mirror of https://github.com/axmolengine/axmol.git
170 lines
5.2 KiB
C++
170 lines
5.2 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#if defined(_WIN32) || defined(__i386__)
|
|
#define BT_USE_SSE_IN_API
|
|
#endif
|
|
|
|
#include "btMultiSphereShape.h"
|
|
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
|
|
#include "LinearMath/btQuaternion.h"
|
|
#include "LinearMath/btSerializer.h"
|
|
|
|
btMultiSphereShape::btMultiSphereShape(const btVector3* positions, const btScalar* radi, int numSpheres)
|
|
: btConvexInternalAabbCachingShape()
|
|
{
|
|
m_shapeType = MULTI_SPHERE_SHAPE_PROXYTYPE;
|
|
//btScalar startMargin = btScalar(BT_LARGE_FLOAT);
|
|
|
|
m_localPositionArray.resize(numSpheres);
|
|
m_radiArray.resize(numSpheres);
|
|
for (int i = 0; i < numSpheres; i++)
|
|
{
|
|
m_localPositionArray[i] = positions[i];
|
|
m_radiArray[i] = radi[i];
|
|
}
|
|
|
|
recalcLocalAabb();
|
|
}
|
|
|
|
#ifndef MIN
|
|
#define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
|
|
#endif
|
|
btVector3 btMultiSphereShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0) const
|
|
{
|
|
btVector3 supVec(0, 0, 0);
|
|
|
|
btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
|
|
|
|
btVector3 vec = vec0;
|
|
btScalar lenSqr = vec.length2();
|
|
if (lenSqr < (SIMD_EPSILON * SIMD_EPSILON))
|
|
{
|
|
vec.setValue(1, 0, 0);
|
|
}
|
|
else
|
|
{
|
|
btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
|
|
vec *= rlen;
|
|
}
|
|
|
|
btVector3 vtx;
|
|
btScalar newDot;
|
|
|
|
const btVector3* pos = &m_localPositionArray[0];
|
|
const btScalar* rad = &m_radiArray[0];
|
|
int numSpheres = m_localPositionArray.size();
|
|
|
|
for (int k = 0; k < numSpheres; k += 128)
|
|
{
|
|
btVector3 temp[128];
|
|
int inner_count = MIN(numSpheres - k, 128);
|
|
for (long i = 0; i < inner_count; i++)
|
|
{
|
|
temp[i] = (*pos) * m_localScaling + vec * m_localScaling * (*rad) - vec * getMargin();
|
|
pos++;
|
|
rad++;
|
|
}
|
|
long i = vec.maxDot(temp, inner_count, newDot);
|
|
if (newDot > maxDot)
|
|
{
|
|
maxDot = newDot;
|
|
supVec = temp[i];
|
|
}
|
|
}
|
|
|
|
return supVec;
|
|
}
|
|
|
|
void btMultiSphereShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors, btVector3* supportVerticesOut, int numVectors) const
|
|
{
|
|
for (int j = 0; j < numVectors; j++)
|
|
{
|
|
btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
|
|
|
|
const btVector3& vec = vectors[j];
|
|
|
|
btVector3 vtx;
|
|
btScalar newDot;
|
|
|
|
const btVector3* pos = &m_localPositionArray[0];
|
|
const btScalar* rad = &m_radiArray[0];
|
|
int numSpheres = m_localPositionArray.size();
|
|
|
|
for (int k = 0; k < numSpheres; k += 128)
|
|
{
|
|
btVector3 temp[128];
|
|
int inner_count = MIN(numSpheres - k, 128);
|
|
for (long i = 0; i < inner_count; i++)
|
|
{
|
|
temp[i] = (*pos) * m_localScaling + vec * m_localScaling * (*rad) - vec * getMargin();
|
|
pos++;
|
|
rad++;
|
|
}
|
|
long i = vec.maxDot(temp, inner_count, newDot);
|
|
if (newDot > maxDot)
|
|
{
|
|
maxDot = newDot;
|
|
supportVerticesOut[j] = temp[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void btMultiSphereShape::calculateLocalInertia(btScalar mass, btVector3& inertia) const
|
|
{
|
|
//as an approximation, take the inertia of the box that bounds the spheres
|
|
|
|
btVector3 localAabbMin, localAabbMax;
|
|
getCachedLocalAabb(localAabbMin, localAabbMax);
|
|
btVector3 halfExtents = (localAabbMax - localAabbMin) * btScalar(0.5);
|
|
|
|
btScalar lx = btScalar(2.) * (halfExtents.x());
|
|
btScalar ly = btScalar(2.) * (halfExtents.y());
|
|
btScalar lz = btScalar(2.) * (halfExtents.z());
|
|
|
|
inertia.setValue(mass / (btScalar(12.0)) * (ly * ly + lz * lz),
|
|
mass / (btScalar(12.0)) * (lx * lx + lz * lz),
|
|
mass / (btScalar(12.0)) * (lx * lx + ly * ly));
|
|
}
|
|
|
|
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
|
const char* btMultiSphereShape::serialize(void* dataBuffer, btSerializer* serializer) const
|
|
{
|
|
btMultiSphereShapeData* shapeData = (btMultiSphereShapeData*)dataBuffer;
|
|
btConvexInternalShape::serialize(&shapeData->m_convexInternalShapeData, serializer);
|
|
|
|
int numElem = m_localPositionArray.size();
|
|
shapeData->m_localPositionArrayPtr = numElem ? (btPositionAndRadius*)serializer->getUniquePointer((void*)&m_localPositionArray[0]) : 0;
|
|
|
|
shapeData->m_localPositionArraySize = numElem;
|
|
if (numElem)
|
|
{
|
|
btChunk* chunk = serializer->allocate(sizeof(btPositionAndRadius), numElem);
|
|
btPositionAndRadius* memPtr = (btPositionAndRadius*)chunk->m_oldPtr;
|
|
for (int i = 0; i < numElem; i++, memPtr++)
|
|
{
|
|
m_localPositionArray[i].serializeFloat(memPtr->m_pos);
|
|
memPtr->m_radius = float(m_radiArray[i]);
|
|
}
|
|
serializer->finalizeChunk(chunk, "btPositionAndRadius", BT_ARRAY_CODE, (void*)&m_localPositionArray[0]);
|
|
}
|
|
|
|
// Fill padding with zeros to appease msan.
|
|
memset(shapeData->m_padding, 0, sizeof(shapeData->m_padding));
|
|
|
|
return "btMultiSphereShapeData";
|
|
}
|