mirror of https://github.com/axmolengine/axmol.git
793 lines
22 KiB
C
793 lines
22 KiB
C
/*
|
|
Copyright (c) 2008, Luke Benstead.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* @file mat4.c
|
|
*/
|
|
#include <memory.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "kazmath/utility.h"
|
|
#include "kazmath/vec3.h"
|
|
#include "kazmath/mat4.h"
|
|
#include "kazmath/mat3.h"
|
|
#include "kazmath/quaternion.h"
|
|
#include "kazmath/plane.h"
|
|
|
|
#include "kazmath/neon_matrix_impl.h"
|
|
|
|
/**
|
|
* Fills a kmMat4 structure with the values from a 16
|
|
* element array of floats
|
|
* @Params pOut - A pointer to the destination matrix
|
|
* pMat - A 16 element array of floats
|
|
* @Return Returns pOut so that the call can be nested
|
|
*/
|
|
kmMat4* const kmMat4Fill(kmMat4* pOut, const kmScalar* pMat)
|
|
{
|
|
memcpy(pOut->mat, pMat, sizeof(kmScalar) * 16);
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Sets pOut to an identity matrix returns pOut
|
|
* @Params pOut - A pointer to the matrix to set to identity
|
|
* @Return Returns pOut so that the call can be nested
|
|
*/
|
|
kmMat4* const kmMat4Identity(kmMat4* pOut)
|
|
{
|
|
memset(pOut->mat, 0, sizeof(float) * 16);
|
|
pOut->mat[0] = pOut->mat[5] = pOut->mat[10] = pOut->mat[15] = 1.0f;
|
|
return pOut;
|
|
}
|
|
|
|
|
|
float get(const kmMat4 * pIn, int row, int col)
|
|
{
|
|
return pIn->mat[row + 4*col];
|
|
}
|
|
|
|
void set(kmMat4 * pIn, int row, int col, float value)
|
|
{
|
|
pIn->mat[row + 4*col] = value;
|
|
}
|
|
|
|
void swap(kmMat4 * pIn, int r1, int c1, int r2, int c2)
|
|
{
|
|
float tmp = get(pIn,r1,c1);
|
|
set(pIn,r1,c1,get(pIn,r2,c2));
|
|
set(pIn,r2,c2, tmp);
|
|
}
|
|
|
|
//Returns an upper and a lower triangular matrix which are L and R in the Gauss algorithm
|
|
int gaussj(kmMat4 *a, kmMat4 *b)
|
|
{
|
|
int i, icol = 0, irow = 0, j, k, l, ll, n = 4, m = 4;
|
|
float big, dum, pivinv;
|
|
int indxc[4] = {0};
|
|
int indxr[4] = {0};
|
|
int ipiv[4] = {0};
|
|
|
|
for (j = 0; j < n; j++) {
|
|
ipiv[j] = 0;
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
big = 0.0f;
|
|
for (j = 0; j < n; j++) {
|
|
if (ipiv[j] != 1) {
|
|
for (k = 0; k < n; k++) {
|
|
if (ipiv[k] == 0) {
|
|
if (abs(get(a,j, k)) >= big) {
|
|
big = abs(get(a,j, k));
|
|
irow = j;
|
|
icol = k;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
++(ipiv[icol]);
|
|
if (irow != icol) {
|
|
for (l = 0; l < n; l++) {
|
|
swap(a,irow, l, icol, l);
|
|
}
|
|
for (l = 0; l < m; l++) {
|
|
swap(b,irow, l, icol, l);
|
|
}
|
|
}
|
|
indxr[i] = irow;
|
|
indxc[i] = icol;
|
|
if (get(a,icol, icol) == 0.0) {
|
|
return KM_FALSE;
|
|
}
|
|
pivinv = 1.0f / get(a,icol, icol);
|
|
set(a,icol, icol, 1.0f);
|
|
for (l = 0; l < n; l++) {
|
|
set(a,icol, l, get(a,icol, l) * pivinv);
|
|
}
|
|
for (l = 0; l < m; l++) {
|
|
set(b,icol, l, get(b,icol, l) * pivinv);
|
|
}
|
|
|
|
for (ll = 0; ll < n; ll++) {
|
|
if (ll != icol) {
|
|
dum = get(a,ll, icol);
|
|
set(a,ll, icol, 0.0f);
|
|
for (l = 0; l < n; l++) {
|
|
set(a,ll, l, get(a,ll, l) - get(a,icol, l) * dum);
|
|
}
|
|
for (l = 0; l < m; l++) {
|
|
set(b,ll, l, get(a,ll, l) - get(b,icol, l) * dum);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// This is the end of the main loop over columns of the reduction. It only remains to unscram-
|
|
// ble the solution in view of the column interchanges. We do this by interchanging pairs of
|
|
// columns in the reverse order that the permutation was built up.
|
|
for (l = n - 1; l >= 0; l--) {
|
|
if (indxr[l] != indxc[l]) {
|
|
for (k = 0; k < n; k++) {
|
|
swap(a,k, indxr[l], k, indxc[l]);
|
|
}
|
|
}
|
|
}
|
|
return KM_TRUE;
|
|
}
|
|
|
|
/**
|
|
* Calculates the inverse of pM and stores the result in
|
|
* pOut.
|
|
* @Return Returns NULL if there is no inverse, else pOut
|
|
*/
|
|
kmMat4* const kmMat4Inverse(kmMat4* pOut, const kmMat4* pM)
|
|
{
|
|
kmMat4 inv;
|
|
kmMat4 tmp;
|
|
|
|
kmMat4Assign(&inv, pM);
|
|
|
|
kmMat4Identity(&tmp);
|
|
|
|
if(gaussj(&inv, &tmp) == KM_FALSE) {
|
|
return NULL;
|
|
}
|
|
|
|
kmMat4Assign(pOut, &inv);
|
|
return pOut;
|
|
}
|
|
/**
|
|
* Returns KM_TRUE if pIn is an identity matrix
|
|
* KM_FALSE otherwise
|
|
*/
|
|
const int kmMat4IsIdentity(const kmMat4* pIn)
|
|
{
|
|
static const float identity [] = { 1.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 1.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 1.0f
|
|
};
|
|
|
|
return (memcmp(identity, pIn->mat, sizeof(float) * 16) == 0);
|
|
}
|
|
|
|
/**
|
|
* Sets pOut to the transpose of pIn, returns pOut
|
|
*/
|
|
kmMat4* const kmMat4Transpose(kmMat4* pOut, const kmMat4* pIn)
|
|
{
|
|
int x, z;
|
|
|
|
for (z = 0; z < 4; ++z) {
|
|
for (x = 0; x < 4; ++x) {
|
|
pOut->mat[(z * 4) + x] = pIn->mat[(x * 4) + z];
|
|
}
|
|
}
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Multiplies pM1 with pM2, stores the result in pOut, returns pOut
|
|
*/
|
|
kmMat4* const kmMat4Multiply(kmMat4* pOut, const kmMat4* pM1, const kmMat4* pM2)
|
|
{
|
|
#if defined(__ARM_NEON__) && !defined(__arm64__)
|
|
|
|
// It is possible to skip the memcpy() since "out" does not overwrite p1 or p2.
|
|
// otherwise a temp must be needed.
|
|
float *mat = pOut->mat;
|
|
|
|
// Invert column-order with row-order
|
|
NEON_Matrix4Mul( &pM2->mat[0], &pM1->mat[0], &mat[0] );
|
|
|
|
#else
|
|
float mat[16];
|
|
|
|
const float *m1 = pM1->mat, *m2 = pM2->mat;
|
|
|
|
mat[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
|
|
mat[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
|
|
mat[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
|
|
mat[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
|
|
|
|
mat[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
|
|
mat[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
|
|
mat[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
|
|
mat[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
|
|
|
|
mat[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
|
|
mat[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
|
|
mat[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
|
|
mat[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
|
|
|
|
mat[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
|
|
mat[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
|
|
mat[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
|
|
mat[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
|
|
|
|
memcpy(pOut->mat, mat, sizeof(pOut->mat));
|
|
|
|
#endif
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Assigns the value of pIn to pOut
|
|
*/
|
|
kmMat4* const kmMat4Assign(kmMat4* pOut, const kmMat4* pIn)
|
|
{
|
|
assert(pOut != pIn && "You have tried to self-assign!!");
|
|
|
|
memcpy(pOut->mat, pIn->mat, sizeof(float)*16);
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Returns KM_TRUE if the 2 matrices are equal (approximately)
|
|
*/
|
|
const int kmMat4AreEqual(const kmMat4* pMat1, const kmMat4* pMat2)
|
|
{
|
|
int i = 0;
|
|
|
|
assert(pMat1 != pMat2 && "You are comparing the same thing!");
|
|
|
|
for (i = 0; i < 16; ++i)
|
|
{
|
|
if (!(pMat1->mat[i] + kmEpsilon > pMat2->mat[i] &&
|
|
pMat1->mat[i] - kmEpsilon < pMat2->mat[i])) {
|
|
return KM_FALSE;
|
|
}
|
|
}
|
|
|
|
return KM_TRUE;
|
|
}
|
|
|
|
/**
|
|
* Build a rotation matrix from an axis and an angle. Result is stored in pOut.
|
|
* pOut is returned.
|
|
*/
|
|
kmMat4* const kmMat4RotationAxisAngle(kmMat4* pOut, const kmVec3* axis, kmScalar radians)
|
|
{
|
|
float rcos = cosf(radians);
|
|
float rsin = sinf(radians);
|
|
|
|
kmVec3 normalizedAxis;
|
|
kmVec3Normalize(&normalizedAxis, axis);
|
|
|
|
pOut->mat[0] = rcos + normalizedAxis.x * normalizedAxis.x * (1 - rcos);
|
|
pOut->mat[1] = normalizedAxis.z * rsin + normalizedAxis.y * normalizedAxis.x * (1 - rcos);
|
|
pOut->mat[2] = -normalizedAxis.y * rsin + normalizedAxis.z * normalizedAxis.x * (1 - rcos);
|
|
pOut->mat[3] = 0.0f;
|
|
|
|
pOut->mat[4] = -normalizedAxis.z * rsin + normalizedAxis.x * normalizedAxis.y * (1 - rcos);
|
|
pOut->mat[5] = rcos + normalizedAxis.y * normalizedAxis.y * (1 - rcos);
|
|
pOut->mat[6] = normalizedAxis.x * rsin + normalizedAxis.z * normalizedAxis.y * (1 - rcos);
|
|
pOut->mat[7] = 0.0f;
|
|
|
|
pOut->mat[8] = normalizedAxis.y * rsin + normalizedAxis.x * normalizedAxis.z * (1 - rcos);
|
|
pOut->mat[9] = -normalizedAxis.x * rsin + normalizedAxis.y * normalizedAxis.z * (1 - rcos);
|
|
pOut->mat[10] = rcos + normalizedAxis.z * normalizedAxis.z * (1 - rcos);
|
|
pOut->mat[11] = 0.0f;
|
|
|
|
pOut->mat[12] = 0.0f;
|
|
pOut->mat[13] = 0.0f;
|
|
pOut->mat[14] = 0.0f;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Builds an X-axis rotation matrix and stores it in pOut, returns pOut
|
|
*/
|
|
kmMat4* const kmMat4RotationX(kmMat4* pOut, const float radians)
|
|
{
|
|
/*
|
|
| 1 0 0 0 |
|
|
M = | 0 cos(A) -sin(A) 0 |
|
|
| 0 sin(A) cos(A) 0 |
|
|
| 0 0 0 1 |
|
|
|
|
*/
|
|
|
|
pOut->mat[0] = 1.0f;
|
|
pOut->mat[1] = 0.0f;
|
|
pOut->mat[2] = 0.0f;
|
|
pOut->mat[3] = 0.0f;
|
|
|
|
pOut->mat[4] = 0.0f;
|
|
pOut->mat[5] = cosf(radians);
|
|
pOut->mat[6] = sinf(radians);
|
|
pOut->mat[7] = 0.0f;
|
|
|
|
pOut->mat[8] = 0.0f;
|
|
pOut->mat[9] = -sinf(radians);
|
|
pOut->mat[10] = cosf(radians);
|
|
pOut->mat[11] = 0.0f;
|
|
|
|
pOut->mat[12] = 0.0f;
|
|
pOut->mat[13] = 0.0f;
|
|
pOut->mat[14] = 0.0f;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Builds a rotation matrix using the rotation around the Y-axis
|
|
* The result is stored in pOut, pOut is returned.
|
|
*/
|
|
kmMat4* const kmMat4RotationY(kmMat4* pOut, const float radians)
|
|
{
|
|
/*
|
|
| cos(A) 0 sin(A) 0 |
|
|
M = | 0 1 0 0 |
|
|
| -sin(A) 0 cos(A) 0 |
|
|
| 0 0 0 1 |
|
|
*/
|
|
|
|
pOut->mat[0] = cosf(radians);
|
|
pOut->mat[1] = 0.0f;
|
|
pOut->mat[2] = -sinf(radians);
|
|
pOut->mat[3] = 0.0f;
|
|
|
|
pOut->mat[4] = 0.0f;
|
|
pOut->mat[5] = 1.0f;
|
|
pOut->mat[6] = 0.0f;
|
|
pOut->mat[7] = 0.0f;
|
|
|
|
pOut->mat[8] = sinf(radians);
|
|
pOut->mat[9] = 0.0f;
|
|
pOut->mat[10] = cosf(radians);
|
|
pOut->mat[11] = 0.0f;
|
|
|
|
pOut->mat[12] = 0.0f;
|
|
pOut->mat[13] = 0.0f;
|
|
pOut->mat[14] = 0.0f;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Builds a rotation matrix around the Z-axis. The resulting
|
|
* matrix is stored in pOut. pOut is returned.
|
|
*/
|
|
kmMat4* const kmMat4RotationZ(kmMat4* pOut, const float radians)
|
|
{
|
|
/*
|
|
| cos(A) -sin(A) 0 0 |
|
|
M = | sin(A) cos(A) 0 0 |
|
|
| 0 0 1 0 |
|
|
| 0 0 0 1 |
|
|
*/
|
|
|
|
pOut->mat[0] = cosf(radians);
|
|
pOut->mat[1] = sinf(radians);
|
|
pOut->mat[2] = 0.0f;
|
|
pOut->mat[3] = 0.0f;
|
|
|
|
pOut->mat[4] = -sinf(radians);;
|
|
pOut->mat[5] = cosf(radians);
|
|
pOut->mat[6] = 0.0f;
|
|
pOut->mat[7] = 0.0f;
|
|
|
|
pOut->mat[8] = 0.0f;
|
|
pOut->mat[9] = 0.0f;
|
|
pOut->mat[10] = 1.0f;
|
|
pOut->mat[11] = 0.0f;
|
|
|
|
pOut->mat[12] = 0.0f;
|
|
pOut->mat[13] = 0.0f;
|
|
pOut->mat[14] = 0.0f;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Builds a rotation matrix from pitch, yaw and roll. The resulting
|
|
* matrix is stored in pOut and pOut is returned
|
|
*/
|
|
kmMat4* const kmMat4RotationPitchYawRoll(kmMat4* pOut, const kmScalar pitch, const kmScalar yaw, const kmScalar roll)
|
|
{
|
|
double cr = cos(pitch);
|
|
double sr = sin(pitch);
|
|
double cp = cos(yaw);
|
|
double sp = sin(yaw);
|
|
double cy = cos(roll);
|
|
double sy = sin(roll);
|
|
double srsp = sr * sp;
|
|
double crsp = cr * sp;
|
|
|
|
pOut->mat[0] = (kmScalar) cp * cy;
|
|
pOut->mat[4] = (kmScalar) cp * sy;
|
|
pOut->mat[8] = (kmScalar) - sp;
|
|
|
|
pOut->mat[1] = (kmScalar) srsp * cy - cr * sy;
|
|
pOut->mat[5] = (kmScalar) srsp * sy + cr * cy;
|
|
pOut->mat[9] = (kmScalar) sr * cp;
|
|
|
|
pOut->mat[2] = (kmScalar) crsp * cy + sr * sy;
|
|
pOut->mat[6] = (kmScalar) crsp * sy - sr * cy;
|
|
pOut->mat[10] = (kmScalar) cr * cp;
|
|
|
|
pOut->mat[3] = pOut->mat[7] = pOut->mat[11] = 0.0;
|
|
pOut->mat[15] = 1.0;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/** Converts a quaternion to a rotation matrix,
|
|
* the result is stored in pOut, returns pOut
|
|
*/
|
|
kmMat4* const kmMat4RotationQuaternion(kmMat4* pOut, const kmQuaternion* pQ)
|
|
{
|
|
pOut->mat[0] = 1.0f - 2.0f * (pQ->y * pQ->y + pQ->z * pQ->z );
|
|
pOut->mat[1] = 2.0f * (pQ->x * pQ->y + pQ->z * pQ->w);
|
|
pOut->mat[2] = 2.0f * (pQ->x * pQ->z - pQ->y * pQ->w);
|
|
pOut->mat[3] = 0.0f;
|
|
|
|
// Second row
|
|
pOut->mat[4] = 2.0f * ( pQ->x * pQ->y - pQ->z * pQ->w );
|
|
pOut->mat[5] = 1.0f - 2.0f * ( pQ->x * pQ->x + pQ->z * pQ->z );
|
|
pOut->mat[6] = 2.0f * (pQ->z * pQ->y + pQ->x * pQ->w );
|
|
pOut->mat[7] = 0.0f;
|
|
|
|
// Third row
|
|
pOut->mat[8] = 2.0f * ( pQ->x * pQ->z + pQ->y * pQ->w );
|
|
pOut->mat[9] = 2.0f * ( pQ->y * pQ->z - pQ->x * pQ->w );
|
|
pOut->mat[10] = 1.0f - 2.0f * ( pQ->x * pQ->x + pQ->y * pQ->y );
|
|
pOut->mat[11] = 0.0f;
|
|
|
|
// Fourth row
|
|
pOut->mat[12] = 0;
|
|
pOut->mat[13] = 0;
|
|
pOut->mat[14] = 0;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/** Builds a scaling matrix */
|
|
kmMat4* const kmMat4Scaling(kmMat4* pOut, const kmScalar x, const kmScalar y,
|
|
const kmScalar z)
|
|
{
|
|
memset(pOut->mat, 0, sizeof(float) * 16);
|
|
pOut->mat[0] = x;
|
|
pOut->mat[5] = y;
|
|
pOut->mat[10] = z;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Builds a translation matrix. All other elements in the matrix
|
|
* will be set to zero except for the diagonal which is set to 1.0
|
|
*/
|
|
kmMat4* const kmMat4Translation(kmMat4* pOut, const kmScalar x,
|
|
const kmScalar y, const kmScalar z)
|
|
{
|
|
//FIXME: Write a test for this
|
|
memset(pOut->mat, 0, sizeof(float) * 16);
|
|
|
|
pOut->mat[0] = 1.0f;
|
|
pOut->mat[5] = 1.0f;
|
|
pOut->mat[10] = 1.0f;
|
|
|
|
pOut->mat[12] = x;
|
|
pOut->mat[13] = y;
|
|
pOut->mat[14] = z;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Get the up vector from a matrix. pIn is the matrix you
|
|
* wish to extract the vector from. pOut is a pointer to the
|
|
* kmVec3 structure that should hold the resulting vector
|
|
*/
|
|
kmVec3* const kmMat4GetUpVec3(kmVec3* pOut, const kmMat4* pIn)
|
|
{
|
|
pOut->x = pIn->mat[4];
|
|
pOut->y = pIn->mat[5];
|
|
pOut->z = pIn->mat[6];
|
|
|
|
kmVec3Normalize(pOut, pOut);
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/** Extract the right vector from a 4x4 matrix. The result is
|
|
* stored in pOut. Returns pOut.
|
|
*/
|
|
kmVec3* const kmMat4GetRightVec3(kmVec3* pOut, const kmMat4* pIn)
|
|
{
|
|
pOut->x = pIn->mat[0];
|
|
pOut->y = pIn->mat[1];
|
|
pOut->z = pIn->mat[2];
|
|
|
|
kmVec3Normalize(pOut, pOut);
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Extract the forward vector from a 4x4 matrix. The result is
|
|
* stored in pOut. Returns pOut.
|
|
*/
|
|
kmVec3* const kmMat4GetForwardVec3(kmVec3* pOut, const kmMat4* pIn)
|
|
{
|
|
pOut->x = pIn->mat[8];
|
|
pOut->y = pIn->mat[9];
|
|
pOut->z = pIn->mat[10];
|
|
|
|
kmVec3Normalize(pOut, pOut);
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Creates a perspective projection matrix in the
|
|
* same way as gluPerspective
|
|
*/
|
|
kmMat4* const kmMat4PerspectiveProjection(kmMat4* pOut, kmScalar fovY,
|
|
kmScalar aspect, kmScalar zNear,
|
|
kmScalar zFar)
|
|
{
|
|
kmScalar r = kmDegreesToRadians(fovY / 2);
|
|
kmScalar deltaZ = zFar - zNear;
|
|
kmScalar s = sin(r);
|
|
kmScalar cotangent = 0;
|
|
|
|
if (deltaZ == 0 || s == 0 || aspect == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
//cos(r) / sin(r) = cot(r)
|
|
cotangent = cos(r) / s;
|
|
|
|
kmMat4Identity(pOut);
|
|
pOut->mat[0] = cotangent / aspect;
|
|
pOut->mat[5] = cotangent;
|
|
pOut->mat[10] = -(zFar + zNear) / deltaZ;
|
|
pOut->mat[11] = -1;
|
|
pOut->mat[14] = -2 * zNear * zFar / deltaZ;
|
|
pOut->mat[15] = 0;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/** Creates an orthographic projection matrix like glOrtho */
|
|
kmMat4* const kmMat4OrthographicProjection(kmMat4* pOut, kmScalar left,
|
|
kmScalar right, kmScalar bottom,
|
|
kmScalar top, kmScalar nearVal,
|
|
kmScalar farVal)
|
|
{
|
|
kmScalar tx = -((right + left) / (right - left));
|
|
kmScalar ty = -((top + bottom) / (top - bottom));
|
|
kmScalar tz = -((farVal + nearVal) / (farVal - nearVal));
|
|
|
|
kmMat4Identity(pOut);
|
|
pOut->mat[0] = 2 / (right - left);
|
|
pOut->mat[5] = 2 / (top - bottom);
|
|
pOut->mat[10] = -2 / (farVal - nearVal);
|
|
pOut->mat[12] = tx;
|
|
pOut->mat[13] = ty;
|
|
pOut->mat[14] = tz;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Builds a translation matrix in the same way as gluLookAt()
|
|
* the resulting matrix is stored in pOut. pOut is returned.
|
|
*/
|
|
kmMat4* const kmMat4LookAt(kmMat4* pOut, const kmVec3* pEye,
|
|
const kmVec3* pCenter, const kmVec3* pUp)
|
|
{
|
|
kmVec3 f, up, s, u;
|
|
kmMat4 translate;
|
|
|
|
kmVec3Subtract(&f, pCenter, pEye);
|
|
kmVec3Normalize(&f, &f);
|
|
|
|
kmVec3Assign(&up, pUp);
|
|
kmVec3Normalize(&up, &up);
|
|
|
|
kmVec3Cross(&s, &f, &up);
|
|
kmVec3Normalize(&s, &s);
|
|
|
|
kmVec3Cross(&u, &s, &f);
|
|
kmVec3Normalize(&s, &s);
|
|
|
|
kmMat4Identity(pOut);
|
|
|
|
pOut->mat[0] = s.x;
|
|
pOut->mat[4] = s.y;
|
|
pOut->mat[8] = s.z;
|
|
|
|
pOut->mat[1] = u.x;
|
|
pOut->mat[5] = u.y;
|
|
pOut->mat[9] = u.z;
|
|
|
|
pOut->mat[2] = -f.x;
|
|
pOut->mat[6] = -f.y;
|
|
pOut->mat[10] = -f.z;
|
|
|
|
kmMat4Translation(&translate, -pEye->x, -pEye->y, -pEye->z);
|
|
kmMat4Multiply(pOut, pOut, &translate);
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Extract a 3x3 rotation matrix from the input 4x4 transformation.
|
|
* Stores the result in pOut, returns pOut
|
|
*/
|
|
kmMat3* const kmMat4ExtractRotation(kmMat3* pOut, const kmMat4* pIn)
|
|
{
|
|
pOut->mat[0] = pIn->mat[0];
|
|
pOut->mat[1] = pIn->mat[1];
|
|
pOut->mat[2] = pIn->mat[2];
|
|
|
|
pOut->mat[3] = pIn->mat[4];
|
|
pOut->mat[4] = pIn->mat[5];
|
|
pOut->mat[5] = pIn->mat[6];
|
|
|
|
pOut->mat[6] = pIn->mat[8];
|
|
pOut->mat[7] = pIn->mat[9];
|
|
pOut->mat[8] = pIn->mat[10];
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/**
|
|
* Take the rotation from a 4x4 transformation matrix, and return it as an axis and an angle (in radians)
|
|
* returns the output axis.
|
|
*/
|
|
kmVec3* const kmMat4RotationToAxisAngle(kmVec3* pAxis, kmScalar* radians, const kmMat4* pIn)
|
|
{
|
|
/*Surely not this easy?*/
|
|
kmQuaternion temp;
|
|
kmMat3 rotation;
|
|
kmMat4ExtractRotation(&rotation, pIn);
|
|
kmQuaternionRotationMatrix(&temp, &rotation);
|
|
kmQuaternionToAxisAngle(&temp, pAxis, radians);
|
|
return pAxis;
|
|
}
|
|
|
|
/** Build a 4x4 OpenGL transformation matrix using a 3x3 rotation matrix,
|
|
* and a 3d vector representing a translation. Assign the result to pOut,
|
|
* pOut is also returned.
|
|
*/
|
|
kmMat4* const kmMat4RotationTranslation(kmMat4* pOut, const kmMat3* rotation, const kmVec3* translation)
|
|
{
|
|
pOut->mat[0] = rotation->mat[0];
|
|
pOut->mat[1] = rotation->mat[1];
|
|
pOut->mat[2] = rotation->mat[2];
|
|
pOut->mat[3] = 0.0f;
|
|
|
|
pOut->mat[4] = rotation->mat[3];
|
|
pOut->mat[5] = rotation->mat[4];
|
|
pOut->mat[6] = rotation->mat[5];
|
|
pOut->mat[7] = 0.0f;
|
|
|
|
pOut->mat[8] = rotation->mat[6];
|
|
pOut->mat[9] = rotation->mat[7];
|
|
pOut->mat[10] = rotation->mat[8];
|
|
pOut->mat[11] = 0.0f;
|
|
|
|
pOut->mat[12] = translation->x;
|
|
pOut->mat[13] = translation->y;
|
|
pOut->mat[14] = translation->z;
|
|
pOut->mat[15] = 1.0f;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
kmPlane* const kmMat4ExtractPlane(kmPlane* pOut, const kmMat4* pIn, const kmEnum plane)
|
|
{
|
|
float t = 1.0f;
|
|
|
|
switch(plane) {
|
|
case KM_PLANE_RIGHT:
|
|
pOut->a = pIn->mat[3] - pIn->mat[0];
|
|
pOut->b = pIn->mat[7] - pIn->mat[4];
|
|
pOut->c = pIn->mat[11] - pIn->mat[8];
|
|
pOut->d = pIn->mat[15] - pIn->mat[12];
|
|
break;
|
|
case KM_PLANE_LEFT:
|
|
pOut->a = pIn->mat[3] + pIn->mat[0];
|
|
pOut->b = pIn->mat[7] + pIn->mat[4];
|
|
pOut->c = pIn->mat[11] + pIn->mat[8];
|
|
pOut->d = pIn->mat[15] + pIn->mat[12];
|
|
break;
|
|
case KM_PLANE_BOTTOM:
|
|
pOut->a = pIn->mat[3] + pIn->mat[1];
|
|
pOut->b = pIn->mat[7] + pIn->mat[5];
|
|
pOut->c = pIn->mat[11] + pIn->mat[9];
|
|
pOut->d = pIn->mat[15] + pIn->mat[13];
|
|
break;
|
|
case KM_PLANE_TOP:
|
|
pOut->a = pIn->mat[3] - pIn->mat[1];
|
|
pOut->b = pIn->mat[7] - pIn->mat[5];
|
|
pOut->c = pIn->mat[11] - pIn->mat[9];
|
|
pOut->d = pIn->mat[15] - pIn->mat[13];
|
|
break;
|
|
case KM_PLANE_FAR:
|
|
pOut->a = pIn->mat[3] - pIn->mat[2];
|
|
pOut->b = pIn->mat[7] - pIn->mat[6];
|
|
pOut->c = pIn->mat[11] - pIn->mat[10];
|
|
pOut->d = pIn->mat[15] - pIn->mat[14];
|
|
break;
|
|
case KM_PLANE_NEAR:
|
|
pOut->a = pIn->mat[3] + pIn->mat[2];
|
|
pOut->b = pIn->mat[7] + pIn->mat[6];
|
|
pOut->c = pIn->mat[11] + pIn->mat[10];
|
|
pOut->d = pIn->mat[15] + pIn->mat[14];
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid plane index");
|
|
}
|
|
|
|
t = sqrtf(pOut->a * pOut->a +
|
|
pOut->b * pOut->b +
|
|
pOut->c * pOut->c);
|
|
pOut->a /= t;
|
|
pOut->b /= t;
|
|
pOut->c /= t;
|
|
pOut->d /= t;
|
|
|
|
return pOut;
|
|
}
|