axmol/external/Box2D/Dynamics/Joints/b2MotorJoint.cpp

305 lines
7.9 KiB
C++

/*
* Copyright (c) 2006-2012 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Dynamics/Joints/b2MotorJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>
// Point-to-point constraint
// Cdot = v2 - v1
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
// Angle constraint
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
void b2MotorJointDef::Initialize(b2Body* bA, b2Body* bB)
{
bodyA = bA;
bodyB = bB;
b2Vec2 xB = bodyB->GetPosition();
linearOffset = bodyA->GetLocalPoint(xB);
float32 angleA = bodyA->GetAngle();
float32 angleB = bodyB->GetAngle();
angularOffset = angleB - angleA;
}
b2MotorJoint::b2MotorJoint(const b2MotorJointDef* def)
: b2Joint(def)
{
m_linearOffset = def->linearOffset;
m_angularOffset = def->angularOffset;
m_linearImpulse.SetZero();
m_angularImpulse = 0.0f;
m_maxForce = def->maxForce;
m_maxTorque = def->maxTorque;
m_correctionFactor = def->correctionFactor;
}
void b2MotorJoint::InitVelocityConstraints(const b2SolverData& data)
{
m_indexA = m_bodyA->m_islandIndex;
m_indexB = m_bodyB->m_islandIndex;
m_localCenterA = m_bodyA->m_sweep.localCenter;
m_localCenterB = m_bodyB->m_sweep.localCenter;
m_invMassA = m_bodyA->m_invMass;
m_invMassB = m_bodyB->m_invMass;
m_invIA = m_bodyA->m_invI;
m_invIB = m_bodyB->m_invI;
b2Vec2 cA = data.positions[m_indexA].c;
float32 aA = data.positions[m_indexA].a;
b2Vec2 vA = data.velocities[m_indexA].v;
float32 wA = data.velocities[m_indexA].w;
b2Vec2 cB = data.positions[m_indexB].c;
float32 aB = data.positions[m_indexB].a;
b2Vec2 vB = data.velocities[m_indexB].v;
float32 wB = data.velocities[m_indexB].w;
b2Rot qA(aA), qB(aB);
// Compute the effective mass matrix.
m_rA = b2Mul(qA, -m_localCenterA);
m_rB = b2Mul(qB, -m_localCenterB);
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
float32 mA = m_invMassA, mB = m_invMassB;
float32 iA = m_invIA, iB = m_invIB;
b2Mat22 K;
K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
K.ey.x = K.ex.y;
K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
m_linearMass = K.GetInverse();
m_angularMass = iA + iB;
if (m_angularMass > 0.0f)
{
m_angularMass = 1.0f / m_angularMass;
}
m_linearError = cB + m_rB - cA - m_rA - b2Mul(qA, m_linearOffset);
m_angularError = aB - aA - m_angularOffset;
if (data.step.warmStarting)
{
// Scale impulses to support a variable time step.
m_linearImpulse *= data.step.dtRatio;
m_angularImpulse *= data.step.dtRatio;
b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
vA -= mA * P;
wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
vB += mB * P;
wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
}
else
{
m_linearImpulse.SetZero();
m_angularImpulse = 0.0f;
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
void b2MotorJoint::SolveVelocityConstraints(const b2SolverData& data)
{
b2Vec2 vA = data.velocities[m_indexA].v;
float32 wA = data.velocities[m_indexA].w;
b2Vec2 vB = data.velocities[m_indexB].v;
float32 wB = data.velocities[m_indexB].w;
float32 mA = m_invMassA, mB = m_invMassB;
float32 iA = m_invIA, iB = m_invIB;
float32 h = data.step.dt;
float32 inv_h = data.step.inv_dt;
// Solve angular friction
{
float32 Cdot = wB - wA + inv_h * m_correctionFactor * m_angularError;
float32 impulse = -m_angularMass * Cdot;
float32 oldImpulse = m_angularImpulse;
float32 maxImpulse = h * m_maxTorque;
m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
impulse = m_angularImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
// Solve linear friction
{
b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA) + inv_h * m_correctionFactor * m_linearError;
b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
b2Vec2 oldImpulse = m_linearImpulse;
m_linearImpulse += impulse;
float32 maxImpulse = h * m_maxForce;
if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
{
m_linearImpulse.Normalize();
m_linearImpulse *= maxImpulse;
}
impulse = m_linearImpulse - oldImpulse;
vA -= mA * impulse;
wA -= iA * b2Cross(m_rA, impulse);
vB += mB * impulse;
wB += iB * b2Cross(m_rB, impulse);
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
bool b2MotorJoint::SolvePositionConstraints(const b2SolverData& data)
{
B2_NOT_USED(data);
return true;
}
b2Vec2 b2MotorJoint::GetAnchorA() const
{
return m_bodyA->GetPosition();
}
b2Vec2 b2MotorJoint::GetAnchorB() const
{
return m_bodyB->GetPosition();
}
b2Vec2 b2MotorJoint::GetReactionForce(float32 inv_dt) const
{
return inv_dt * m_linearImpulse;
}
float32 b2MotorJoint::GetReactionTorque(float32 inv_dt) const
{
return inv_dt * m_angularImpulse;
}
void b2MotorJoint::SetMaxForce(float32 force)
{
b2Assert(b2IsValid(force) && force >= 0.0f);
m_maxForce = force;
}
float32 b2MotorJoint::GetMaxForce() const
{
return m_maxForce;
}
void b2MotorJoint::SetMaxTorque(float32 torque)
{
b2Assert(b2IsValid(torque) && torque >= 0.0f);
m_maxTorque = torque;
}
float32 b2MotorJoint::GetMaxTorque() const
{
return m_maxTorque;
}
void b2MotorJoint::SetCorrectionFactor(float32 factor)
{
b2Assert(b2IsValid(factor) && 0.0f <= factor && factor <= 1.0f);
m_correctionFactor = factor;
}
float32 b2MotorJoint::GetCorrectionFactor() const
{
return m_correctionFactor;
}
void b2MotorJoint::SetLinearOffset(const b2Vec2& linearOffset)
{
if (linearOffset.x != m_linearOffset.x || linearOffset.y != m_linearOffset.y)
{
m_bodyA->SetAwake(true);
m_bodyB->SetAwake(true);
m_linearOffset = linearOffset;
}
}
const b2Vec2& b2MotorJoint::GetLinearOffset() const
{
return m_linearOffset;
}
void b2MotorJoint::SetAngularOffset(float32 angularOffset)
{
if (angularOffset != m_angularOffset)
{
m_bodyA->SetAwake(true);
m_bodyB->SetAwake(true);
m_angularOffset = angularOffset;
}
}
float32 b2MotorJoint::GetAngularOffset() const
{
return m_angularOffset;
}
void b2MotorJoint::Dump()
{
int32 indexA = m_bodyA->m_islandIndex;
int32 indexB = m_bodyB->m_islandIndex;
b2Log(" b2MotorJointDef jd;\n");
b2Log(" jd.bodyA = bodies[%d];\n", indexA);
b2Log(" jd.bodyB = bodies[%d];\n", indexB);
b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected);
b2Log(" jd.linearOffset.Set(%.15lef, %.15lef);\n", m_linearOffset.x, m_linearOffset.y);
b2Log(" jd.angularOffset = %.15lef;\n", m_angularOffset);
b2Log(" jd.maxForce = %.15lef;\n", m_maxForce);
b2Log(" jd.maxTorque = %.15lef;\n", m_maxTorque);
b2Log(" jd.correctionFactor = %.15lef;\n", m_correctionFactor);
b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
}