axmol/core/2d/ActionInterval.cpp

2768 lines
60 KiB
C++

/****************************************************************************
Copyright (c) 2008-2010 Ricardo Quesada
Copyright (c) 2010-2012 cocos2d-x.org
Copyright (c) 2011 Zynga Inc.
Copyright (c) 2013-2016 Chukong Technologies Inc.
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
https://axmolengine.github.io/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "2d/ActionInterval.h"
#include <stdarg.h>
#include "2d/Sprite.h"
#include "2d/Node.h"
#include "2d/SpriteFrame.h"
#include "2d/ActionInstant.h"
#include "base/Director.h"
#include "base/EventCustom.h"
#include "base/EventDispatcher.h"
#include "platform/StdC.h"
#include "base/ScriptSupport.h"
NS_AX_BEGIN
// Extra action for making a Sequence or Spawn when only adding one action to it.
class ExtraAction : public FiniteTimeAction
{
public:
static ExtraAction* create();
virtual ExtraAction* clone() const;
virtual ExtraAction* reverse() const;
virtual void update(float time);
virtual void step(float dt);
};
ExtraAction* ExtraAction::create()
{
ExtraAction* ret = new ExtraAction();
ret->autorelease();
return ret;
}
ExtraAction* ExtraAction::clone() const
{
// no copy constructor
return ExtraAction::create();
}
ExtraAction* ExtraAction::reverse() const
{
return ExtraAction::create();
}
void ExtraAction::update(float /*time*/) {}
void ExtraAction::step(float /*dt*/) {}
//
// IntervalAction
//
bool ActionInterval::initWithDuration(float d)
{
_duration = d;
_elapsed = 0;
_firstTick = true;
_done = false;
return true;
}
bool ActionInterval::sendUpdateEventToScript(float dt, Action* actionObject)
{
return false;
}
bool ActionInterval::isDone() const
{
return _done;
}
void ActionInterval::step(float dt)
{
if (_firstTick)
{
_firstTick = false;
_elapsed = 0;
}
else
{
_elapsed += dt;
}
float updateDt = std::max(0.0f, // needed for rewind. elapsed could be negative
std::min(1.0f, _elapsed / _duration));
if (sendUpdateEventToScript(updateDt, this))
return;
this->update(updateDt);
_done = _elapsed >= _duration;
}
void ActionInterval::setAmplitudeRate(float /*amp*/)
{
// Abstract class needs implementation
AXASSERT(0, "Subclass should implement this method!");
}
float ActionInterval::getAmplitudeRate()
{
// Abstract class needs implementation
AXASSERT(0, "Subclass should implement this method!");
return 0;
}
void ActionInterval::startWithTarget(Node* target)
{
FiniteTimeAction::startWithTarget(target);
_elapsed = 0.0f;
_firstTick = true;
_done = false;
}
//
// Sequence
//
Sequence* Sequence::createWithTwoActions(FiniteTimeAction* actionOne, FiniteTimeAction* actionTwo)
{
Sequence* sequence = new Sequence();
if (sequence->initWithTwoActions(actionOne, actionTwo))
{
sequence->autorelease();
return sequence;
}
delete sequence;
return nullptr;
}
Sequence* Sequence::create(FiniteTimeAction* action1, ...)
{
va_list params;
va_start(params, action1);
Sequence* ret = Sequence::createWithVariableList(action1, params);
va_end(params);
return ret;
}
Sequence* Sequence::createWithVariableList(FiniteTimeAction* action1, va_list args)
{
FiniteTimeAction* now;
FiniteTimeAction* prev = action1;
bool bOneAction = true;
while (action1)
{
now = va_arg(args, FiniteTimeAction*);
if (now)
{
prev = createWithTwoActions(prev, now);
bOneAction = false;
}
else
{
// If only one action is added to Sequence, make up a Sequence by adding a simplest finite time action.
if (bOneAction)
{
prev = createWithTwoActions(prev, ExtraAction::create());
}
break;
}
}
return ((Sequence*)prev);
}
Sequence* Sequence::create(const Vector<FiniteTimeAction*>& arrayOfActions)
{
Sequence* seq = new Sequence;
if (seq->init(arrayOfActions))
{
seq->autorelease();
return seq;
}
delete seq;
return nullptr;
}
bool Sequence::init(const Vector<FiniteTimeAction*>& arrayOfActions)
{
auto count = arrayOfActions.size();
if (count == 0)
return false;
if (count == 1)
return initWithTwoActions(arrayOfActions.at(0), ExtraAction::create());
// else size > 1
auto prev = arrayOfActions.at(0);
for (int i = 1; i < count - 1; ++i)
{
prev = createWithTwoActions(prev, arrayOfActions.at(i));
}
return initWithTwoActions(prev, arrayOfActions.at(count - 1));
}
bool Sequence::initWithTwoActions(FiniteTimeAction* actionOne, FiniteTimeAction* actionTwo)
{
AXASSERT(actionOne != nullptr, "actionOne can't be nullptr!");
AXASSERT(actionTwo != nullptr, "actionTwo can't be nullptr!");
if (actionOne == nullptr || actionTwo == nullptr)
{
log("Sequence::initWithTwoActions error: action is nullptr!!");
return false;
}
float d = actionOne->getDuration() + actionTwo->getDuration();
ActionInterval::initWithDuration(d);
_actions[0] = actionOne;
actionOne->retain();
_actions[1] = actionTwo;
actionTwo->retain();
return true;
}
bool Sequence::isDone() const
{
// fix issue #17884
if (dynamic_cast<ActionInstant*>(_actions[1]))
return (_done && _actions[1]->isDone());
else
return _done;
}
Sequence* Sequence::clone() const
{
// no copy constructor
if (_actions[0] && _actions[1])
{
return Sequence::create(_actions[0]->clone(), _actions[1]->clone(), nullptr);
}
else
{
return nullptr;
}
}
Sequence::Sequence() : _split(0)
{
_actions[0] = nullptr;
_actions[1] = nullptr;
}
Sequence::~Sequence()
{
AX_SAFE_RELEASE(_actions[0]);
AX_SAFE_RELEASE(_actions[1]);
}
void Sequence::startWithTarget(Node* target)
{
if (target == nullptr)
{
log("Sequence::startWithTarget error: target is nullptr!");
return;
}
if (_actions[0] == nullptr || _actions[1] == nullptr)
{
log("Sequence::startWithTarget error: _actions[0] or _actions[1] is nullptr!");
return;
}
if (_duration > FLT_EPSILON)
// fix #14936 - FLT_EPSILON (instant action) / very fast duration (0.001) leads to wrong split, that leads to
// call instant action few times
_split = _actions[0]->getDuration() > FLT_EPSILON ? _actions[0]->getDuration() / _duration : 0;
ActionInterval::startWithTarget(target);
_last = -1;
}
void Sequence::stop()
{
// Issue #1305
if (_last != -1 && _actions[_last])
{
_actions[_last]->stop();
}
ActionInterval::stop();
}
void Sequence::update(float t)
{
int found = 0;
float new_t = 0.0f;
if (t < _split)
{
// action[0]
found = 0;
if (_split != 0)
new_t = t / _split;
else
new_t = 1;
}
else
{
// action[1]
found = 1;
if (_split == 1)
new_t = 1;
else
new_t = (t - _split) / (1 - _split);
}
if (found == 1)
{
if (_last == -1)
{
// action[0] was skipped, execute it.
_actions[0]->startWithTarget(_target);
if (!(sendUpdateEventToScript(1.0f, _actions[0])))
_actions[0]->update(1.0f);
_actions[0]->stop();
}
else if (_last == 0)
{
// switching to action 1. stop action 0.
if (!(sendUpdateEventToScript(1.0f, _actions[0])))
_actions[0]->update(1.0f);
_actions[0]->stop();
}
}
else if (found == 0 && _last == 1)
{
// Reverse mode ?
// FIXME: Bug. this case doesn't contemplate when _last==-1, found=0 and in "reverse mode"
// since it will require a hack to know if an action is on reverse mode or not.
// "step" should be overridden, and the "reverseMode" value propagated to inner Sequences.
if (!(sendUpdateEventToScript(0, _actions[1])))
_actions[1]->update(0);
_actions[1]->stop();
}
// Last action found and it is done.
if (found == _last && _actions[found]->isDone())
{
return;
}
// Last action found and it is done
if (found != _last)
{
_actions[found]->startWithTarget(_target);
}
if (!(sendUpdateEventToScript(new_t, _actions[found])))
_actions[found]->update(new_t);
_last = found;
}
Sequence* Sequence::reverse() const
{
if (_actions[0] && _actions[1])
return Sequence::createWithTwoActions(_actions[1]->reverse(), _actions[0]->reverse());
else
return nullptr;
}
//
// Repeat
//
Repeat* Repeat::create(FiniteTimeAction* action, unsigned int times)
{
Repeat* repeat = new Repeat();
if (repeat->initWithAction(action, times))
{
repeat->autorelease();
return repeat;
}
delete repeat;
return nullptr;
}
bool Repeat::initWithAction(FiniteTimeAction* action, unsigned int times)
{
if (action && ActionInterval::initWithDuration(action->getDuration() * times))
{
_times = times;
_innerAction = action;
action->retain();
_actionInstant = dynamic_cast<ActionInstant*>(action) ? true : false;
// an instant action needs to be executed one time less in the update method since it uses startWithTarget to
// execute the action
// minggo: instant action doesn't execute action in Repeat::startWithTarget(), so comment it.
// if (_actionInstant)
// {
// _times -=1;
// }
_total = 0;
return true;
}
return false;
}
Repeat* Repeat::clone() const
{
// no copy constructor
return Repeat::create(_innerAction->clone(), _times);
}
Repeat::~Repeat()
{
AX_SAFE_RELEASE(_innerAction);
}
void Repeat::startWithTarget(Node* target)
{
_total = 0;
_nextDt = _innerAction->getDuration() / _duration;
ActionInterval::startWithTarget(target);
_innerAction->startWithTarget(target);
}
void Repeat::stop()
{
_innerAction->stop();
ActionInterval::stop();
}
// issue #80. Instead of hooking step:, hook update: since it can be called by any
// container action like Repeat, Sequence, Ease, etc..
void Repeat::update(float dt)
{
if (dt >= _nextDt)
{
while (dt >= _nextDt && _total < _times)
{
if (!(sendUpdateEventToScript(1.0f, _innerAction)))
_innerAction->update(1.0f);
_total++;
_innerAction->stop();
_innerAction->startWithTarget(_target);
_nextDt = _innerAction->getDuration() / _duration * (_total + 1);
}
// fix for issue #1288, incorrect end value of repeat
if (std::abs(dt - 1.0f) < FLT_EPSILON && _total < _times)
{
if (!(sendUpdateEventToScript(1.0f, _innerAction)))
_innerAction->update(1.0f);
_total++;
}
// don't set an instant action back or update it, it has no use because it has no duration
if (!_actionInstant)
{
if (_total == _times)
{
// minggo: inner action update is invoked above, don't have to invoke it here
// if (!(sendUpdateEventToScript(1, _innerAction)))
// _innerAction->update(1);
_innerAction->stop();
}
else
{
// issue #390 prevent jerk, use right update
if (!(sendUpdateEventToScript(dt - (_nextDt - _innerAction->getDuration() / _duration), _innerAction)))
_innerAction->update(dt - (_nextDt - _innerAction->getDuration() / _duration));
}
}
}
else
{
if (!(sendUpdateEventToScript(fmodf(dt * _times, 1.0f), _innerAction)))
_innerAction->update(fmodf(dt * _times, 1.0f));
}
}
bool Repeat::isDone() const
{
return _total == _times;
}
Repeat* Repeat::reverse() const
{
return Repeat::create(_innerAction->reverse(), _times);
}
//
// RepeatForever
//
RepeatForever::~RepeatForever()
{
AX_SAFE_RELEASE(_innerAction);
}
RepeatForever* RepeatForever::create(ActionInterval* action)
{
RepeatForever* ret = new RepeatForever();
if (ret->initWithAction(action))
{
ret->autorelease();
return ret;
}
delete ret;
return nullptr;
}
bool RepeatForever::initWithAction(ActionInterval* action)
{
AXASSERT(action != nullptr, "action can't be nullptr!");
if (action == nullptr)
{
log("RepeatForever::initWithAction error:action is nullptr!");
return false;
}
action->retain();
_innerAction = action;
return true;
}
RepeatForever* RepeatForever::clone() const
{
// no copy constructor
return RepeatForever::create(_innerAction->clone());
}
void RepeatForever::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_innerAction->startWithTarget(target);
}
void RepeatForever::step(float dt)
{
_innerAction->step(dt);
// only action interval should prevent jerk, issue #17808
if (_innerAction->isDone() && _innerAction->getDuration() > 0)
{
float diff = _innerAction->getElapsed() - _innerAction->getDuration();
if (diff > _innerAction->getDuration())
diff = fmodf(diff, _innerAction->getDuration());
_innerAction->startWithTarget(_target);
// to prevent jerk. cocos2d-iphone issue #390, 1247
_innerAction->step(0.0f);
_innerAction->step(diff);
}
}
bool RepeatForever::isDone() const
{
return false;
}
RepeatForever* RepeatForever::reverse() const
{
return RepeatForever::create(_innerAction->reverse());
}
//
// Spawn
//
Spawn* Spawn::create(FiniteTimeAction* action1, ...)
{
va_list params;
va_start(params, action1);
Spawn* ret = Spawn::createWithVariableList(action1, params);
va_end(params);
return ret;
}
Spawn* Spawn::createWithVariableList(FiniteTimeAction* action1, va_list args)
{
FiniteTimeAction* now;
FiniteTimeAction* prev = action1;
bool oneAction = true;
while (action1)
{
now = va_arg(args, FiniteTimeAction*);
if (now)
{
prev = createWithTwoActions(prev, now);
oneAction = false;
}
else
{
// If only one action is added to Spawn, make up a Spawn by adding a simplest finite time action.
if (oneAction)
{
prev = createWithTwoActions(prev, ExtraAction::create());
}
break;
}
}
return ((Spawn*)prev);
}
Spawn* Spawn::create(const Vector<FiniteTimeAction*>& arrayOfActions)
{
Spawn* ret = new Spawn;
if (ret->init(arrayOfActions))
{
ret->autorelease();
return ret;
}
delete ret;
return nullptr;
}
Spawn* Spawn::createWithTwoActions(FiniteTimeAction* action1, FiniteTimeAction* action2)
{
Spawn* spawn = new Spawn();
if (spawn->initWithTwoActions(action1, action2))
{
spawn->autorelease();
return spawn;
}
delete spawn;
return nullptr;
}
bool Spawn::init(const Vector<FiniteTimeAction*>& arrayOfActions)
{
auto count = arrayOfActions.size();
if (count == 0)
return false;
if (count == 1)
return initWithTwoActions(arrayOfActions.at(0), ExtraAction::create());
// else count > 1
auto prev = arrayOfActions.at(0);
for (int i = 1; i < count - 1; ++i)
{
prev = createWithTwoActions(prev, arrayOfActions.at(i));
}
return initWithTwoActions(prev, arrayOfActions.at(count - 1));
}
bool Spawn::initWithTwoActions(FiniteTimeAction* action1, FiniteTimeAction* action2)
{
AXASSERT(action1 != nullptr, "action1 can't be nullptr!");
AXASSERT(action2 != nullptr, "action2 can't be nullptr!");
if (action1 == nullptr || action2 == nullptr)
{
log("Spawn::initWithTwoActions error: action is nullptr!");
return false;
}
bool ret = false;
float d1 = action1->getDuration();
float d2 = action2->getDuration();
if (ActionInterval::initWithDuration(MAX(d1, d2)))
{
_one = action1;
_two = action2;
if (d1 > d2)
{
_two = Sequence::createWithTwoActions(action2, DelayTime::create(d1 - d2));
}
else if (d1 < d2)
{
_one = Sequence::createWithTwoActions(action1, DelayTime::create(d2 - d1));
}
_one->retain();
_two->retain();
ret = true;
}
return ret;
}
Spawn* Spawn::clone() const
{
// no copy constructor
if (_one && _two)
return Spawn::createWithTwoActions(_one->clone(), _two->clone());
else
return nullptr;
}
Spawn::Spawn() : _one(nullptr), _two(nullptr) {}
Spawn::~Spawn()
{
AX_SAFE_RELEASE(_one);
AX_SAFE_RELEASE(_two);
}
void Spawn::startWithTarget(Node* target)
{
if (target == nullptr)
{
log("Spawn::startWithTarget error: target is nullptr!");
return;
}
if (_one == nullptr || _two == nullptr)
{
log("Spawn::startWithTarget error: _one or _two is nullptr!");
return;
}
ActionInterval::startWithTarget(target);
_one->startWithTarget(target);
_two->startWithTarget(target);
}
void Spawn::stop()
{
if (_one)
_one->stop();
if (_two)
_two->stop();
ActionInterval::stop();
}
void Spawn::update(float time)
{
if (_one)
{
if (!(sendUpdateEventToScript(time, _one)))
_one->update(time);
}
if (_two)
{
if (!(sendUpdateEventToScript(time, _two)))
_two->update(time);
}
}
Spawn* Spawn::reverse() const
{
if (_one && _two)
return Spawn::createWithTwoActions(_one->reverse(), _two->reverse());
return nullptr;
}
//
// RotateTo
//
RotateTo* RotateTo::create(float duration, float dstAngle)
{
RotateTo* rotateTo = new RotateTo();
if (rotateTo->initWithDuration(duration, dstAngle, dstAngle))
{
rotateTo->autorelease();
return rotateTo;
}
delete rotateTo;
return nullptr;
}
RotateTo* RotateTo::create(float duration, float dstAngleX, float dstAngleY)
{
RotateTo* rotateTo = new RotateTo();
if (rotateTo->initWithDuration(duration, dstAngleX, dstAngleY))
{
rotateTo->autorelease();
return rotateTo;
}
delete rotateTo;
return nullptr;
}
RotateTo* RotateTo::create(float duration, const Vec3& dstAngle3D)
{
RotateTo* rotateTo = new RotateTo();
if (rotateTo->initWithDuration(duration, dstAngle3D))
{
rotateTo->autorelease();
return rotateTo;
}
delete rotateTo;
return nullptr;
}
RotateTo::RotateTo() : _is3D(false) {}
bool RotateTo::initWithDuration(float duration, float dstAngleX, float dstAngleY)
{
if (ActionInterval::initWithDuration(duration))
{
_dstAngle.x = dstAngleX;
_dstAngle.y = dstAngleY;
return true;
}
return false;
}
bool RotateTo::initWithDuration(float duration, const Vec3& dstAngle3D)
{
if (ActionInterval::initWithDuration(duration))
{
_dstAngle = dstAngle3D;
_is3D = true;
return true;
}
return false;
}
RotateTo* RotateTo::clone() const
{
// no copy constructor
auto a = new RotateTo();
if (_is3D)
a->initWithDuration(_duration, _dstAngle);
else
a->initWithDuration(_duration, _dstAngle.x, _dstAngle.y);
a->autorelease();
return a;
}
void RotateTo::calculateAngles(float& startAngle, float& diffAngle, float dstAngle)
{
if (startAngle > 0)
{
startAngle = fmodf(startAngle, 360.0f);
}
else
{
startAngle = fmodf(startAngle, -360.0f);
}
diffAngle = dstAngle - startAngle;
if (diffAngle > 180)
{
diffAngle -= 360;
}
if (diffAngle < -180)
{
diffAngle += 360;
}
}
void RotateTo::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
if (_is3D)
{
_startAngle = _target->getRotation3D();
}
else
{
_startAngle.x = _target->getRotationSkewX();
_startAngle.y = _target->getRotationSkewY();
}
calculateAngles(_startAngle.x, _diffAngle.x, _dstAngle.x);
calculateAngles(_startAngle.y, _diffAngle.y, _dstAngle.y);
calculateAngles(_startAngle.z, _diffAngle.z, _dstAngle.z);
}
void RotateTo::update(float time)
{
if (_target)
{
if (_is3D)
{
_target->setRotation3D(Vec3(_startAngle.x + _diffAngle.x * time, _startAngle.y + _diffAngle.y * time,
_startAngle.z + _diffAngle.z * time));
}
else
{
#if AX_USE_PHYSICS
if (_startAngle.x == _startAngle.y && _diffAngle.x == _diffAngle.y)
{
_target->setRotation(_startAngle.x + _diffAngle.x * time);
}
else
{
_target->setRotationSkewX(_startAngle.x + _diffAngle.x * time);
_target->setRotationSkewY(_startAngle.y + _diffAngle.y * time);
}
#else
_target->setRotationSkewX(_startAngle.x + _diffAngle.x * time);
_target->setRotationSkewY(_startAngle.y + _diffAngle.y * time);
#endif // AX_USE_PHYSICS
}
}
}
RotateTo* RotateTo::reverse() const
{
AXASSERT(false, "RotateTo doesn't support the 'reverse' method");
return nullptr;
}
//
// RotateBy
//
RotateBy* RotateBy::create(float duration, float deltaAngle)
{
RotateBy* rotateBy = new RotateBy();
if (rotateBy->initWithDuration(duration, deltaAngle))
{
rotateBy->autorelease();
return rotateBy;
}
delete rotateBy;
return nullptr;
}
RotateBy* RotateBy::create(float duration, float deltaAngleX, float deltaAngleY)
{
RotateBy* rotateBy = new RotateBy();
if (rotateBy->initWithDuration(duration, deltaAngleX, deltaAngleY))
{
rotateBy->autorelease();
return rotateBy;
}
delete rotateBy;
return nullptr;
}
RotateBy* RotateBy::create(float duration, const Vec3& deltaAngle3D)
{
RotateBy* rotateBy = new RotateBy();
if (rotateBy->initWithDuration(duration, deltaAngle3D))
{
rotateBy->autorelease();
return rotateBy;
}
delete rotateBy;
return nullptr;
}
RotateBy::RotateBy() : _is3D(false) {}
bool RotateBy::initWithDuration(float duration, float deltaAngle)
{
if (ActionInterval::initWithDuration(duration))
{
_deltaAngle.x = _deltaAngle.y = deltaAngle;
return true;
}
return false;
}
bool RotateBy::initWithDuration(float duration, float deltaAngleX, float deltaAngleY)
{
if (ActionInterval::initWithDuration(duration))
{
_deltaAngle.x = deltaAngleX;
_deltaAngle.y = deltaAngleY;
return true;
}
return false;
}
bool RotateBy::initWithDuration(float duration, const Vec3& deltaAngle3D)
{
if (ActionInterval::initWithDuration(duration))
{
_deltaAngle = deltaAngle3D;
_is3D = true;
return true;
}
return false;
}
RotateBy* RotateBy::clone() const
{
// no copy constructor
auto a = new RotateBy();
if (_is3D)
a->initWithDuration(_duration, _deltaAngle);
else
a->initWithDuration(_duration, _deltaAngle.x, _deltaAngle.y);
a->autorelease();
return a;
}
void RotateBy::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
if (_is3D)
{
_startAngle = target->getRotation3D();
}
else
{
_startAngle.x = target->getRotationSkewX();
_startAngle.y = target->getRotationSkewY();
}
}
void RotateBy::update(float time)
{
// FIXME: shall I add % 360
if (_target)
{
if (_is3D)
{
Vec3 v;
v.x = _startAngle.x + _deltaAngle.x * time;
v.y = _startAngle.y + _deltaAngle.y * time;
v.z = _startAngle.z + _deltaAngle.z * time;
_target->setRotation3D(v);
}
else
{
#if AX_USE_PHYSICS
if (_startAngle.x == _startAngle.y && _deltaAngle.x == _deltaAngle.y)
{
_target->setRotation(_startAngle.x + _deltaAngle.x * time);
}
else
{
_target->setRotationSkewX(_startAngle.x + _deltaAngle.x * time);
_target->setRotationSkewY(_startAngle.y + _deltaAngle.y * time);
}
#else
_target->setRotationSkewX(_startAngle.x + _deltaAngle.x * time);
_target->setRotationSkewY(_startAngle.y + _deltaAngle.y * time);
#endif // AX_USE_PHYSICS
}
}
}
RotateBy* RotateBy::reverse() const
{
if (_is3D)
{
Vec3 v;
v.x = -_deltaAngle.x;
v.y = -_deltaAngle.y;
v.z = -_deltaAngle.z;
return RotateBy::create(_duration, v);
}
else
{
return RotateBy::create(_duration, -_deltaAngle.x, -_deltaAngle.y);
}
}
//
// MoveBy
//
MoveBy* MoveBy::create(float duration, const Vec2& deltaPosition)
{
return MoveBy::create(duration, Vec3(deltaPosition.x, deltaPosition.y, 0));
}
MoveBy* MoveBy::create(float duration, const Vec3& deltaPosition)
{
MoveBy* ret = new MoveBy();
if (ret->initWithDuration(duration, deltaPosition))
{
ret->autorelease();
return ret;
}
delete ret;
return nullptr;
}
bool MoveBy::initWithDuration(float duration, const Vec2& deltaPosition)
{
return MoveBy::initWithDuration(duration, Vec3(deltaPosition.x, deltaPosition.y, 0));
}
bool MoveBy::initWithDuration(float duration, const Vec3& deltaPosition)
{
bool ret = false;
if (ActionInterval::initWithDuration(duration))
{
_positionDelta = deltaPosition;
_is3D = true;
ret = true;
}
return ret;
}
MoveBy* MoveBy::clone() const
{
// no copy constructor
return MoveBy::create(_duration, _positionDelta);
}
void MoveBy::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_previousPosition = _startPosition = target->getPosition3D();
}
MoveBy* MoveBy::reverse() const
{
return MoveBy::create(_duration, -_positionDelta);
}
void MoveBy::update(float t)
{
if (_target)
{
#if AX_ENABLE_STACKABLE_ACTIONS
Vec3 currentPos = _target->getPosition3D();
Vec3 diff = currentPos - _previousPosition;
_startPosition = _startPosition + diff;
Vec3 newPos = _startPosition + (_positionDelta * t);
_target->setPosition3D(newPos);
_previousPosition = newPos;
#else
_target->setPosition3D(_startPosition + _positionDelta * t);
#endif // AX_ENABLE_STACKABLE_ACTIONS
}
}
//
// MoveTo
//
MoveTo* MoveTo::create(float duration, const Vec2& position)
{
return MoveTo::create(duration, Vec3(position.x, position.y, 0));
}
MoveTo* MoveTo::create(float duration, const Vec3& position)
{
MoveTo* ret = new MoveTo();
if (ret->initWithDuration(duration, position))
{
ret->autorelease();
return ret;
}
delete ret;
return nullptr;
}
bool MoveTo::initWithDuration(float duration, const Vec2& position)
{
return initWithDuration(duration, Vec3(position.x, position.y, 0));
}
bool MoveTo::initWithDuration(float duration, const Vec3& position)
{
bool ret = false;
if (ActionInterval::initWithDuration(duration))
{
_endPosition = position;
ret = true;
}
return ret;
}
MoveTo* MoveTo::clone() const
{
// no copy constructor
return MoveTo::create(_duration, _endPosition);
}
void MoveTo::startWithTarget(Node* target)
{
MoveBy::startWithTarget(target);
_positionDelta = _endPosition - target->getPosition3D();
}
MoveTo* MoveTo::reverse() const
{
AXASSERT(false, "reverse() not supported in MoveTo");
return nullptr;
}
//
// SkewTo
//
SkewTo* SkewTo::create(float t, float sx, float sy)
{
SkewTo* skewTo = new SkewTo();
if (skewTo->initWithDuration(t, sx, sy))
{
skewTo->autorelease();
return skewTo;
}
delete skewTo;
return nullptr;
}
bool SkewTo::initWithDuration(float t, float sx, float sy)
{
bool bRet = false;
if (ActionInterval::initWithDuration(t))
{
_endSkewX = sx;
_endSkewY = sy;
bRet = true;
}
return bRet;
}
SkewTo* SkewTo::clone() const
{
// no copy constructor
return SkewTo::create(_duration, _endSkewX, _endSkewY);
}
SkewTo* SkewTo::reverse() const
{
AXASSERT(false, "reverse() not supported in SkewTo");
return nullptr;
}
void SkewTo::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_startSkewX = target->getSkewX();
if (_startSkewX > 0)
{
_startSkewX = fmodf(_startSkewX, 180.f);
}
else
{
_startSkewX = fmodf(_startSkewX, -180.f);
}
_deltaX = _endSkewX - _startSkewX;
if (_deltaX > 180)
{
_deltaX -= 360;
}
if (_deltaX < -180)
{
_deltaX += 360;
}
_startSkewY = target->getSkewY();
if (_startSkewY > 0)
{
_startSkewY = fmodf(_startSkewY, 360.f);
}
else
{
_startSkewY = fmodf(_startSkewY, -360.f);
}
_deltaY = _endSkewY - _startSkewY;
if (_deltaY > 180)
{
_deltaY -= 360;
}
if (_deltaY < -180)
{
_deltaY += 360;
}
}
void SkewTo::update(float t)
{
_target->setSkewX(_startSkewX + _deltaX * t);
_target->setSkewY(_startSkewY + _deltaY * t);
}
SkewTo::SkewTo()
: _skewX(0.0)
, _skewY(0.0)
, _startSkewX(0.0)
, _startSkewY(0.0)
, _endSkewX(0.0)
, _endSkewY(0.0)
, _deltaX(0.0)
, _deltaY(0.0)
{}
//
// SkewBy
//
SkewBy* SkewBy::create(float t, float sx, float sy)
{
SkewBy* skewBy = new SkewBy();
if (skewBy->initWithDuration(t, sx, sy))
{
skewBy->autorelease();
return skewBy;
}
delete skewBy;
return nullptr;
}
SkewBy* SkewBy::clone() const
{
// no copy constructor
return SkewBy::create(_duration, _skewX, _skewY);
}
bool SkewBy::initWithDuration(float t, float deltaSkewX, float deltaSkewY)
{
bool ret = false;
if (SkewTo::initWithDuration(t, deltaSkewX, deltaSkewY))
{
_skewX = deltaSkewX;
_skewY = deltaSkewY;
ret = true;
}
return ret;
}
void SkewBy::startWithTarget(Node* target)
{
SkewTo::startWithTarget(target);
_deltaX = _skewX;
_deltaY = _skewY;
_endSkewX = _startSkewX + _deltaX;
_endSkewY = _startSkewY + _deltaY;
}
SkewBy* SkewBy::reverse() const
{
return SkewBy::create(_duration, -_skewX, -_skewY);
}
ResizeTo* ResizeTo::create(float duration, const Vec2& final_size)
{
ResizeTo* ret = new ResizeTo();
if (ret->initWithDuration(duration, final_size))
{
ret->autorelease();
}
else
{
delete ret;
ret = nullptr;
}
return ret;
}
ResizeTo* ResizeTo::clone() const
{
// no copy constructor
ResizeTo* a = new ResizeTo();
a->initWithDuration(_duration, _finalSize);
a->autorelease();
return a;
}
void ResizeTo::startWithTarget(ax::Node* target)
{
ActionInterval::startWithTarget(target);
_initialSize = target->getContentSize();
_sizeDelta = _finalSize - _initialSize;
}
void ResizeTo::update(float time)
{
if (_target)
{
auto new_size = _initialSize + (_sizeDelta * time);
_target->setContentSize(new_size);
}
}
bool ResizeTo::initWithDuration(float duration, const Vec2& final_size)
{
if (ax::ActionInterval::initWithDuration(duration))
{
_finalSize = final_size;
return true;
}
return false;
}
//
// ResizeBy
//
ResizeBy* ResizeBy::create(float duration, const Vec2& deltaSize)
{
ResizeBy* ret = new ResizeBy();
if (ret->initWithDuration(duration, deltaSize))
{
ret->autorelease();
}
else
{
delete ret;
ret = nullptr;
}
return ret;
}
ResizeBy* ResizeBy::clone() const
{
// no copy constructor
auto a = new ResizeBy();
a->initWithDuration(_duration, _sizeDelta);
a->autorelease();
return a;
}
void ResizeBy::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_previousSize = _startSize = target->getContentSize();
}
ResizeBy* ResizeBy::reverse() const
{
Vec2 newSize(-_sizeDelta.width, -_sizeDelta.height);
return ResizeBy::create(_duration, newSize);
}
void ResizeBy::update(float t)
{
if (_target)
{
_target->setContentSize(_startSize + (_sizeDelta * t));
}
}
bool ResizeBy::initWithDuration(float duration, const Vec2& deltaSize)
{
bool ret = false;
if (ActionInterval::initWithDuration(duration))
{
_sizeDelta = deltaSize;
ret = true;
}
return ret;
}
//
// JumpBy
//
JumpBy* JumpBy::create(float duration, const Vec2& position, float height, int jumps)
{
JumpBy* jumpBy = new JumpBy();
if (jumpBy->initWithDuration(duration, position, height, jumps))
{
jumpBy->autorelease();
return jumpBy;
}
delete jumpBy;
return nullptr;
}
bool JumpBy::initWithDuration(float duration, const Vec2& position, float height, int jumps)
{
AXASSERT(jumps >= 0, "Number of jumps must be >= 0");
if (jumps < 0)
{
log("JumpBy::initWithDuration error: Number of jumps must be >= 0");
return false;
}
if (ActionInterval::initWithDuration(duration) && jumps >= 0)
{
_delta = position;
_height = height;
_jumps = jumps;
return true;
}
return false;
}
JumpBy* JumpBy::clone() const
{
// no copy constructor
return JumpBy::create(_duration, _delta, _height, _jumps);
}
void JumpBy::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_previousPos = _startPosition = target->getPosition();
}
void JumpBy::update(float t)
{
// parabolic jump (since v0.8.2)
if (_target)
{
float frac = fmodf(t * _jumps, 1.0f);
float y = _height * 4 * frac * (1 - frac);
y += _delta.y * t;
float x = _delta.x * t;
#if AX_ENABLE_STACKABLE_ACTIONS
Vec2 currentPos = _target->getPosition();
Vec2 diff = currentPos - _previousPos;
_startPosition = diff + _startPosition;
Vec2 newPos = _startPosition + Vec2(x, y);
_target->setPosition(newPos);
_previousPos = newPos;
#else
_target->setPosition(_startPosition + Vec2(x, y));
#endif // !AX_ENABLE_STACKABLE_ACTIONS
}
}
JumpBy* JumpBy::reverse() const
{
return JumpBy::create(_duration, Vec2(-_delta.x, -_delta.y), _height, _jumps);
}
//
// JumpTo
//
JumpTo* JumpTo::create(float duration, const Vec2& position, float height, int jumps)
{
JumpTo* jumpTo = new JumpTo();
if (jumpTo->initWithDuration(duration, position, height, jumps))
{
jumpTo->autorelease();
return jumpTo;
}
delete jumpTo;
return nullptr;
}
bool JumpTo::initWithDuration(float duration, const Vec2& position, float height, int jumps)
{
AXASSERT(jumps >= 0, "Number of jumps must be >= 0");
if (jumps < 0)
{
log("JumpTo::initWithDuration error:Number of jumps must be >= 0");
return false;
}
if (ActionInterval::initWithDuration(duration) && jumps >= 0)
{
_endPosition = position;
_height = height;
_jumps = jumps;
return true;
}
return false;
}
JumpTo* JumpTo::clone() const
{
// no copy constructor
return JumpTo::create(_duration, _endPosition, _height, _jumps);
}
JumpTo* JumpTo::reverse() const
{
AXASSERT(false, "reverse() not supported in JumpTo");
return nullptr;
}
void JumpTo::startWithTarget(Node* target)
{
JumpBy::startWithTarget(target);
_delta.set(_endPosition.x - _startPosition.x, _endPosition.y - _startPosition.y);
}
// Bezier cubic formula:
// ((1 - t) + t)3 = 1
// Expands to ...
// (1 - t)3 + 3t(1-t)2 + 3t2(1 - t) + t3 = 1
static inline float bezierat(float a, float b, float c, float d, float t)
{
return (powf(1 - t, 3) * a + 3 * t * (powf(1 - t, 2)) * b + 3 * powf(t, 2) * (1 - t) * c + powf(t, 3) * d);
}
//
// BezierBy
//
BezierBy* BezierBy::create(float t, const ccBezierConfig& c)
{
BezierBy* bezierBy = new BezierBy();
if (bezierBy->initWithDuration(t, c))
{
bezierBy->autorelease();
return bezierBy;
}
delete bezierBy;
return nullptr;
}
bool BezierBy::initWithDuration(float t, const ccBezierConfig& c)
{
if (ActionInterval::initWithDuration(t))
{
_config = c;
return true;
}
return false;
}
void BezierBy::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_previousPosition = _startPosition = target->getPosition();
}
BezierBy* BezierBy::clone() const
{
// no copy constructor
return BezierBy::create(_duration, _config);
}
void BezierBy::update(float time)
{
if (_target)
{
float xa = 0;
float xb = _config.controlPoint_1.x;
float xc = _config.controlPoint_2.x;
float xd = _config.endPosition.x;
float ya = 0;
float yb = _config.controlPoint_1.y;
float yc = _config.controlPoint_2.y;
float yd = _config.endPosition.y;
float x = bezierat(xa, xb, xc, xd, time);
float y = bezierat(ya, yb, yc, yd, time);
#if AX_ENABLE_STACKABLE_ACTIONS
Vec2 currentPos = _target->getPosition();
Vec2 diff = currentPos - _previousPosition;
_startPosition = _startPosition + diff;
Vec2 newPos = _startPosition + Vec2(x, y);
_target->setPosition(newPos);
_previousPosition = newPos;
#else
_target->setPosition(_startPosition + Vec2(x, y));
#endif // !AX_ENABLE_STACKABLE_ACTIONS
}
}
BezierBy* BezierBy::reverse() const
{
ccBezierConfig r;
r.endPosition = -_config.endPosition;
r.controlPoint_1 = _config.controlPoint_2 + (-_config.endPosition);
r.controlPoint_2 = _config.controlPoint_1 + (-_config.endPosition);
BezierBy* action = BezierBy::create(_duration, r);
return action;
}
//
// BezierTo
//
BezierTo* BezierTo::create(float t, const ccBezierConfig& c)
{
BezierTo* bezierTo = new BezierTo();
if (bezierTo->initWithDuration(t, c))
{
bezierTo->autorelease();
return bezierTo;
}
delete bezierTo;
return nullptr;
}
bool BezierTo::initWithDuration(float t, const ccBezierConfig& c)
{
if (ActionInterval::initWithDuration(t))
{
_toConfig = c;
return true;
}
return false;
}
BezierTo* BezierTo::clone() const
{
// no copy constructor
return BezierTo::create(_duration, _toConfig);
}
void BezierTo::startWithTarget(Node* target)
{
BezierBy::startWithTarget(target);
_config.controlPoint_1 = _toConfig.controlPoint_1 - _startPosition;
_config.controlPoint_2 = _toConfig.controlPoint_2 - _startPosition;
_config.endPosition = _toConfig.endPosition - _startPosition;
}
BezierTo* BezierTo::reverse() const
{
AXASSERT(false, "CCBezierTo doesn't support the 'reverse' method");
return nullptr;
}
//
// ScaleTo
//
ScaleTo* ScaleTo::create(float duration, float s)
{
ScaleTo* scaleTo = new ScaleTo();
if (scaleTo->initWithDuration(duration, s))
{
scaleTo->autorelease();
return scaleTo;
}
delete scaleTo;
return nullptr;
}
ScaleTo* ScaleTo::create(float duration, float sx, float sy)
{
ScaleTo* scaleTo = new ScaleTo();
if (scaleTo->initWithDuration(duration, sx, sy))
{
scaleTo->autorelease();
return scaleTo;
}
delete scaleTo;
return nullptr;
}
ScaleTo* ScaleTo::create(float duration, float sx, float sy, float sz)
{
ScaleTo* scaleTo = new ScaleTo();
if (scaleTo->initWithDuration(duration, sx, sy, sz))
{
scaleTo->autorelease();
return scaleTo;
}
delete scaleTo;
return nullptr;
}
bool ScaleTo::initWithDuration(float duration, float s)
{
if (ActionInterval::initWithDuration(duration))
{
_endScaleX = s;
_endScaleY = s;
_endScaleZ = s;
return true;
}
return false;
}
bool ScaleTo::initWithDuration(float duration, float sx, float sy)
{
if (ActionInterval::initWithDuration(duration))
{
_endScaleX = sx;
_endScaleY = sy;
_endScaleZ = 1.f;
return true;
}
return false;
}
bool ScaleTo::initWithDuration(float duration, float sx, float sy, float sz)
{
if (ActionInterval::initWithDuration(duration))
{
_endScaleX = sx;
_endScaleY = sy;
_endScaleZ = sz;
return true;
}
return false;
}
ScaleTo* ScaleTo::clone() const
{
// no copy constructor
return ScaleTo::create(_duration, _endScaleX, _endScaleY, _endScaleZ);
}
ScaleTo* ScaleTo::reverse() const
{
AXASSERT(false, "reverse() not supported in ScaleTo");
return nullptr;
}
void ScaleTo::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_startScaleX = target->getScaleX();
_startScaleY = target->getScaleY();
_startScaleZ = target->getScaleZ();
_deltaX = _endScaleX - _startScaleX;
_deltaY = _endScaleY - _startScaleY;
_deltaZ = _endScaleZ - _startScaleZ;
}
void ScaleTo::update(float time)
{
if (_target)
{
_target->setScaleX(_startScaleX + _deltaX * time);
_target->setScaleY(_startScaleY + _deltaY * time);
_target->setScaleZ(_startScaleZ + _deltaZ * time);
}
}
//
// ScaleBy
//
ScaleBy* ScaleBy::create(float duration, float s)
{
ScaleBy* scaleBy = new ScaleBy();
if (scaleBy->initWithDuration(duration, s))
{
scaleBy->autorelease();
return scaleBy;
}
delete scaleBy;
return nullptr;
}
ScaleBy* ScaleBy::create(float duration, float sx, float sy)
{
ScaleBy* scaleBy = new ScaleBy();
if (scaleBy->initWithDuration(duration, sx, sy, 1.f))
{
scaleBy->autorelease();
return scaleBy;
}
delete scaleBy;
return nullptr;
}
ScaleBy* ScaleBy::create(float duration, float sx, float sy, float sz)
{
ScaleBy* scaleBy = new ScaleBy();
if (scaleBy->initWithDuration(duration, sx, sy, sz))
{
scaleBy->autorelease();
return scaleBy;
}
delete scaleBy;
return nullptr;
}
ScaleBy* ScaleBy::clone() const
{
// no copy constructor
return ScaleBy::create(_duration, _endScaleX, _endScaleY, _endScaleZ);
}
void ScaleBy::startWithTarget(Node* target)
{
ScaleTo::startWithTarget(target);
_deltaX = _startScaleX * _endScaleX - _startScaleX;
_deltaY = _startScaleY * _endScaleY - _startScaleY;
_deltaZ = _startScaleZ * _endScaleZ - _startScaleZ;
}
ScaleBy* ScaleBy::reverse() const
{
return ScaleBy::create(_duration, 1 / _endScaleX, 1 / _endScaleY, 1 / _endScaleZ);
}
//
// Blink
//
Blink* Blink::create(float duration, int blinks)
{
Blink* blink = new Blink();
if (blink->initWithDuration(duration, blinks))
{
blink->autorelease();
return blink;
}
delete blink;
return nullptr;
}
bool Blink::initWithDuration(float duration, int blinks)
{
AXASSERT(blinks >= 0, "blinks should be >= 0");
if (blinks < 0)
{
log("Blink::initWithDuration error:blinks should be >= 0");
return false;
}
if (ActionInterval::initWithDuration(duration) && blinks >= 0)
{
_times = blinks;
return true;
}
return false;
}
void Blink::stop()
{
if (nullptr != _target)
_target->setVisible(_originalState);
ActionInterval::stop();
}
void Blink::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_originalState = target->isVisible();
}
Blink* Blink::clone() const
{
// no copy constructor
return Blink::create(_duration, _times);
}
void Blink::update(float time)
{
if (_target && !isDone())
{
float slice = 1.0f / _times;
float m = fmodf(time, slice);
_target->setVisible(m > slice / 2 ? true : false);
}
}
Blink* Blink::reverse() const
{
return Blink::create(_duration, _times);
}
//
// FadeIn
//
FadeIn* FadeIn::create(float d)
{
FadeIn* action = new FadeIn();
if (action->initWithDuration(d, 255))
{
action->autorelease();
return action;
}
delete action;
return nullptr;
}
FadeIn* FadeIn::clone() const
{
// no copy constructor
return FadeIn::create(_duration);
}
void FadeIn::setReverseAction(ax::FadeTo* ac)
{
_reverseAction = ac;
}
FadeTo* FadeIn::reverse() const
{
auto action = FadeOut::create(_duration);
action->setReverseAction(const_cast<FadeIn*>(this));
return action;
}
void FadeIn::startWithTarget(ax::Node* target)
{
ActionInterval::startWithTarget(target);
if (nullptr != _reverseAction)
this->_toOpacity = this->_reverseAction->_fromOpacity;
else
_toOpacity = 255;
if (target)
_fromOpacity = target->getOpacity();
}
//
// FadeOut
//
FadeOut* FadeOut::create(float d)
{
FadeOut* action = new FadeOut();
if (action->initWithDuration(d, 0))
{
action->autorelease();
return action;
}
delete action;
return nullptr;
}
FadeOut* FadeOut::clone() const
{
// no copy constructor
return FadeOut::create(_duration);
}
void FadeOut::startWithTarget(ax::Node* target)
{
ActionInterval::startWithTarget(target);
if (nullptr != _reverseAction)
_toOpacity = _reverseAction->_fromOpacity;
else
_toOpacity = 0;
if (target)
_fromOpacity = target->getOpacity();
}
void FadeOut::setReverseAction(ax::FadeTo* ac)
{
_reverseAction = ac;
}
FadeTo* FadeOut::reverse() const
{
auto action = FadeIn::create(_duration);
action->setReverseAction(const_cast<FadeOut*>(this));
return action;
}
//
// FadeTo
//
FadeTo* FadeTo::create(float duration, uint8_t opacity)
{
FadeTo* fadeTo = new FadeTo();
if (fadeTo->initWithDuration(duration, opacity))
{
fadeTo->autorelease();
return fadeTo;
}
delete fadeTo;
return nullptr;
}
bool FadeTo::initWithDuration(float duration, uint8_t opacity)
{
if (ActionInterval::initWithDuration(duration))
{
_toOpacity = opacity;
return true;
}
return false;
}
FadeTo* FadeTo::clone() const
{
// no copy constructor
return FadeTo::create(_duration, _toOpacity);
}
FadeTo* FadeTo::reverse() const
{
AXASSERT(false, "reverse() not supported in FadeTo");
return nullptr;
}
void FadeTo::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
if (target)
{
_fromOpacity = target->getOpacity();
}
}
void FadeTo::update(float time)
{
if (_target)
{
_target->setOpacity((uint8_t)(_fromOpacity + (_toOpacity - _fromOpacity) * time));
}
}
//
// TintTo
//
TintTo* TintTo::create(float duration, uint8_t red, uint8_t green, uint8_t blue)
{
TintTo* tintTo = new TintTo();
if (tintTo->initWithDuration(duration, red, green, blue))
{
tintTo->autorelease();
return tintTo;
}
delete tintTo;
return nullptr;
}
TintTo* TintTo::create(float duration, const Color3B& color)
{
return create(duration, color.r, color.g, color.b);
}
bool TintTo::initWithDuration(float duration, uint8_t red, uint8_t green, uint8_t blue)
{
if (ActionInterval::initWithDuration(duration))
{
_to = Color3B(red, green, blue);
return true;
}
return false;
}
TintTo* TintTo::clone() const
{
// no copy constructor
return TintTo::create(_duration, _to.r, _to.g, _to.b);
}
TintTo* TintTo::reverse() const
{
AXASSERT(false, "reverse() not supported in TintTo");
return nullptr;
}
void TintTo::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
if (_target)
{
_from = _target->getColor();
}
}
void TintTo::update(float time)
{
if (_target)
{
_target->setColor(Color3B(uint8_t(_from.r + (_to.r - _from.r) * time),
(uint8_t)(_from.g + (_to.g - _from.g) * time),
(uint8_t)(_from.b + (_to.b - _from.b) * time)));
}
}
//
// TintBy
//
TintBy* TintBy::create(float duration, int16_t deltaRed, int16_t deltaGreen, int16_t deltaBlue)
{
TintBy* tintBy = new TintBy();
if (tintBy->initWithDuration(duration, deltaRed, deltaGreen, deltaBlue))
{
tintBy->autorelease();
return tintBy;
}
delete tintBy;
return nullptr;
}
bool TintBy::initWithDuration(float duration, int16_t deltaRed, int16_t deltaGreen, int16_t deltaBlue)
{
if (ActionInterval::initWithDuration(duration))
{
_deltaR = deltaRed;
_deltaG = deltaGreen;
_deltaB = deltaBlue;
return true;
}
return false;
}
TintBy* TintBy::clone() const
{
// no copy constructor
return TintBy::create(_duration, _deltaR, _deltaG, _deltaB);
}
void TintBy::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
if (target)
{
Color3B color = target->getColor();
_fromR = color.r;
_fromG = color.g;
_fromB = color.b;
}
}
void TintBy::update(float time)
{
if (_target)
{
_target->setColor(Color3B((uint8_t)(_fromR + _deltaR * time), (uint8_t)(_fromG + _deltaG * time),
(uint8_t)(_fromB + _deltaB * time)));
}
}
TintBy* TintBy::reverse() const
{
return TintBy::create(_duration, -_deltaR, -_deltaG, -_deltaB);
}
//
// DelayTime
//
DelayTime* DelayTime::create(float d)
{
DelayTime* action = new DelayTime();
if (action->initWithDuration(d))
{
action->autorelease();
return action;
}
delete action;
return nullptr;
}
DelayTime* DelayTime::clone() const
{
// no copy constructor
return DelayTime::create(_duration);
}
void DelayTime::update(float /*time*/)
{
return;
}
DelayTime* DelayTime::reverse() const
{
return DelayTime::create(_duration);
}
//
// ReverseTime
//
ReverseTime* ReverseTime::create(FiniteTimeAction* action)
{
// casting to prevent warnings
ReverseTime* reverseTime = new ReverseTime();
if (reverseTime->initWithAction(action->clone()))
{
reverseTime->autorelease();
return reverseTime;
}
delete reverseTime;
return nullptr;
}
bool ReverseTime::initWithAction(FiniteTimeAction* action)
{
AXASSERT(action != nullptr, "action can't be nullptr!");
AXASSERT(action != _other, "action doesn't equal to _other!");
if (action == nullptr || action == _other)
{
log("ReverseTime::initWithAction error: action is null or action equal to _other");
return false;
}
if (ActionInterval::initWithDuration(action->getDuration()))
{
// Don't leak if action is reused
AX_SAFE_RELEASE(_other);
_other = action;
action->retain();
return true;
}
return false;
}
ReverseTime* ReverseTime::clone() const
{
// no copy constructor
return ReverseTime::create(_other->clone());
}
ReverseTime::ReverseTime() : _other(nullptr) {}
ReverseTime::~ReverseTime()
{
AX_SAFE_RELEASE(_other);
}
void ReverseTime::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_other->startWithTarget(target);
}
void ReverseTime::stop()
{
_other->stop();
ActionInterval::stop();
}
void ReverseTime::update(float time)
{
if (_other)
{
if (!(sendUpdateEventToScript(1 - time, _other)))
_other->update(1 - time);
}
}
ReverseTime* ReverseTime::reverse() const
{
// FIXME: This looks like a bug
return (ReverseTime*)_other->clone();
}
//
// Animate
//
Animate* Animate::create(Animation* animation)
{
Animate* animate = new Animate();
if (animate->initWithAnimation(animation))
{
animate->autorelease();
return animate;
}
delete animate;
return nullptr;
}
Animate::Animate() {}
Animate::~Animate()
{
AX_SAFE_RELEASE(_animation);
AX_SAFE_RELEASE(_origFrame);
AX_SAFE_DELETE(_splitTimes);
AX_SAFE_RELEASE(_frameDisplayedEvent);
}
bool Animate::initWithAnimation(Animation* animation)
{
AXASSERT(animation != nullptr, "Animate: argument Animation must be non-nullptr");
if (animation == nullptr)
{
log("Animate::initWithAnimation: argument Animation must be non-nullptr");
return false;
}
float singleDuration = animation->getDuration();
if (ActionInterval::initWithDuration(singleDuration * animation->getLoops()))
{
_nextFrame = 0;
setAnimation(animation);
_origFrame = nullptr;
_executedLoops = 0;
_splitTimes->reserve(animation->getFrames().size());
float accumUnitsOfTime = 0;
float newUnitOfTimeValue = singleDuration / animation->getTotalDelayUnits();
auto& frames = animation->getFrames();
for (auto&& frame : frames)
{
float value = (accumUnitsOfTime * newUnitOfTimeValue) / singleDuration;
accumUnitsOfTime += frame->getDelayUnits();
_splitTimes->emplace_back(value);
}
return true;
}
return false;
}
void Animate::setAnimation(ax::Animation* animation)
{
if (_animation != animation)
{
AX_SAFE_RETAIN(animation);
AX_SAFE_RELEASE(_animation);
_animation = animation;
}
}
Animate* Animate::clone() const
{
// no copy constructor
return Animate::create(_animation->clone());
}
void Animate::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
Sprite* sprite = static_cast<Sprite*>(target);
AX_SAFE_RELEASE(_origFrame);
if (_animation->getRestoreOriginalFrame())
{
_origFrame = sprite->getSpriteFrame();
_origFrame->retain();
}
_nextFrame = 0;
_executedLoops = 0;
}
void Animate::stop()
{
if (_animation->getRestoreOriginalFrame() && _target)
{
auto blend = static_cast<Sprite*>(_target)->getBlendFunc();
static_cast<Sprite*>(_target)->setSpriteFrame(_origFrame);
static_cast<Sprite*>(_target)->setBlendFunc(blend);
}
ActionInterval::stop();
}
void Animate::update(float t)
{
// if t==1, ignore. Animation should finish with t==1
if (t < 1.0f)
{
t *= _animation->getLoops();
// new loop? If so, reset frame counter
unsigned int loopNumber = (unsigned int)t;
if (loopNumber > _executedLoops)
{
_nextFrame = 0;
_executedLoops++;
}
// new t for animations
t = fmodf(t, 1.0f);
}
auto& frames = _animation->getFrames();
auto numberOfFrames = frames.size();
SpriteFrame* frameToDisplay = nullptr;
for (int i = _nextFrame; i < numberOfFrames; i++)
{
float splitTime = _splitTimes->at(i);
if (splitTime <= t)
{
auto blend = static_cast<Sprite*>(_target)->getBlendFunc();
_currFrameIndex = i;
AnimationFrame* frame = frames.at(_currFrameIndex);
frameToDisplay = frame->getSpriteFrame();
static_cast<Sprite*>(_target)->setSpriteFrame(frameToDisplay);
static_cast<Sprite*>(_target)->setBlendFunc(blend);
const ValueMap& dict = frame->getUserInfo();
if (!dict.empty())
{
if (_frameDisplayedEvent == nullptr)
_frameDisplayedEvent = new EventCustom(AnimationFrameDisplayedNotification);
_frameDisplayedEventInfo.target = _target;
_frameDisplayedEventInfo.userInfo = &dict;
_frameDisplayedEvent->setUserData(&_frameDisplayedEventInfo);
Director::getInstance()->getEventDispatcher()->dispatchEvent(_frameDisplayedEvent);
}
_nextFrame = i + 1;
}
// Issue 1438. Could be more than one frame per tick, due to low frame rate or frame delta < 1/FPS
else
{
break;
}
}
}
Animate* Animate::reverse() const
{
auto& oldArray = _animation->getFrames();
Vector<AnimationFrame*> newArray(oldArray.size());
if (!oldArray.empty())
{
for (auto iter = oldArray.crbegin(), iterCrend = oldArray.crend(); iter != iterCrend; ++iter)
{
AnimationFrame* animFrame = *iter;
if (!animFrame)
{
break;
}
newArray.pushBack(animFrame->clone());
}
}
Animation* newAnim = Animation::create(newArray, _animation->getDelayPerUnit(), _animation->getLoops());
newAnim->setRestoreOriginalFrame(_animation->getRestoreOriginalFrame());
return Animate::create(newAnim);
}
// TargetedAction
TargetedAction::TargetedAction() : _action(nullptr), _forcedTarget(nullptr) {}
TargetedAction::~TargetedAction()
{
AX_SAFE_RELEASE(_forcedTarget);
AX_SAFE_RELEASE(_action);
}
TargetedAction* TargetedAction::create(Node* target, FiniteTimeAction* action)
{
TargetedAction* p = new TargetedAction();
if (p->initWithTarget(target, action))
{
p->autorelease();
return p;
}
delete p;
return nullptr;
}
bool TargetedAction::initWithTarget(Node* target, FiniteTimeAction* action)
{
if (ActionInterval::initWithDuration(action->getDuration()))
{
AX_SAFE_RETAIN(target);
_forcedTarget = target;
AX_SAFE_RETAIN(action);
_action = action;
return true;
}
return false;
}
TargetedAction* TargetedAction::clone() const
{
// no copy constructor
// win32 : use the _other's copy object.
return TargetedAction::create(_forcedTarget, _action->clone());
}
TargetedAction* TargetedAction::reverse() const
{
// just reverse the internal action
auto a = new TargetedAction();
a->initWithTarget(_forcedTarget, _action->reverse());
a->autorelease();
return a;
}
void TargetedAction::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_action->startWithTarget(_forcedTarget);
}
void TargetedAction::stop()
{
_action->stop();
}
void TargetedAction::update(float time)
{
if (!(sendUpdateEventToScript(time, _action)))
_action->update(time);
}
void TargetedAction::setForcedTarget(Node* forcedTarget)
{
if (_forcedTarget != forcedTarget)
{
AX_SAFE_RETAIN(forcedTarget);
AX_SAFE_RELEASE(_forcedTarget);
_forcedTarget = forcedTarget;
}
}
// ActionFloat
ActionFloat* ActionFloat::create(float duration, float from, float to, ActionFloatCallback callback)
{
auto ref = new ActionFloat();
if (ref->initWithDuration(duration, from, to, callback))
{
ref->autorelease();
return ref;
}
delete ref;
return nullptr;
}
bool ActionFloat::initWithDuration(float duration, float from, float to, ActionFloatCallback callback)
{
if (ActionInterval::initWithDuration(duration))
{
_from = from;
_to = to;
_callback = callback;
return true;
}
return false;
}
ActionFloat* ActionFloat::clone() const
{
return ActionFloat::create(_duration, _from, _to, _callback);
}
void ActionFloat::startWithTarget(Node* target)
{
ActionInterval::startWithTarget(target);
_delta = _to - _from;
}
void ActionFloat::update(float delta)
{
float value = _to - _delta * (1 - delta);
if (_callback)
{
// report back value to caller
_callback(value);
}
}
ActionFloat* ActionFloat::reverse() const
{
return ActionFloat::create(_duration, _to, _from, _callback);
}
NS_AX_END