axmol/README.md

8.5 KiB

adxe

dev LICENSE Codacy Badge PRs Welcome

issues forks stars GitHub code size in bytes

Windows Build Status Android Build Status iOS Build Status Linux Build Status macOS Build Status

This is another more radical fork of Cocos2d-x-4.0, it has Full Support OpenAL for all platforms, single texture multi GPU texture handler, C++ 17 and more! (see 'Highlighted Features' for more info).

View code with vscode online:

  • github1s
  • vscode.dev

简体中文

Purpose Summary

  • C++ 17
  • Focuses on native game dev (easy to use, fast deployment, intuitive)
  • Bugfixes ASAP

Highlighted Features

  • Improve windows workflow, support linking with engine prebuilt libs, read windows workflow guide
  • Windows video player support (based on microsoft media foundation)
  • Windows x64 build support
  • Reimplement HttpClient based on yasio for concorrent http requests processing.
  • 'Upstream-Version-License'
    • Clearer third-party libs for easier publishing of your commercial apps based on adxe.
    • Also some links to third party libs which support adxe too.
    • Extensions having own license as part of the there package.
  • Refactor AudioEngine, OpenAL for all platforms
    • OpenAL Soft, pass -DAX_USE_ALSOFT=ON to cmake to force enabling it
    • OpenAL.framework, if no AX_USE_ALSOFT option specified, cmake script will choose it on osx/ios, even though it was marked as deprecated, but still available.
  • Refactor UserDefault with mio
  • Modularize all optional extensions, move from engine core folder to an extensions folder
  • Implement all .wav formats supported by OpenAL Soft, such as MS-ADPCM, ADPCM, ...
  • Use a modern GL loader Glad
  • Google angle renderer backend support
  • C++ 17 standard
  • IOS SDK 9.0 as minimal deployment
  • Use fast pugixml
  • Use curl for transferring data with URL syntax
  • Use SAX parser for all plist files
  • Spine-3.8 support
  • Extension FairyGUI support
  • ASTC 4x4/6x6/8x8 support (if hardware decoding is not supported, then software decoding is used)
  • ETC2 RGB/RGBA support (if hardware decoding is not supported, then software decoding is used)
  • Supported 2D physics engines (see also APPENDIX.md):
    • Box2D
    • Box2D-optimized
    • Chipmunk2D
  • Supported 3D physics engines:
    • Bullet Physics SDK
  • ImGui 1.87 integrated, easy to write game embedded tools, very easy to use, read ImGui for more info

Read Full changes since cocos2d-x-4.0

Open APPENDIX.md for additional information and see Milestones for planed features too.

Quick Start

Common Requirement Python

  • Python-2.7.17+, Python-3.7+

Prerequisites

  1. Enter adxe root directory
  2. Run python setup.py, restart the console after it has finished for environment variables to take effect

Windows (64/32 bit Visual Studio 2019/2022)

  1. Install CMake 3.14+

  2. Install Visual Studio 2019/2022 (it's recommended that you only use these versions)

  3. Execute the following commands in a command line (Console, Window Terminal or Powershell)

    cd adxe

    • for 32 bit Visual Studio 2019: cmake -S . -B build -G "Visual Studio 16 2019" -A Win32
    • for 64 bit Visual Studio 2019: cmake -S . -B build -G "Visual Studio 16 2019" -A x64
    • for 32 bit Visual Studio 2022: cmake -S . -B build -G "Visual Studio 17 2022" -A Win32
    • for 64 bit Visual Studio 2022: cmake -S . -B build -G "Visual Studio 17 2022" -A x64

Build excecutable in a command line (e.g. cpp-tests): msbuild .\build\adxe.sln -target:cpp_tests -maxCpuCount

Android

  1. Install Android Studio 2021.1.1+
  2. When starting Android Studio for the first time, It will guide you to install the SDK and other tools, just install them
  3. Start Android and choose [Open an existing Android Studio Project] and select adxe\tests\cpp-tests\proj.android
  4. Start Android Studio and Open [Tools][SDKManager], then switch to SDK Tools, check the Show Package Details, choose the following tools and click the button Apply to install them:
    • Android SDK Platform 29 r5
    • Android SDK Build-Tools 29.0.2
    • NDK r23c+
    • CMake 3.10+
  5. Wait for Gradle sync finish.
  6. Note: If you use non-sdk provided CMake edition, you will need to download ninja from https://github.com/ninja-build/ninja/releases, and copy ninja.exe to cmake's bin directory

iOS

  1. Ensure xcode12+ & cmake3.21+ are installed, install cmake command line support: sudo "/Applications/CMake.app/Contents/bin/cmake-gui" --install

  2. Execute the following command
    sudo xcode-select -switch /Applications/Xcode.app/Contents/Developer

  3. Generate xcode project

    • for arm64:
      cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$ADXE_ROOT/cmake/ios.mini.cmake -DCMAKE_OSX_ARCHITECTURES=arm64
    • for armv7,arm64 combined:
      cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$ADXE_ROOT/cmake/ios.mini.cmake "-DCMAKE_OSX_ARCHITECTURES=armv7;arm64"
    • for simulator x86_64:
      cmake -S . -B build -GXcode -DCMAKE_TOOLCHAIN_FILE=$ADXE_ROOT/cmake/ios.mini.cmake -DCMAKE_OSX_ARCHITECTURES=x86_64
  4. After cmake finishes generating, you can open the xcode project at build folder and run cpp-tests or other test targets.

  5. Notes

    • The code signing is required to run the ios app on your device, just change the bundle identifier until the auto manage signing is solved
    • adxe only provides armv7, arm64, x86_64 prebuilt libraries for ios

New Project

  • Cpp: adxe new -p org.adxe.hellocpp -d D:\dev\projects\ -l cpp --portrait HelloCpp
  • Lua: adxe new -p org.adxe.hellolua -d D:\dev\projects\ -l lua --portrait HelloLua

Notes

  • ThreadLocalStorage (TLS)
    • ios x86 simulator ios>=10 and adxe no longer provide x86 libraries
    • ios x64 or devices (armv7, arm64) ios sdk>=9.0
    • the 'OpenAL Soft' maintained by kcat uses TLS

Contributing guide

https://github.com/adxeproject/adxe/discussions/411

The adxe Active Contributors

  • @halx99
  • @rh101
  • @aismann
  • @weiwest

Alt