axmol/cocos/editor-support/spine/RegionAttachment.c

131 lines
5.2 KiB
C

/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <spine/RegionAttachment.h>
#include <spine/extension.h>
typedef enum {
BLX = 0, BLY, ULX, ULY, URX, URY, BRX, BRY
} spVertexIndex;
void _spRegionAttachment_dispose (spAttachment* attachment) {
spRegionAttachment* self = SUB_CAST(spRegionAttachment, attachment);
_spAttachment_deinit(attachment);
FREE(self->path);
FREE(self);
}
spRegionAttachment* spRegionAttachment_create (const char* name) {
spRegionAttachment* self = NEW(spRegionAttachment);
self->scaleX = 1;
self->scaleY = 1;
spColor_setFromFloats(&self->color, 1, 1, 1, 1);
_spAttachment_init(SUPER(self), name, SP_ATTACHMENT_REGION, _spRegionAttachment_dispose);
return self;
}
void spRegionAttachment_setUVs (spRegionAttachment* self, float u, float v, float u2, float v2, int/*bool*/rotate) {
if (rotate) {
self->uvs[URX] = u;
self->uvs[URY] = v2;
self->uvs[BRX] = u;
self->uvs[BRY] = v;
self->uvs[BLX] = u2;
self->uvs[BLY] = v;
self->uvs[ULX] = u2;
self->uvs[ULY] = v2;
} else {
self->uvs[ULX] = u;
self->uvs[ULY] = v2;
self->uvs[URX] = u;
self->uvs[URY] = v;
self->uvs[BRX] = u2;
self->uvs[BRY] = v;
self->uvs[BLX] = u2;
self->uvs[BLY] = v2;
}
}
void spRegionAttachment_updateOffset (spRegionAttachment* self) {
float regionScaleX = self->width / self->regionOriginalWidth * self->scaleX;
float regionScaleY = self->height / self->regionOriginalHeight * self->scaleY;
float localX = -self->width / 2 * self->scaleX + self->regionOffsetX * regionScaleX;
float localY = -self->height / 2 * self->scaleY + self->regionOffsetY * regionScaleY;
float localX2 = localX + self->regionWidth * regionScaleX;
float localY2 = localY + self->regionHeight * regionScaleY;
float radians = self->rotation * DEG_RAD;
float cosine = COS(radians), sine = SIN(radians);
float localXCos = localX * cosine + self->x;
float localXSin = localX * sine;
float localYCos = localY * cosine + self->y;
float localYSin = localY * sine;
float localX2Cos = localX2 * cosine + self->x;
float localX2Sin = localX2 * sine;
float localY2Cos = localY2 * cosine + self->y;
float localY2Sin = localY2 * sine;
self->offset[BLX] = localXCos - localYSin;
self->offset[BLY] = localYCos + localXSin;
self->offset[ULX] = localXCos - localY2Sin;
self->offset[ULY] = localY2Cos + localXSin;
self->offset[URX] = localX2Cos - localY2Sin;
self->offset[URY] = localY2Cos + localX2Sin;
self->offset[BRX] = localX2Cos - localYSin;
self->offset[BRY] = localYCos + localX2Sin;
}
void spRegionAttachment_computeWorldVertices (spRegionAttachment* self, spBone* bone, float* vertices, int offset, int stride) {
const float* offsets = self->offset;
float x = bone->worldX, y = bone->worldY;
float offsetX, offsetY;
offsetX = offsets[BRX];
offsetY = offsets[BRY];
vertices[offset] = offsetX * bone->a + offsetY * bone->b + x; /* br */
vertices[offset + 1] = offsetX * bone->c + offsetY * bone->d + y;
offset += stride;
offsetX = offsets[BLX];
offsetY = offsets[BLY];
vertices[offset] = offsetX * bone->a + offsetY * bone->b + x; /* bl */
vertices[offset + 1] = offsetX * bone->c + offsetY * bone->d + y;
offset += stride;
offsetX = offsets[ULX];
offsetY = offsets[ULY];
vertices[offset] = offsetX * bone->a + offsetY * bone->b + x; /* ul */
vertices[offset + 1] = offsetX * bone->c + offsetY * bone->d + y;
offset += stride;
offsetX = offsets[URX];
offsetY = offsets[URY];
vertices[offset] = offsetX * bone->a + offsetY * bone->b + x; /* ur */
vertices[offset + 1] = offsetX * bone->c + offsetY * bone->d + y;
}