axmol/thirdparty/box2d-optimized/include/box2d/b2_joint.h

229 lines
6.0 KiB
C++

// MIT License
// Copyright (c) 2019 Erin Catto
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef B2_JOINT_H
#define B2_JOINT_H
#include "b2_api.h"
#include "b2_math.h"
class b2Body;
class b2Draw;
class b2Joint;
struct b2SolverData;
class b2BlockAllocator;
enum b2JointType
{
e_unknownJoint,
e_revoluteJoint,
e_prismaticJoint,
e_distanceJoint,
e_pulleyJoint,
e_mouseJoint,
e_gearJoint,
e_wheelJoint,
e_weldJoint,
e_frictionJoint,
e_ropeJoint,
e_motorJoint
};
struct B2_API b2Jacobian
{
b2Vec2 linear;
float angularA;
float angularB;
};
/// A joint edge is used to connect bodies and joints together
/// in a joint graph where each body is a node and each joint
/// is an edge. A joint edge belongs to a doubly linked list
/// maintained in each attached body. Each joint has two joint
/// nodes, one for each attached body.
struct B2_API b2JointEdge
{
b2Body* other; ///< provides quick access to the other body attached.
b2Joint* joint; ///< the joint
b2JointEdge* prev; ///< the previous joint edge in the body's joint list
b2JointEdge* next; ///< the next joint edge in the body's joint list
};
/// Joint definitions are used to construct joints.
struct B2_API b2JointDef
{
b2JointDef()
{
type = e_unknownJoint;
bodyA = nullptr;
bodyB = nullptr;
collideConnected = false;
}
/// The joint type is set automatically for concrete joint types.
b2JointType type;
/// Use this to attach application specific data to your joints.
b2JointUserData userData;
/// The first attached body.
b2Body* bodyA;
/// The second attached body.
b2Body* bodyB;
/// Set this flag to true if the attached bodies should collide.
bool collideConnected;
};
/// Utility to compute linear stiffness values from frequency and damping ratio
B2_API void b2LinearStiffness(float& stiffness, float& damping,
float frequencyHertz, float dampingRatio,
const b2Body* bodyA, const b2Body* bodyB);
/// Utility to compute rotational stiffness values frequency and damping ratio
B2_API void b2AngularStiffness(float& stiffness, float& damping,
float frequencyHertz, float dampingRatio,
const b2Body* bodyA, const b2Body* bodyB);
/// The base joint class. Joints are used to constraint two bodies together in
/// various fashions. Some joints also feature limits and motors.
class B2_API b2Joint
{
public:
/// Get the type of the concrete joint.
b2JointType GetType() const;
/// Get the first body attached to this joint.
b2Body* GetBodyA();
/// Get the second body attached to this joint.
b2Body* GetBodyB();
/// Get the anchor point on bodyA in world coordinates.
virtual b2Vec2 GetAnchorA() const = 0;
/// Get the anchor point on bodyB in world coordinates.
virtual b2Vec2 GetAnchorB() const = 0;
/// Get the reaction force on bodyB at the joint anchor in Newtons.
virtual b2Vec2 GetReactionForce(float inv_dt) const = 0;
/// Get the reaction torque on bodyB in N*m.
virtual float GetReactionTorque(float inv_dt) const = 0;
/// Get the next joint the world joint list.
b2Joint* GetNext();
const b2Joint* GetNext() const;
/// Get the user data pointer.
b2JointUserData& GetUserData();
/// Short-cut function to determine if either body is enabled.
bool IsEnabled() const;
/// Get collide connected.
/// Note: modifying the collide connect flag won't work correctly because
/// the flag is only checked when fixture AABBs begin to overlap.
bool GetCollideConnected() const;
/// Dump this joint to the log file.
virtual void Dump() { b2Dump("// Dump is not supported for this joint type.\n"); }
/// Shift the origin for any points stored in world coordinates.
virtual void ShiftOrigin(const b2Vec2& newOrigin) { B2_NOT_USED(newOrigin); }
/// Debug draw this joint
virtual void Draw(b2Draw* draw) const;
protected:
friend class b2World;
friend class b2Body;
friend class b2Island;
friend class b2GearJoint;
static b2Joint* Create(const b2JointDef* def, b2BlockAllocator* allocator);
static void Destroy(b2Joint* joint, b2BlockAllocator* allocator);
b2Joint(const b2JointDef* def);
virtual ~b2Joint() {}
virtual void InitVelocityConstraints(const b2SolverData& data) = 0;
virtual void SolveVelocityConstraints(const b2SolverData& data) = 0;
// This returns true if the position errors are within tolerance.
virtual bool SolvePositionConstraints(const b2SolverData& data) = 0;
b2JointType m_type;
b2Joint* m_prev;
b2Joint* m_next;
b2JointEdge m_edgeA;
b2JointEdge m_edgeB;
b2Body* m_bodyA;
b2Body* m_bodyB;
int32 m_index;
bool m_islandFlag;
bool m_collideConnected;
b2JointUserData m_userData;
};
inline b2JointType b2Joint::GetType() const
{
return m_type;
}
inline b2Body* b2Joint::GetBodyA()
{
return m_bodyA;
}
inline b2Body* b2Joint::GetBodyB()
{
return m_bodyB;
}
inline b2Joint* b2Joint::GetNext()
{
return m_next;
}
inline const b2Joint* b2Joint::GetNext() const
{
return m_next;
}
inline b2JointUserData& b2Joint::GetUserData()
{
return m_userData;
}
inline bool b2Joint::GetCollideConnected() const
{
return m_collideConnected;
}
#endif