mirror of https://github.com/axmolengine/axmol.git
191 lines
5.0 KiB
C++
191 lines
5.0 KiB
C++
/****************************************************************************
|
|
Copyright (c) 2010-2011 cocos2d-x.org
|
|
Copyright (c) 2007 Scott Lembcke
|
|
Copyright (c) 2010 Lam Pham
|
|
|
|
http://www.cocos2d-x.org
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
****************************************************************************/
|
|
|
|
#include "CCPointExtension.h"
|
|
#include "ccMacros.h" // FLT_EPSILON
|
|
#include <stdio.h>
|
|
namespace cocos2d {
|
|
|
|
#define kCCPointEpsilon FLT_EPSILON
|
|
|
|
CGFloat
|
|
ccpLength(const CCPoint& v)
|
|
{
|
|
return sqrtf(ccpLengthSQ(v));
|
|
}
|
|
|
|
CGFloat
|
|
ccpDistance(const CCPoint& v1, const CCPoint& v2)
|
|
{
|
|
return ccpLength(ccpSub(v1, v2));
|
|
}
|
|
|
|
CCPoint
|
|
ccpNormalize(const CCPoint& v)
|
|
{
|
|
return ccpMult(v, 1.0f/ccpLength(v));
|
|
}
|
|
|
|
CCPoint
|
|
ccpForAngle(const CGFloat a)
|
|
{
|
|
return ccp(cosf(a), sinf(a));
|
|
}
|
|
|
|
CGFloat
|
|
ccpToAngle(const CCPoint& v)
|
|
{
|
|
return atan2f(v.y, v.x);
|
|
}
|
|
|
|
CCPoint ccpLerp(const CCPoint& a, const CCPoint& b, float alpha)
|
|
{
|
|
return ccpAdd(ccpMult(a, 1.f - alpha), ccpMult(b, alpha));
|
|
}
|
|
|
|
float clampf(float value, float min_inclusive, float max_inclusive)
|
|
{
|
|
if (min_inclusive > max_inclusive) {
|
|
float ftmp;
|
|
ftmp = min_inclusive;
|
|
min_inclusive = max_inclusive;
|
|
max_inclusive = min_inclusive;
|
|
}
|
|
return value < min_inclusive ? min_inclusive : value < max_inclusive? value : max_inclusive;
|
|
}
|
|
|
|
CCPoint ccpClamp(const CCPoint& p, const CCPoint& min_inclusive, const CCPoint& max_inclusive)
|
|
{
|
|
return ccp(clampf(p.x,min_inclusive.x,max_inclusive.x), clampf(p.y, min_inclusive.y, max_inclusive.y));
|
|
}
|
|
|
|
CCPoint ccpFromSize(const CCSize& s)
|
|
{
|
|
return ccp(s.width, s.height);
|
|
}
|
|
|
|
CCPoint ccpCompOp(const CCPoint& p, float (*opFunc)(float))
|
|
{
|
|
return ccp(opFunc(p.x), opFunc(p.y));
|
|
}
|
|
|
|
bool ccpFuzzyEqual(const CCPoint& a, const CCPoint& b, float var)
|
|
{
|
|
if(a.x - var <= b.x && b.x <= a.x + var)
|
|
if(a.y - var <= b.y && b.y <= a.y + var)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
CCPoint ccpCompMult(const CCPoint& a, const CCPoint& b)
|
|
{
|
|
return ccp(a.x * b.x, a.y * b.y);
|
|
}
|
|
|
|
float ccpAngleSigned(const CCPoint& a, const CCPoint& b)
|
|
{
|
|
CCPoint a2 = ccpNormalize(a);
|
|
CCPoint b2 = ccpNormalize(b);
|
|
float angle = atan2f(a2.x * b2.y - a2.y * b2.x, ccpDot(a2, b2));
|
|
if( fabs(angle) < kCCPointEpsilon ) return 0.f;
|
|
return angle;
|
|
}
|
|
|
|
CCPoint ccpRotateByAngle(const CCPoint& v, const CCPoint& pivot, float angle)
|
|
{
|
|
CCPoint r = ccpSub(v, pivot);
|
|
float cosa = cosf(angle), sina = sinf(angle);
|
|
float t = r.x;
|
|
r.x = t*cosa - r.y*sina + pivot.x;
|
|
r.y = t*sina + r.y*cosa + pivot.y;
|
|
return r;
|
|
}
|
|
|
|
bool ccpLineIntersect(CCPoint A, CCPoint B,
|
|
CCPoint C, CCPoint D,
|
|
float *S, float *T)
|
|
{
|
|
// FAIL: Line undefined
|
|
if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Translate system to make A the origin
|
|
B.x-=A.x; B.y-=A.y;
|
|
C.x-=A.x; C.y-=A.y;
|
|
D.x-=A.x; D.y-=A.y;
|
|
|
|
// Cache
|
|
CCPoint C2 = C, D2 = D;
|
|
|
|
// Length of segment AB
|
|
float distAB = sqrtf(B.x*B.x+B.y*B.y);
|
|
|
|
// Rotate the system so that point B is on the positive X axis.
|
|
float theCos = B.x/distAB;
|
|
float theSin = B.y/distAB;
|
|
float newX = C.x*theCos+C.y*theSin;
|
|
C.y = C.y*theCos-C.x*theSin; C.x = newX;
|
|
newX = D.x*theCos+D.y*theSin;
|
|
D.y = D.y*theCos-D.x*theSin; D.x = newX;
|
|
|
|
// FAIL: Lines are parallel.
|
|
if (C.y == D.y)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Discover position of the intersection in the line AB
|
|
float ABpos = D.x+(C.x-D.x)*D.y/(D.y-C.y);
|
|
|
|
// Vector CD
|
|
C.x = D2.x-C2.x;
|
|
C.y = D2.y-C2.y;
|
|
|
|
// Vector between intersection and point C
|
|
A.x = ABpos*theCos-C2.x;
|
|
A.y = ABpos*theSin-C2.y;
|
|
|
|
newX = sqrtf((A.x*A.x+A.y*A.y)/(C.x*C.x+C.y*C.y));
|
|
if(((A.y<0) != (C.y<0)) || ((A.x<0) != (C.x<0)))
|
|
newX *= -1.0f;
|
|
|
|
*S = ABpos/distAB;
|
|
*T = newX;
|
|
|
|
// Success.
|
|
return true;
|
|
}
|
|
|
|
float ccpAngle(const CCPoint& a, const CCPoint& b)
|
|
{
|
|
float angle = acosf(ccpDot(ccpNormalize(a), ccpNormalize(b)));
|
|
if( fabs(angle) < kCCPointEpsilon ) return 0.f;
|
|
return angle;
|
|
}
|
|
}//namespace cocos2d
|