOMMON_H
#include "DetourMath.h"
#include <stddef.h>
/**
@defgroup detour Detour
Members in this module are used to create, manipulate, and query navigation
meshes.
@note This is a summary list of members. Use the index or search
feature to find minor members.
*/
/// @name General helper functions
/// @{
/// Used to ignore a function parameter. VS complains about unused parameters
/// and this silences the warning.
template<class T> void dtIgnoreUnused(const T&) { }
/// Swaps the values of the two parameters.
/// @param[in,out] a Value A
/// @param[in,out] b Value B
template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }
/// Returns the minimum of two values.
/// @param[in] a Value A
/// @param[in] b Value B
/// @return The minimum of the two values.
template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }
/// Returns the maximum of two values.
/// @param[in] a Value A
/// @param[in] b Value B
/// @return The maximum of the two values.
template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }
/// Returns the absolute value.
/// @param[in] a The value.
/// @return The absolute value of the specified value.
template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }
/// Returns the square of the value.
/// @param[in] a The value.
/// @return The square of the value.
template<class T> inline T dtSqr(T a) { return a*a; }
/// Clamps the value to the specified range.
/// @param[in] v The value to clamp.
/// @param[in] mn The minimum permitted return value.
/// @param[in] mx The maximum permitted return value.
/// @return The value, clamped to the specified range.
template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
/// @}
/// @name Vector helper functions.
/// @{
/// Derives the cross product of two vectors. (@p v1 x @p v2)
/// @param[out] dest The cross product. [(x, y, z)]
/// @param[in] v1 A Vector [(x, y, z)]
/// @param[in] v2 A vector [(x, y, z)]
inline void dtVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
/// Derives the dot product of two vectors. (@p v1 . @p v2)
/// @param[in] v1 A Vector [(x, y, z)]
/// @param[in] v2 A vector [(x, y, z)]
/// @return The dot product.
inline float dtVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] v1 The base vector. [(x, y, z)]
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
/// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
/// @param[out] dest The result vector. [(x, y, x)]
/// @param[in] v1 The starting vector.
/// @param[in] v2 The destination vector.
/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
{
dest[0] = v1[0]+(v2[0]-v1[0])*t;
dest[1] = v1[1]+(v2[1]-v1[1])*t;
dest[2] = v1[2]+(v2[2]-v1[2])*t;
}
/// Performs a vector addition. (@p v1 + @p v2)
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] v1 The base vector. [(x, y, z)]
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
inline void dtVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
/// Performs a vector subtraction. (@p v1 - @p v2)
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] v1 The base vector. [(x, y, z)]
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
inline void dtVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
/// Scales the vector by the specified value. (@p v * @p t)
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] v The vector to scale. [(x, y, z)]
/// @param[in] t The scaling factor.
inline void dtVscale(float* dest, const float* v, const float t)
{
dest[0] = v[0]*t;
dest[1] = v[1]*t;
dest[2] = v[2]*t;
}
/// Selects the minimum value of each element from the specified vectors.
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
/// @param[in] v A vector. [(x, y, z)]
inline void dtVmin(float* mn, const float* v)
{
mn[0] = dtMin(mn[0], v[0]);
mn[1] = dtMin(mn[1], v[1]);
mn[2] = dtMin(mn[2], v[2]);
}
/// Selects the maximum value of each element from the specified vectors.
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
/// @param[in] v A vector. [(x, y, z)]
inline void dtVmax(float* mx, const float* v)
{
mx[0] = dtMax(mx[0], v[0]);
mx[1] = dtMax(mx[1], v[1]);
mx[2] = dtMax(mx[2], v[2]);
}
/// Sets the vector elements to the specified values.
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] x The x-value of the vector.
/// @param[in] y The y-value of the vector.
/// @param[in] z The z-value of the vector.
inline void dtVset(float* dest, const float x, const float y, const float z)
{
dest[0] = x; dest[1] = y; dest[2] = z;
}
/// Performs a vector copy.
/// @param[out] dest The result. [(x, y, z)]
/// @param[in] a The vector to copy. [(x, y, z)]
inline void dtVcopy(float* dest, const float* a)
{
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/// Derives the scalar length of the vector.
/// @param[in] v The vector. [(x, y, z)]
/// @return The scalar length of the vector.
inline float dtVlen(const float* v)
{
return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
/// Derives the square of the scalar length of the vector. (len * len)
/// @param[in] v The vector. [(x, y, z)]
/// @return The square of the scalar length of the vector.
inline float dtVlenSqr(const float* v)
{
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}
/// Returns the distance between two points.
/// @param[in] v1 A point. [(x, y, z)]
/// @param[in] v2 A point. [(x, y, z)]
/// @return The distance between the two points.
inline float dtVdist(const float* v1, const float* v2)
{
const float dx = v2[0] - v1[0];
const float dy = v2[1] - v1[1];
const float dz = v2[2] - v1[2];
return dtMathSqrtf(dx*dx + dy*dy + dz*dz);
}
/// Returns the square of the distance between two points.
/// @param[in] v1 A point. [(x, y, z)]
/// @param[in] v2 A point. [(x, y, z)]
/// @return The square of the distance between the two points.
inline float dtVdistSqr(const float* v1, const float* v2)
{
const float dx = v2[0] - v1[0];
const float dy = v2[1] - v1[1];
const float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
/// Derives the distance between the specified points on the xz-plane.
/// @param[in] v1 A point. [(x, y, z)]
/// @param[in] v2 A point. [(x, y, z)]
/// @return The distance between the point on the xz-plane.
///
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
inline float dtVdist2D(const float* v1, const float* v2)
{
const float dx = v2[0] - v1[0];
const float dz = v2[2] - v1[2];
return dtMathSqrtf(dx*dx + dz*dz);
}
/// Derives the square of the distance between the specified points on the xz-plane.
/// @param[in] v1 A point. [(x, y, z)]
/// @param[in] v2 A point. [(x, y, z)]
/// @return The square of the distance between the point on the xz-plane.
inline float dtVdist2DSqr(const float* v1, const float* v2)
{
const float dx = v2[0] - v1[0];
const float dz = v2[2] - v1[2];
return dx*dx + dz*dz;
}
/// Normalizes the vector.
/// @param[in,out] v The vector to normalize. [(x, y, z)]
inline void dtVnormalize(float* v)
{
float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
/// Performs a 'sloppy' colocation check of the specified points.
/// @param[in] p0 A point. [(x, y, z)]
/// @param[in] p1 A point. [(x, y, z)]
/// @return True if the points are considered to be at the same location.
///
/// Basically, this function will return true if the specified points are
/// close enough to eachother to be considered colocated.
inline bool dtVequal(const float* p0, const float* p1)
{
static const float thr = dtSqr(1.0f/16384.0f);
const float d = dtVdistSqr(p0, p1);
return d < thr;
}
/// Checks that the specified vector's components are all finite.
/// @param[in] v A point. [(x, y, z)]
/// @return True if all of the point's components are finite, i.e. not NaN
/// or any of the infinities.
inline bool dtVisfinite(const float* v)
{
bool result =
dtMathIsfinite(v[0]) &&
dtMathIsfinite(v[1]) &&
dtMathIsfinite(v[2]);
return result;
}
/// Checks that the specified vector's 2D components are finite.
/// @param[in] v A point. [(x, y, z)]
inline bool dtVisfinite2D(const float* v)
{
bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]);
return result;
}
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
/// @param[in] u A vector [(x, y, z)]
/// @param[in] v A vector [(x, y, z)]
/// @return The dot product on the xz-plane.
///
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
inline float dtVdot2D(const float* u, const float* v)
{
return u[0]*v[0] + u[2]*v[2];
}
/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
/// @param[in] u The LHV vector [(x, y, z)]
/// @param[in] v The RHV vector [(x, y, z)]
/// @return The perp dot product on the xz-plane.
///
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
inline float dtVperp2D(const float* u, const float* v)
{
return u[2]*v[0] - u[0]*v[2];
}
/// @}
/// @name Computational geometry helper functions.
/// @{
/// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
/// @param[in] a Vertex A. [(x, y, z)]
/// @param[in] b Vertex B. [(x, y, z)]
/// @param[in] c Vertex C. [(x, y, z)]
/// @return The signed xz-plane area of the triangle.
inline float dtTriArea2D(const float* a, const float* b, const float* c)
{
const float abx = b[0] - a[0];
const float abz = b[2] - a[2];
const float acx = c[0] - a[0];
const float acz = c[2] - a[2];
return acx*abz - abx*acz;
}
/// Determines if two axis-aligned bounding boxes overlap.
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
/// @return True if the two AABB's overlap.
/// @see dtOverlapBounds
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
const unsigned short bmin[3], const unsigned short bmax[3])
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
return overlap;
}
/// Determines if two axis-aligned bounding boxes overlap.
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
/// @return True if the two AABB's overlap.
/// @see dtOverlapQuantBounds
inline bool dtOverlapBounds(const float* amin, const float* amax,
const float* bmin, const float* bmax)
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
return overlap;
}
/// Derives the closest point on a triangle from the specified reference point.
/// @param[out] closest The closest point on the triangle.
/// @param[in] p The reference point from which to test. [(x, y, z)]
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
void dtClosestPtPointTriangle(float* closest, const float* p,
const float* a, const float* b, const float* c);
/// Derives the y-axis height of the closest point on the triangle from the specified reference point.
/// @param[in] p The reference point from which to test. [(x, y, z)]
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
/// @param[out] h The resulting height.
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
const float* verts, int nverts,
float& tmin, float& tmax,
int& segMin, int& segMax);
bool dtIntersectSegSeg2D(const float* ap, const float* aq,
const float* bp, const float* bq,
float& s, float& t);
/// Determines if the specified point is inside the convex polygon on the xz-plane.
/// @param[in] pt The point to check. [(x, y, z)]
/// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts]
/// @param[in] nverts The number of vertices. [Limit: >= 3]
/// @return True if the point is inside the polygon.
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
float* ed, float* et);
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
/// Derives the centroid of a convex polygon.
/// @param[out] tc The centroid of the polgyon. [(x, y, z)]
/// @param[in] idx The polygon indices. [(vertIndex) * @p nidx]
/// @param[in] nidx The number of indices in the polygon. [Limit: >= 3]
/// @param[in] verts The polygon vertices. [(x, y, z) * vertCount]
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
/// Determines if the two convex polygons overlap on the xz-plane.
/// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya]
/// @param[in] npolya The number of vertices in polygon A.
/// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb]
/// @param[in] npolyb The number of vertices in polygon B.
/// @return True if the two polygons overlap.
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
const float* polyb, const int npolyb);
/// @}
/// @name Miscellanious functions.
/// @{
inline unsigned int dtNextPow2(unsigned int v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline unsigned int dtIlog2(unsigned int v)
{
unsigned int r;
unsigned int shift;
r = (v > 0xffff) << 4; v >>= r;
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
return r;
}
inline int dtAlign4(int x) { return (x+3) & ~3; }
inline int dtOppositeTile(int side) { return (side+4) & 0x7; }
inline void dtSwapByte(unsigned char* a, unsigned char* b)
{
unsigned char tmp = *a;
*a = *b;
*b = tmp;
}
inline void dtSwapEndian(unsigned short* v)
{
unsigned char* x = (unsigned char*)v;
dtSwapByte(x+0, x+1);
}
inline void dtSwapEndian(short* v)
{
unsigned char* x = (unsigned char*)v;
dtSwapByte(x+0, x+1);
}
inline void dtSwapEndian(unsigned int* v)
{
unsigned char* x = (unsigned char*)v;
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
}
inline void dtSwapEndian(int* v)
{
unsigned char* x = (unsigned char*)v;
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
}
inline void dtSwapEndian(float* v)
{
unsigned char* x = (unsigned char*)v;
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
}
void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
const float s, const float t, float* out);
template<typename TypeToRetrieveAs>
TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(const unsigned char*& buffer, const size_t distanceToAdvance)
{
TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
buffer += distanceToAdvance;
return returnPointer;
}
template<typename TypeToRetrieveAs>
TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(unsigned char*& buffer, const size_t distanceToAdvance)
{
TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
buffer += distanceToAdvance;
return returnPointer;
}
/// @}
#endif // DETOURCOMMON_H
///////////////////////////////////////////////////////////////////////////
// This section contains detailed documentation for members that don't have
// a source file. It reduces clutter in the main section of the header.
/**
@fn float dtTriArea2D(const float* a, const float* b, const float* c)
@par
The vertices are projected onto the xz-plane, so the y-values are ignored.
This is a low cost function than can be used for various purposes. Its main purpose
is for point/line relationship testing.
In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
(On the xz-plane.)
When used for point/line relationship tests, AB usually represents a line against which
the C point is to be tested. In this case:
A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
A negative value indicates that point C is to the right of lineAB, looking from A toward B.
When used for evaluating a triangle:
The absolute value of the return value is two times the area of the triangle when it is
projected onto the xz-plane.
A positive return value indicates:
<ul>
<li>The vertices are wrapped in the normal Detour wrap direction.</li>
<li>The triangle's 3D face normal is in the general up direction.</li>
</ul>
A negative return value indicates:
<ul>
<li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
<li>The triangle's 3D face normal is in the general down direction.</li>
</ul>
*/