mirror of https://github.com/axmolengine/axmol.git
429 lines
13 KiB
C++
429 lines
13 KiB
C++
// SPDX-License-Identifier: Apache-2.0
|
|
// ----------------------------------------------------------------------------
|
|
// Copyright 2011-2021 Arm Limited
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
|
// use this file except in compliance with the License. You may obtain a copy
|
|
// of the License at:
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
// License for the specific language governing permissions and limitations
|
|
// under the License.
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
* @brief Functions to decompress a symbolic block.
|
|
*/
|
|
|
|
#include "astcenc_internal.h"
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
/**
|
|
* @brief Compute a vector of texel weights by interpolating the decimated weight grid.
|
|
*
|
|
* @param base_texel_index The first texel to get; N (SIMD width) consecutive texels are loaded.
|
|
* @param di The weight grid decimation to use.
|
|
* @param weights The raw weights.
|
|
*
|
|
* @return The undecimated weight for N (SIMD width) texels.
|
|
*/
|
|
static vint compute_value_of_texel_weight_int_vla(
|
|
int base_texel_index,
|
|
const decimation_info& di,
|
|
const int* weights
|
|
) {
|
|
vint summed_value(8);
|
|
vint weight_count(di.texel_weight_count + base_texel_index);
|
|
int max_weight_count = hmax(weight_count).lane<0>();
|
|
|
|
promise(max_weight_count > 0);
|
|
for (int i = 0; i < max_weight_count; i++)
|
|
{
|
|
vint texel_weights(di.texel_weights_4t[i] + base_texel_index);
|
|
vint texel_weights_int(di.texel_weights_int_4t[i] + base_texel_index);
|
|
|
|
summed_value += gatheri(weights, texel_weights) * texel_weights_int;
|
|
}
|
|
|
|
return lsr<4>(summed_value);
|
|
}
|
|
|
|
/**
|
|
* @brief Compute the integer linear interpolation of two color endpoints.
|
|
*
|
|
* @param decode_mode The ASTC profile (linear or sRGB)
|
|
* @param color0 The endpoint0 color.
|
|
* @param color1 The endpoint1 color.
|
|
* @param weight_plane1 The interpolation weight (between 0 and 64) for plane 1.
|
|
* @param weight_plane2 The interpolation weight (between 0 and 64) for plane 2.
|
|
* @param plane2_mask The mask pattern for the plane assignment (set = plane 2).
|
|
*
|
|
* @return The interpolated color.
|
|
*/
|
|
static vint4 lerp_color_int(
|
|
astcenc_profile decode_mode,
|
|
vint4 color0,
|
|
vint4 color1,
|
|
int weight_plane1,
|
|
int weight_plane2,
|
|
vmask4 plane2_mask
|
|
) {
|
|
vint4 weight1 = select(vint4(weight_plane1), vint4(weight_plane2), plane2_mask);
|
|
vint4 weight0 = vint4(64) - weight1;
|
|
|
|
if (decode_mode == ASTCENC_PRF_LDR_SRGB)
|
|
{
|
|
color0 = asr<8>(color0);
|
|
color1 = asr<8>(color1);
|
|
}
|
|
|
|
vint4 color = (color0 * weight0) + (color1 * weight1) + vint4(32);
|
|
color = asr<6>(color);
|
|
|
|
if (decode_mode == ASTCENC_PRF_LDR_SRGB)
|
|
{
|
|
color = color * vint4(257);
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
/**
|
|
* @brief Convert integer color value into a float value for the decoder.
|
|
*
|
|
* @param data The integer color value post-interpolation.
|
|
* @param lns_mask If set treat lane as HDR (LNS) else LDR (unorm16).
|
|
*
|
|
* @return The float color value.
|
|
*/
|
|
static inline vfloat4 decode_texel(
|
|
vint4 data,
|
|
vmask4 lns_mask
|
|
) {
|
|
vint4 color_lns = vint4::zero();
|
|
vint4 color_unorm = vint4::zero();
|
|
|
|
// TODO: Why bounce this via fp16 first?
|
|
if (any(lns_mask))
|
|
{
|
|
color_lns = lns_to_sf16(data);
|
|
}
|
|
|
|
if (!all(lns_mask))
|
|
{
|
|
color_unorm = unorm16_to_sf16(data);
|
|
}
|
|
|
|
// Pick components and then convert to FP16
|
|
vint4 datai = select(color_unorm, color_lns, lns_mask);
|
|
return float16_to_float(datai);
|
|
}
|
|
|
|
/* See header for documentation. */
|
|
void unpack_weights(
|
|
const block_size_descriptor& bsd,
|
|
const symbolic_compressed_block& scb,
|
|
const decimation_info& di,
|
|
bool is_dual_plane,
|
|
quant_method quant_level,
|
|
int weights_plane1[BLOCK_MAX_TEXELS],
|
|
int weights_plane2[BLOCK_MAX_TEXELS]
|
|
) {
|
|
// First, unquantize the weights ...
|
|
int uq_plane1_weights[BLOCK_MAX_WEIGHTS];
|
|
int uq_plane2_weights[BLOCK_MAX_WEIGHTS];
|
|
unsigned int weight_count = di.weight_count;
|
|
|
|
const quantization_and_transfer_table *qat = &(quant_and_xfer_tables[quant_level]);
|
|
|
|
// Second, undecimate the weights ...
|
|
// Safe to overshoot as all arrays are allocated to full size
|
|
if (!is_dual_plane)
|
|
{
|
|
for (unsigned int i = 0; i < weight_count; i++)
|
|
{
|
|
uq_plane1_weights[i] = qat->unquantized_value[scb.weights[i]];
|
|
}
|
|
|
|
for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH)
|
|
{
|
|
store(compute_value_of_texel_weight_int_vla(i, di, uq_plane1_weights), weights_plane1 + i);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (unsigned int i = 0; i < weight_count; i++)
|
|
{
|
|
uq_plane1_weights[i] = qat->unquantized_value[scb.weights[i]];
|
|
uq_plane2_weights[i] = qat->unquantized_value[scb.weights[i + WEIGHTS_PLANE2_OFFSET]];
|
|
}
|
|
|
|
for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH)
|
|
{
|
|
store(compute_value_of_texel_weight_int_vla(i, di, uq_plane1_weights), weights_plane1 + i);
|
|
store(compute_value_of_texel_weight_int_vla(i, di, uq_plane2_weights), weights_plane2 + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See header for documentation. */
|
|
void decompress_symbolic_block(
|
|
astcenc_profile decode_mode,
|
|
const block_size_descriptor& bsd,
|
|
int xpos,
|
|
int ypos,
|
|
int zpos,
|
|
const symbolic_compressed_block& scb,
|
|
image_block& blk
|
|
) {
|
|
blk.xpos = xpos;
|
|
blk.ypos = ypos;
|
|
blk.zpos = zpos;
|
|
|
|
blk.data_min = vfloat4::zero();
|
|
blk.data_max = vfloat4::zero();
|
|
blk.grayscale = false;
|
|
|
|
// If we detected an error-block, blow up immediately.
|
|
if (scb.block_type == SYM_BTYPE_ERROR)
|
|
{
|
|
for (unsigned int i = 0; i < bsd.texel_count; i++)
|
|
{
|
|
blk.data_r[i] = std::numeric_limits<float>::quiet_NaN();
|
|
blk.data_g[i] = std::numeric_limits<float>::quiet_NaN();
|
|
blk.data_b[i] = std::numeric_limits<float>::quiet_NaN();
|
|
blk.data_a[i] = std::numeric_limits<float>::quiet_NaN();
|
|
blk.rgb_lns[i] = 0;
|
|
blk.alpha_lns[i] = 0;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if ((scb.block_type == SYM_BTYPE_CONST_F16) ||
|
|
(scb.block_type == SYM_BTYPE_CONST_U16))
|
|
{
|
|
vfloat4 color;
|
|
int use_lns = 0;
|
|
|
|
// UNORM16 constant color block
|
|
if (scb.block_type == SYM_BTYPE_CONST_U16)
|
|
{
|
|
vint4 colori(scb.constant_color);
|
|
|
|
// For sRGB decoding a real decoder would just use the top 8 bits for color conversion.
|
|
// We don't color convert, so rescale the top 8 bits into the full 16 bit dynamic range.
|
|
if (decode_mode == ASTCENC_PRF_LDR_SRGB)
|
|
{
|
|
colori = asr<8>(colori) * 257;
|
|
}
|
|
|
|
vint4 colorf16 = unorm16_to_sf16(colori);
|
|
color = float16_to_float(colorf16);
|
|
}
|
|
// FLOAT16 constant color block
|
|
else
|
|
{
|
|
switch (decode_mode)
|
|
{
|
|
case ASTCENC_PRF_LDR_SRGB:
|
|
case ASTCENC_PRF_LDR:
|
|
color = vfloat4(std::numeric_limits<float>::quiet_NaN());
|
|
break;
|
|
case ASTCENC_PRF_HDR_RGB_LDR_A:
|
|
case ASTCENC_PRF_HDR:
|
|
// Constant-color block; unpack from FP16 to FP32.
|
|
color = float16_to_float(vint4(scb.constant_color));
|
|
use_lns = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TODO: Skip this and add constant color transfer to img block?
|
|
for (unsigned int i = 0; i < bsd.texel_count; i++)
|
|
{
|
|
blk.data_r[i] = color.lane<0>();
|
|
blk.data_g[i] = color.lane<1>();
|
|
blk.data_b[i] = color.lane<2>();
|
|
blk.data_a[i] = color.lane<3>();
|
|
blk.rgb_lns[i] = use_lns;
|
|
blk.alpha_lns[i] = use_lns;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Get the appropriate partition-table entry
|
|
int partition_count = scb.partition_count;
|
|
const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index);
|
|
|
|
// Get the appropriate block descriptors
|
|
const auto& bm = bsd.get_block_mode(scb.block_mode);
|
|
const auto& di = bsd.get_decimation_info(bm.decimation_mode);
|
|
|
|
int is_dual_plane = bm.is_dual_plane;
|
|
|
|
// Unquantize and undecimate the weights
|
|
int weights[BLOCK_MAX_TEXELS];
|
|
int plane2_weights[BLOCK_MAX_TEXELS];
|
|
unpack_weights(bsd, scb, di, is_dual_plane, bm.get_weight_quant_mode(), weights, plane2_weights);
|
|
|
|
// Now that we have endpoint colors and weights, we can unpack texel colors
|
|
int plane2_component = is_dual_plane ? scb.plane2_component : -1;
|
|
vmask4 plane2_mask = vint4::lane_id() == vint4(plane2_component);
|
|
|
|
for (int i = 0; i < partition_count; i++)
|
|
{
|
|
// Decode the color endpoints for this partition
|
|
vint4 ep0;
|
|
vint4 ep1;
|
|
bool rgb_lns;
|
|
bool a_lns;
|
|
|
|
unpack_color_endpoints(decode_mode,
|
|
scb.color_formats[i],
|
|
scb.get_color_quant_mode(),
|
|
scb.color_values[i],
|
|
rgb_lns, a_lns,
|
|
ep0, ep1);
|
|
|
|
vmask4 lns_mask(rgb_lns, rgb_lns, rgb_lns, a_lns);
|
|
|
|
int texel_count = pi.partition_texel_count[i];
|
|
for (int j = 0; j < texel_count; j++)
|
|
{
|
|
int tix = pi.texels_of_partition[i][j];
|
|
vint4 color = lerp_color_int(decode_mode,
|
|
ep0,
|
|
ep1,
|
|
weights[tix],
|
|
plane2_weights[tix],
|
|
plane2_mask);
|
|
|
|
vfloat4 colorf = decode_texel(color, lns_mask);
|
|
|
|
blk.data_r[tix] = colorf.lane<0>();
|
|
blk.data_g[tix] = colorf.lane<1>();
|
|
blk.data_b[tix] = colorf.lane<2>();
|
|
blk.data_a[tix] = colorf.lane<3>();
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(ASTCENC_DECOMPRESS_ONLY)
|
|
|
|
/* See header for documentation. */
|
|
float compute_symbolic_block_difference(
|
|
const astcenc_config& config,
|
|
const block_size_descriptor& bsd,
|
|
const symbolic_compressed_block& scb,
|
|
const image_block& blk,
|
|
const error_weight_block& ewb
|
|
) {
|
|
// If we detected an error-block, blow up immediately.
|
|
if (scb.block_type == SYM_BTYPE_ERROR)
|
|
{
|
|
return ERROR_CALC_DEFAULT;
|
|
}
|
|
|
|
assert(scb.block_mode >= 0);
|
|
|
|
// Get the appropriate partition-table entry
|
|
int partition_count = scb.partition_count;
|
|
const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index);
|
|
|
|
// Get the appropriate block descriptor
|
|
const block_mode& bm = bsd.get_block_mode(scb.block_mode);
|
|
const decimation_info& di = *(bsd.decimation_tables[bm.decimation_mode]);
|
|
|
|
bool is_dual_plane = bm.is_dual_plane != 0;
|
|
|
|
// Unquantize and undecimate the weights
|
|
int weights[BLOCK_MAX_TEXELS];
|
|
int plane2_weights[BLOCK_MAX_TEXELS];
|
|
unpack_weights(bsd, scb, di, is_dual_plane, bm.get_weight_quant_mode(), weights, plane2_weights);
|
|
|
|
int plane2_component = is_dual_plane ? scb.plane2_component : -1;
|
|
vmask4 plane2_mask = vint4::lane_id() == vint4(plane2_component);
|
|
|
|
float summa = 0.0f;
|
|
for (int i = 0; i < partition_count; i++)
|
|
{
|
|
// Decode the color endpoints for this partition
|
|
vint4 ep0;
|
|
vint4 ep1;
|
|
bool rgb_lns;
|
|
bool a_lns;
|
|
|
|
unpack_color_endpoints(config.profile,
|
|
scb.color_formats[i],
|
|
scb.get_color_quant_mode(),
|
|
scb.color_values[i],
|
|
rgb_lns, a_lns,
|
|
ep0, ep1);
|
|
|
|
vmask4 lns_mask(rgb_lns, rgb_lns, rgb_lns, a_lns);
|
|
|
|
// Unpack and compute error for each texel in the partition
|
|
int texel_count = pi.partition_texel_count[i];
|
|
for (int j = 0; j < texel_count; j++)
|
|
{
|
|
int tix = pi.texels_of_partition[i][j];
|
|
vint4 colori = lerp_color_int(config.profile,
|
|
ep0, ep1,
|
|
weights[tix],
|
|
plane2_weights[tix], plane2_mask);
|
|
|
|
vfloat4 color = int_to_float(colori);
|
|
vfloat4 oldColor = blk.texel(tix);
|
|
|
|
// Compare error using a perceptual decode metric for RGBM textures
|
|
if (config.flags & ASTCENC_FLG_MAP_RGBM)
|
|
{
|
|
// Fail encodings that result in zero weight M pixels. Note that this can cause
|
|
// "interesting" artifacts if we reject all useful encodings - we typically get max
|
|
// brightness encodings instead which look just as bad. We recommend users apply a
|
|
// bias to their stored M value, limiting the lower value to 16 or 32 to avoid
|
|
// getting small M values post-quantization, but we can't prove it would never
|
|
// happen, especially at low bit rates ...
|
|
if (color.lane<3>() == 0.0f)
|
|
{
|
|
return -ERROR_CALC_DEFAULT;
|
|
}
|
|
|
|
// Compute error based on decoded RGBM color
|
|
color = vfloat4(
|
|
color.lane<0>() * color.lane<3>() * config.rgbm_m_scale,
|
|
color.lane<1>() * color.lane<3>() * config.rgbm_m_scale,
|
|
color.lane<2>() * color.lane<3>() * config.rgbm_m_scale,
|
|
1.0f
|
|
);
|
|
|
|
oldColor = vfloat4(
|
|
oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale,
|
|
oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale,
|
|
oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale,
|
|
1.0f
|
|
);
|
|
}
|
|
|
|
vfloat4 error = oldColor - color;
|
|
error = min(abs(error), 1e15f);
|
|
error = error * error;
|
|
|
|
float metric = dot_s(error, ewb.error_weights[tix]);
|
|
summa += astc::min(metric, ERROR_CALC_DEFAULT);
|
|
}
|
|
}
|
|
|
|
return summa;
|
|
}
|
|
|
|
#endif
|