mirror of https://github.com/axmolengine/axmol.git
976 lines
30 KiB
C++
976 lines
30 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
/*
|
|
2007-09-09
|
|
Refactored by Francisco Le?n
|
|
email: projectileman@yahoo.com
|
|
http://gimpact.sf.net
|
|
*/
|
|
|
|
#include "btGeneric6DofConstraint.h"
|
|
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
|
#include "LinearMath/btTransformUtil.h"
|
|
#include "LinearMath/btTransformUtil.h"
|
|
#include <new>
|
|
|
|
#define D6_USE_OBSOLETE_METHOD false
|
|
#define D6_USE_FRAME_OFFSET true
|
|
|
|
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
|
|
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB), m_frameInA(frameInA), m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA), m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), m_flags(0), m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD)
|
|
{
|
|
calculateTransforms();
|
|
}
|
|
|
|
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
|
|
: btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
|
|
m_frameInB(frameInB),
|
|
m_useLinearReferenceFrameA(useLinearReferenceFrameB),
|
|
m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
|
|
m_flags(0),
|
|
m_useSolveConstraintObsolete(false)
|
|
{
|
|
///not providing rigidbody A means implicitly using worldspace for body A
|
|
m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
|
|
calculateTransforms();
|
|
}
|
|
|
|
#define GENERIC_D6_DISABLE_WARMSTARTING 1
|
|
|
|
btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
|
|
btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
|
|
{
|
|
int i = index % 3;
|
|
int j = index / 3;
|
|
return mat[i][j];
|
|
}
|
|
|
|
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
|
|
bool matrixToEulerXYZ(const btMatrix3x3& mat, btVector3& xyz);
|
|
bool matrixToEulerXYZ(const btMatrix3x3& mat, btVector3& xyz)
|
|
{
|
|
// // rot = cy*cz -cy*sz sy
|
|
// // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
|
// // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
|
//
|
|
|
|
btScalar fi = btGetMatrixElem(mat, 2);
|
|
if (fi < btScalar(1.0f))
|
|
{
|
|
if (fi > btScalar(-1.0f))
|
|
{
|
|
xyz[0] = btAtan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 8));
|
|
xyz[1] = btAsin(btGetMatrixElem(mat, 2));
|
|
xyz[2] = btAtan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
|
|
xyz[0] = -btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
|
|
xyz[1] = -SIMD_HALF_PI;
|
|
xyz[2] = btScalar(0.0);
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
|
|
xyz[0] = btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
|
|
xyz[1] = SIMD_HALF_PI;
|
|
xyz[2] = 0.0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//////////////////////////// btRotationalLimitMotor ////////////////////////////////////
|
|
|
|
int btRotationalLimitMotor::testLimitValue(btScalar test_value)
|
|
{
|
|
if (m_loLimit > m_hiLimit)
|
|
{
|
|
m_currentLimit = 0; //Free from violation
|
|
return 0;
|
|
}
|
|
if (test_value < m_loLimit)
|
|
{
|
|
m_currentLimit = 1; //low limit violation
|
|
m_currentLimitError = test_value - m_loLimit;
|
|
if (m_currentLimitError > SIMD_PI)
|
|
m_currentLimitError -= SIMD_2_PI;
|
|
else if (m_currentLimitError < -SIMD_PI)
|
|
m_currentLimitError += SIMD_2_PI;
|
|
return 1;
|
|
}
|
|
else if (test_value > m_hiLimit)
|
|
{
|
|
m_currentLimit = 2; //High limit violation
|
|
m_currentLimitError = test_value - m_hiLimit;
|
|
if (m_currentLimitError > SIMD_PI)
|
|
m_currentLimitError -= SIMD_2_PI;
|
|
else if (m_currentLimitError < -SIMD_PI)
|
|
m_currentLimitError += SIMD_2_PI;
|
|
return 2;
|
|
};
|
|
|
|
m_currentLimit = 0; //Free from violation
|
|
return 0;
|
|
}
|
|
|
|
btScalar btRotationalLimitMotor::solveAngularLimits(
|
|
btScalar timeStep, btVector3& axis, btScalar jacDiagABInv,
|
|
btRigidBody* body0, btRigidBody* body1)
|
|
{
|
|
if (needApplyTorques() == false) return 0.0f;
|
|
|
|
btScalar target_velocity = m_targetVelocity;
|
|
btScalar maxMotorForce = m_maxMotorForce;
|
|
|
|
//current error correction
|
|
if (m_currentLimit != 0)
|
|
{
|
|
target_velocity = -m_stopERP * m_currentLimitError / (timeStep);
|
|
maxMotorForce = m_maxLimitForce;
|
|
}
|
|
|
|
maxMotorForce *= timeStep;
|
|
|
|
// current velocity difference
|
|
|
|
btVector3 angVelA = body0->getAngularVelocity();
|
|
btVector3 angVelB = body1->getAngularVelocity();
|
|
|
|
btVector3 vel_diff;
|
|
vel_diff = angVelA - angVelB;
|
|
|
|
btScalar rel_vel = axis.dot(vel_diff);
|
|
|
|
// correction velocity
|
|
btScalar motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel);
|
|
|
|
if (motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON)
|
|
{
|
|
return 0.0f; //no need for applying force
|
|
}
|
|
|
|
// correction impulse
|
|
btScalar unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv;
|
|
|
|
// clip correction impulse
|
|
btScalar clippedMotorImpulse;
|
|
|
|
///@todo: should clip against accumulated impulse
|
|
if (unclippedMotorImpulse > 0.0f)
|
|
{
|
|
clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse;
|
|
}
|
|
else
|
|
{
|
|
clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse;
|
|
}
|
|
|
|
// sort with accumulated impulses
|
|
btScalar lo = btScalar(-BT_LARGE_FLOAT);
|
|
btScalar hi = btScalar(BT_LARGE_FLOAT);
|
|
|
|
btScalar oldaccumImpulse = m_accumulatedImpulse;
|
|
btScalar sum = oldaccumImpulse + clippedMotorImpulse;
|
|
m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
|
|
|
|
clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
|
|
|
|
btVector3 motorImp = clippedMotorImpulse * axis;
|
|
|
|
body0->applyTorqueImpulse(motorImp);
|
|
body1->applyTorqueImpulse(-motorImp);
|
|
|
|
return clippedMotorImpulse;
|
|
}
|
|
|
|
//////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
|
|
|
|
//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
|
|
|
|
int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value)
|
|
{
|
|
btScalar loLimit = m_lowerLimit[limitIndex];
|
|
btScalar hiLimit = m_upperLimit[limitIndex];
|
|
if (loLimit > hiLimit)
|
|
{
|
|
m_currentLimit[limitIndex] = 0; //Free from violation
|
|
m_currentLimitError[limitIndex] = btScalar(0.f);
|
|
return 0;
|
|
}
|
|
|
|
if (test_value < loLimit)
|
|
{
|
|
m_currentLimit[limitIndex] = 2; //low limit violation
|
|
m_currentLimitError[limitIndex] = test_value - loLimit;
|
|
return 2;
|
|
}
|
|
else if (test_value > hiLimit)
|
|
{
|
|
m_currentLimit[limitIndex] = 1; //High limit violation
|
|
m_currentLimitError[limitIndex] = test_value - hiLimit;
|
|
return 1;
|
|
};
|
|
|
|
m_currentLimit[limitIndex] = 0; //Free from violation
|
|
m_currentLimitError[limitIndex] = btScalar(0.f);
|
|
return 0;
|
|
}
|
|
|
|
btScalar btTranslationalLimitMotor::solveLinearAxis(
|
|
btScalar timeStep,
|
|
btScalar jacDiagABInv,
|
|
btRigidBody& body1, const btVector3& pointInA,
|
|
btRigidBody& body2, const btVector3& pointInB,
|
|
int limit_index,
|
|
const btVector3& axis_normal_on_a,
|
|
const btVector3& anchorPos)
|
|
{
|
|
///find relative velocity
|
|
// btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
|
|
// btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
|
|
btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition();
|
|
btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition();
|
|
|
|
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
|
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
|
btVector3 vel = vel1 - vel2;
|
|
|
|
btScalar rel_vel = axis_normal_on_a.dot(vel);
|
|
|
|
/// apply displacement correction
|
|
|
|
//positional error (zeroth order error)
|
|
btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
|
|
btScalar lo = btScalar(-BT_LARGE_FLOAT);
|
|
btScalar hi = btScalar(BT_LARGE_FLOAT);
|
|
|
|
btScalar minLimit = m_lowerLimit[limit_index];
|
|
btScalar maxLimit = m_upperLimit[limit_index];
|
|
|
|
//handle the limits
|
|
if (minLimit < maxLimit)
|
|
{
|
|
{
|
|
if (depth > maxLimit)
|
|
{
|
|
depth -= maxLimit;
|
|
lo = btScalar(0.);
|
|
}
|
|
else
|
|
{
|
|
if (depth < minLimit)
|
|
{
|
|
depth -= minLimit;
|
|
hi = btScalar(0.);
|
|
}
|
|
else
|
|
{
|
|
return 0.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
btScalar normalImpulse = m_limitSoftness * (m_restitution * depth / timeStep - m_damping * rel_vel) * jacDiagABInv;
|
|
|
|
btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
|
|
btScalar sum = oldNormalImpulse + normalImpulse;
|
|
m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
|
|
normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
|
|
|
|
btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
|
|
body1.applyImpulse(impulse_vector, rel_pos1);
|
|
body2.applyImpulse(-impulse_vector, rel_pos2);
|
|
|
|
return normalImpulse;
|
|
}
|
|
|
|
//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
|
|
|
|
void btGeneric6DofConstraint::calculateAngleInfo()
|
|
{
|
|
btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse() * m_calculatedTransformB.getBasis();
|
|
matrixToEulerXYZ(relative_frame, m_calculatedAxisAngleDiff);
|
|
// in euler angle mode we do not actually constrain the angular velocity
|
|
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
|
|
//
|
|
// to get constrain w2-w1 along ...not
|
|
// ------ --------------------- ------
|
|
// d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
|
|
// d(angle[1])/dt = 0 ax[1]
|
|
// d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
|
|
//
|
|
// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
|
|
// to prove the result for angle[0], write the expression for angle[0] from
|
|
// GetInfo1 then take the derivative. to prove this for angle[2] it is
|
|
// easier to take the euler rate expression for d(angle[2])/dt with respect
|
|
// to the components of w and set that to 0.
|
|
btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
|
|
btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
|
|
|
|
m_calculatedAxis[1] = axis2.cross(axis0);
|
|
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
|
|
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
|
|
|
|
m_calculatedAxis[0].normalize();
|
|
m_calculatedAxis[1].normalize();
|
|
m_calculatedAxis[2].normalize();
|
|
}
|
|
|
|
void btGeneric6DofConstraint::calculateTransforms()
|
|
{
|
|
calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
|
|
}
|
|
|
|
void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA, const btTransform& transB)
|
|
{
|
|
m_calculatedTransformA = transA * m_frameInA;
|
|
m_calculatedTransformB = transB * m_frameInB;
|
|
calculateLinearInfo();
|
|
calculateAngleInfo();
|
|
if (m_useOffsetForConstraintFrame)
|
|
{ // get weight factors depending on masses
|
|
btScalar miA = getRigidBodyA().getInvMass();
|
|
btScalar miB = getRigidBodyB().getInvMass();
|
|
m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
|
|
btScalar miS = miA + miB;
|
|
if (miS > btScalar(0.f))
|
|
{
|
|
m_factA = miB / miS;
|
|
}
|
|
else
|
|
{
|
|
m_factA = btScalar(0.5f);
|
|
}
|
|
m_factB = btScalar(1.0f) - m_factA;
|
|
}
|
|
}
|
|
|
|
void btGeneric6DofConstraint::buildLinearJacobian(
|
|
btJacobianEntry& jacLinear, const btVector3& normalWorld,
|
|
const btVector3& pivotAInW, const btVector3& pivotBInW)
|
|
{
|
|
new (&jacLinear) btJacobianEntry(
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
pivotAInW - m_rbA.getCenterOfMassPosition(),
|
|
pivotBInW - m_rbB.getCenterOfMassPosition(),
|
|
normalWorld,
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
m_rbA.getInvMass(),
|
|
m_rbB.getInvInertiaDiagLocal(),
|
|
m_rbB.getInvMass());
|
|
}
|
|
|
|
void btGeneric6DofConstraint::buildAngularJacobian(
|
|
btJacobianEntry& jacAngular, const btVector3& jointAxisW)
|
|
{
|
|
new (&jacAngular) btJacobianEntry(jointAxisW,
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
m_rbB.getInvInertiaDiagLocal());
|
|
}
|
|
|
|
bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
|
|
{
|
|
btScalar angle = m_calculatedAxisAngleDiff[axis_index];
|
|
angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
|
|
m_angularLimits[axis_index].m_currentPosition = angle;
|
|
//test limits
|
|
m_angularLimits[axis_index].testLimitValue(angle);
|
|
return m_angularLimits[axis_index].needApplyTorques();
|
|
}
|
|
|
|
void btGeneric6DofConstraint::buildJacobian()
|
|
{
|
|
#ifndef __SPU__
|
|
if (m_useSolveConstraintObsolete)
|
|
{
|
|
// Clear accumulated impulses for the next simulation step
|
|
m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
|
|
int i;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
m_angularLimits[i].m_accumulatedImpulse = btScalar(0.);
|
|
}
|
|
//calculates transform
|
|
calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
|
|
|
|
// const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
|
|
// const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
|
|
calcAnchorPos();
|
|
btVector3 pivotAInW = m_AnchorPos;
|
|
btVector3 pivotBInW = m_AnchorPos;
|
|
|
|
// not used here
|
|
// btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
|
// btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
|
|
|
btVector3 normalWorld;
|
|
//linear part
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (m_linearLimits.isLimited(i))
|
|
{
|
|
if (m_useLinearReferenceFrameA)
|
|
normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
|
|
else
|
|
normalWorld = m_calculatedTransformB.getBasis().getColumn(i);
|
|
|
|
buildLinearJacobian(
|
|
m_jacLinear[i], normalWorld,
|
|
pivotAInW, pivotBInW);
|
|
}
|
|
}
|
|
|
|
// angular part
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
//calculates error angle
|
|
if (testAngularLimitMotor(i))
|
|
{
|
|
normalWorld = this->getAxis(i);
|
|
// Create angular atom
|
|
buildAngularJacobian(m_jacAng[i], normalWorld);
|
|
}
|
|
}
|
|
}
|
|
#endif //__SPU__
|
|
}
|
|
|
|
void btGeneric6DofConstraint::getInfo1(btConstraintInfo1* info)
|
|
{
|
|
if (m_useSolveConstraintObsolete)
|
|
{
|
|
info->m_numConstraintRows = 0;
|
|
info->nub = 0;
|
|
}
|
|
else
|
|
{
|
|
//prepare constraint
|
|
calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
|
|
info->m_numConstraintRows = 0;
|
|
info->nub = 6;
|
|
int i;
|
|
//test linear limits
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (m_linearLimits.needApplyForce(i))
|
|
{
|
|
info->m_numConstraintRows++;
|
|
info->nub--;
|
|
}
|
|
}
|
|
//test angular limits
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (testAngularLimitMotor(i))
|
|
{
|
|
info->m_numConstraintRows++;
|
|
info->nub--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void btGeneric6DofConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
|
|
{
|
|
if (m_useSolveConstraintObsolete)
|
|
{
|
|
info->m_numConstraintRows = 0;
|
|
info->nub = 0;
|
|
}
|
|
else
|
|
{
|
|
//pre-allocate all 6
|
|
info->m_numConstraintRows = 6;
|
|
info->nub = 0;
|
|
}
|
|
}
|
|
|
|
void btGeneric6DofConstraint::getInfo2(btConstraintInfo2* info)
|
|
{
|
|
btAssert(!m_useSolveConstraintObsolete);
|
|
|
|
const btTransform& transA = m_rbA.getCenterOfMassTransform();
|
|
const btTransform& transB = m_rbB.getCenterOfMassTransform();
|
|
const btVector3& linVelA = m_rbA.getLinearVelocity();
|
|
const btVector3& linVelB = m_rbB.getLinearVelocity();
|
|
const btVector3& angVelA = m_rbA.getAngularVelocity();
|
|
const btVector3& angVelB = m_rbB.getAngularVelocity();
|
|
|
|
if (m_useOffsetForConstraintFrame)
|
|
{ // for stability better to solve angular limits first
|
|
int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
}
|
|
else
|
|
{ // leave old version for compatibility
|
|
int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
}
|
|
}
|
|
|
|
void btGeneric6DofConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
|
|
{
|
|
btAssert(!m_useSolveConstraintObsolete);
|
|
//prepare constraint
|
|
calculateTransforms(transA, transB);
|
|
|
|
int i;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
testAngularLimitMotor(i);
|
|
}
|
|
|
|
if (m_useOffsetForConstraintFrame)
|
|
{ // for stability better to solve angular limits first
|
|
int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
}
|
|
else
|
|
{ // leave old version for compatibility
|
|
int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
|
|
}
|
|
}
|
|
|
|
int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
|
|
{
|
|
// int row = 0;
|
|
//solve linear limits
|
|
btRotationalLimitMotor limot;
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
if (m_linearLimits.needApplyForce(i))
|
|
{ // re-use rotational motor code
|
|
limot.m_bounce = btScalar(0.f);
|
|
limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
|
|
limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
|
|
limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
|
|
limot.m_damping = m_linearLimits.m_damping;
|
|
limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
|
|
limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
|
|
limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
|
|
limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
|
|
limot.m_maxLimitForce = btScalar(0.f);
|
|
limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
|
|
limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
|
|
btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
|
|
int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
limot.m_normalCFM = (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
|
|
limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
|
|
limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
|
|
if (m_useOffsetForConstraintFrame)
|
|
{
|
|
int indx1 = (i + 1) % 3;
|
|
int indx2 = (i + 2) % 3;
|
|
int rotAllowed = 1; // rotations around orthos to current axis
|
|
if (m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
|
|
{
|
|
rotAllowed = 0;
|
|
}
|
|
row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
|
|
}
|
|
else
|
|
{
|
|
row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0);
|
|
}
|
|
}
|
|
}
|
|
return row;
|
|
}
|
|
|
|
int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2* info, int row_offset, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
|
|
{
|
|
btGeneric6DofConstraint* d6constraint = this;
|
|
int row = row_offset;
|
|
//solve angular limits
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
if (d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
|
|
{
|
|
btVector3 axis = d6constraint->getAxis(i);
|
|
int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
if (!(flags & BT_6DOF_FLAGS_CFM_NORM))
|
|
{
|
|
m_angularLimits[i].m_normalCFM = info->cfm[0];
|
|
}
|
|
if (!(flags & BT_6DOF_FLAGS_CFM_STOP))
|
|
{
|
|
m_angularLimits[i].m_stopCFM = info->cfm[0];
|
|
}
|
|
if (!(flags & BT_6DOF_FLAGS_ERP_STOP))
|
|
{
|
|
m_angularLimits[i].m_stopERP = info->erp;
|
|
}
|
|
row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
|
|
transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
|
|
}
|
|
}
|
|
|
|
return row;
|
|
}
|
|
|
|
void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
|
|
{
|
|
(void)timeStep;
|
|
}
|
|
|
|
void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB)
|
|
{
|
|
m_frameInA = frameA;
|
|
m_frameInB = frameB;
|
|
buildJacobian();
|
|
calculateTransforms();
|
|
}
|
|
|
|
btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
|
|
{
|
|
return m_calculatedAxis[axis_index];
|
|
}
|
|
|
|
btScalar btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const
|
|
{
|
|
return m_calculatedLinearDiff[axisIndex];
|
|
}
|
|
|
|
btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const
|
|
{
|
|
return m_calculatedAxisAngleDiff[axisIndex];
|
|
}
|
|
|
|
void btGeneric6DofConstraint::calcAnchorPos(void)
|
|
{
|
|
btScalar imA = m_rbA.getInvMass();
|
|
btScalar imB = m_rbB.getInvMass();
|
|
btScalar weight;
|
|
if (imB == btScalar(0.0))
|
|
{
|
|
weight = btScalar(1.0);
|
|
}
|
|
else
|
|
{
|
|
weight = imA / (imA + imB);
|
|
}
|
|
const btVector3& pA = m_calculatedTransformA.getOrigin();
|
|
const btVector3& pB = m_calculatedTransformB.getOrigin();
|
|
m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight);
|
|
return;
|
|
}
|
|
|
|
void btGeneric6DofConstraint::calculateLinearInfo()
|
|
{
|
|
m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
|
|
m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
|
|
m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
|
|
}
|
|
}
|
|
|
|
int btGeneric6DofConstraint::get_limit_motor_info2(
|
|
btRotationalLimitMotor* limot,
|
|
const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB,
|
|
btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed)
|
|
{
|
|
int srow = row * info->rowskip;
|
|
bool powered = limot->m_enableMotor;
|
|
int limit = limot->m_currentLimit;
|
|
if (powered || limit)
|
|
{ // if the joint is powered, or has joint limits, add in the extra row
|
|
btScalar* J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
|
|
btScalar* J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
|
|
J1[srow + 0] = ax1[0];
|
|
J1[srow + 1] = ax1[1];
|
|
J1[srow + 2] = ax1[2];
|
|
|
|
J2[srow + 0] = -ax1[0];
|
|
J2[srow + 1] = -ax1[1];
|
|
J2[srow + 2] = -ax1[2];
|
|
|
|
if ((!rotational))
|
|
{
|
|
if (m_useOffsetForConstraintFrame)
|
|
{
|
|
btVector3 tmpA, tmpB, relA, relB;
|
|
// get vector from bodyB to frameB in WCS
|
|
relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
|
|
// get its projection to constraint axis
|
|
btVector3 projB = ax1 * relB.dot(ax1);
|
|
// get vector directed from bodyB to constraint axis (and orthogonal to it)
|
|
btVector3 orthoB = relB - projB;
|
|
// same for bodyA
|
|
relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
|
|
btVector3 projA = ax1 * relA.dot(ax1);
|
|
btVector3 orthoA = relA - projA;
|
|
// get desired offset between frames A and B along constraint axis
|
|
btScalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError;
|
|
// desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
|
|
btVector3 totalDist = projA + ax1 * desiredOffs - projB;
|
|
// get offset vectors relA and relB
|
|
relA = orthoA + totalDist * m_factA;
|
|
relB = orthoB - totalDist * m_factB;
|
|
tmpA = relA.cross(ax1);
|
|
tmpB = relB.cross(ax1);
|
|
if (m_hasStaticBody && (!rotAllowed))
|
|
{
|
|
tmpA *= m_factA;
|
|
tmpB *= m_factB;
|
|
}
|
|
int i;
|
|
for (i = 0; i < 3; i++) info->m_J1angularAxis[srow + i] = tmpA[i];
|
|
for (i = 0; i < 3; i++) info->m_J2angularAxis[srow + i] = -tmpB[i];
|
|
}
|
|
else
|
|
{
|
|
btVector3 ltd; // Linear Torque Decoupling vector
|
|
btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
|
|
ltd = c.cross(ax1);
|
|
info->m_J1angularAxis[srow + 0] = ltd[0];
|
|
info->m_J1angularAxis[srow + 1] = ltd[1];
|
|
info->m_J1angularAxis[srow + 2] = ltd[2];
|
|
|
|
c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
|
|
ltd = -c.cross(ax1);
|
|
info->m_J2angularAxis[srow + 0] = ltd[0];
|
|
info->m_J2angularAxis[srow + 1] = ltd[1];
|
|
info->m_J2angularAxis[srow + 2] = ltd[2];
|
|
}
|
|
}
|
|
// if we're limited low and high simultaneously, the joint motor is
|
|
// ineffective
|
|
if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
|
|
info->m_constraintError[srow] = btScalar(0.f);
|
|
if (powered)
|
|
{
|
|
info->cfm[srow] = limot->m_normalCFM;
|
|
if (!limit)
|
|
{
|
|
btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
|
|
|
|
btScalar mot_fact = getMotorFactor(limot->m_currentPosition,
|
|
limot->m_loLimit,
|
|
limot->m_hiLimit,
|
|
tag_vel,
|
|
info->fps * limot->m_stopERP);
|
|
info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
|
|
info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
|
|
info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
|
|
}
|
|
}
|
|
if (limit)
|
|
{
|
|
btScalar k = info->fps * limot->m_stopERP;
|
|
if (!rotational)
|
|
{
|
|
info->m_constraintError[srow] += k * limot->m_currentLimitError;
|
|
}
|
|
else
|
|
{
|
|
info->m_constraintError[srow] += -k * limot->m_currentLimitError;
|
|
}
|
|
info->cfm[srow] = limot->m_stopCFM;
|
|
if (limot->m_loLimit == limot->m_hiLimit)
|
|
{ // limited low and high simultaneously
|
|
info->m_lowerLimit[srow] = -SIMD_INFINITY;
|
|
info->m_upperLimit[srow] = SIMD_INFINITY;
|
|
}
|
|
else
|
|
{
|
|
if (limit == 1)
|
|
{
|
|
info->m_lowerLimit[srow] = 0;
|
|
info->m_upperLimit[srow] = SIMD_INFINITY;
|
|
}
|
|
else
|
|
{
|
|
info->m_lowerLimit[srow] = -SIMD_INFINITY;
|
|
info->m_upperLimit[srow] = 0;
|
|
}
|
|
// deal with bounce
|
|
if (limot->m_bounce > 0)
|
|
{
|
|
// calculate joint velocity
|
|
btScalar vel;
|
|
if (rotational)
|
|
{
|
|
vel = angVelA.dot(ax1);
|
|
//make sure that if no body -> angVelB == zero vec
|
|
// if (body1)
|
|
vel -= angVelB.dot(ax1);
|
|
}
|
|
else
|
|
{
|
|
vel = linVelA.dot(ax1);
|
|
//make sure that if no body -> angVelB == zero vec
|
|
// if (body1)
|
|
vel -= linVelB.dot(ax1);
|
|
}
|
|
// only apply bounce if the velocity is incoming, and if the
|
|
// resulting c[] exceeds what we already have.
|
|
if (limit == 1)
|
|
{
|
|
if (vel < 0)
|
|
{
|
|
btScalar newc = -limot->m_bounce * vel;
|
|
if (newc > info->m_constraintError[srow])
|
|
info->m_constraintError[srow] = newc;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (vel > 0)
|
|
{
|
|
btScalar newc = -limot->m_bounce * vel;
|
|
if (newc < info->m_constraintError[srow])
|
|
info->m_constraintError[srow] = newc;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
|
|
///If no axis is provided, it uses the default axis for this constraint.
|
|
void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis)
|
|
{
|
|
if ((axis >= 0) && (axis < 3))
|
|
{
|
|
switch (num)
|
|
{
|
|
case BT_CONSTRAINT_STOP_ERP:
|
|
m_linearLimits.m_stopERP[axis] = value;
|
|
m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
break;
|
|
case BT_CONSTRAINT_STOP_CFM:
|
|
m_linearLimits.m_stopCFM[axis] = value;
|
|
m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
break;
|
|
case BT_CONSTRAINT_CFM:
|
|
m_linearLimits.m_normalCFM[axis] = value;
|
|
m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
break;
|
|
default:
|
|
btAssertConstrParams(0);
|
|
}
|
|
}
|
|
else if ((axis >= 3) && (axis < 6))
|
|
{
|
|
switch (num)
|
|
{
|
|
case BT_CONSTRAINT_STOP_ERP:
|
|
m_angularLimits[axis - 3].m_stopERP = value;
|
|
m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
break;
|
|
case BT_CONSTRAINT_STOP_CFM:
|
|
m_angularLimits[axis - 3].m_stopCFM = value;
|
|
m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
break;
|
|
case BT_CONSTRAINT_CFM:
|
|
m_angularLimits[axis - 3].m_normalCFM = value;
|
|
m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
|
|
break;
|
|
default:
|
|
btAssertConstrParams(0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
btAssertConstrParams(0);
|
|
}
|
|
}
|
|
|
|
///return the local value of parameter
|
|
btScalar btGeneric6DofConstraint::getParam(int num, int axis) const
|
|
{
|
|
btScalar retVal = 0;
|
|
if ((axis >= 0) && (axis < 3))
|
|
{
|
|
switch (num)
|
|
{
|
|
case BT_CONSTRAINT_STOP_ERP:
|
|
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
|
|
retVal = m_linearLimits.m_stopERP[axis];
|
|
break;
|
|
case BT_CONSTRAINT_STOP_CFM:
|
|
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
|
|
retVal = m_linearLimits.m_stopCFM[axis];
|
|
break;
|
|
case BT_CONSTRAINT_CFM:
|
|
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
|
|
retVal = m_linearLimits.m_normalCFM[axis];
|
|
break;
|
|
default:
|
|
btAssertConstrParams(0);
|
|
}
|
|
}
|
|
else if ((axis >= 3) && (axis < 6))
|
|
{
|
|
switch (num)
|
|
{
|
|
case BT_CONSTRAINT_STOP_ERP:
|
|
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
|
|
retVal = m_angularLimits[axis - 3].m_stopERP;
|
|
break;
|
|
case BT_CONSTRAINT_STOP_CFM:
|
|
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
|
|
retVal = m_angularLimits[axis - 3].m_stopCFM;
|
|
break;
|
|
case BT_CONSTRAINT_CFM:
|
|
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
|
|
retVal = m_angularLimits[axis - 3].m_normalCFM;
|
|
break;
|
|
default:
|
|
btAssertConstrParams(0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
btAssertConstrParams(0);
|
|
}
|
|
return retVal;
|
|
}
|
|
|
|
void btGeneric6DofConstraint::setAxis(const btVector3& axis1, const btVector3& axis2)
|
|
{
|
|
btVector3 zAxis = axis1.normalized();
|
|
btVector3 yAxis = axis2.normalized();
|
|
btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
|
|
|
|
btTransform frameInW;
|
|
frameInW.setIdentity();
|
|
frameInW.getBasis().setValue(xAxis[0], yAxis[0], zAxis[0],
|
|
xAxis[1], yAxis[1], zAxis[1],
|
|
xAxis[2], yAxis[2], zAxis[2]);
|
|
|
|
// now get constraint frame in local coordinate systems
|
|
m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
|
|
m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
|
|
|
|
calculateTransforms();
|
|
}
|