mirror of https://github.com/axmolengine/axmol.git
172 lines
4.8 KiB
C++
172 lines
4.8 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "alcomplex.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <utility>
|
|
|
|
#include "albit.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "opthelpers.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using ushort = unsigned short;
|
|
using ushort2 = std::pair<ushort,ushort>;
|
|
|
|
constexpr size_t BitReverseCounter(size_t log2_size) noexcept
|
|
{
|
|
/* Some magic math that calculates the number of swaps needed for a
|
|
* sequence of bit-reversed indices when index < reversed_index.
|
|
*/
|
|
return (1u<<(log2_size-1)) - (1u<<((log2_size-1u)/2u));
|
|
}
|
|
|
|
|
|
template<size_t N>
|
|
struct BitReverser {
|
|
static_assert(N <= sizeof(ushort)*8, "Too many bits for the bit-reversal table.");
|
|
|
|
ushort2 mData[BitReverseCounter(N)]{};
|
|
|
|
constexpr BitReverser()
|
|
{
|
|
const size_t fftsize{1u << N};
|
|
size_t ret_i{0};
|
|
|
|
/* Bit-reversal permutation applied to a sequence of fftsize items. */
|
|
for(size_t idx{1u};idx < fftsize-1;++idx)
|
|
{
|
|
size_t revidx{0u}, imask{idx};
|
|
for(size_t i{0};i < N;++i)
|
|
{
|
|
revidx = (revidx<<1) | (imask&1);
|
|
imask >>= 1;
|
|
}
|
|
|
|
if(idx < revidx)
|
|
{
|
|
mData[ret_i].first = static_cast<ushort>(idx);
|
|
mData[ret_i].second = static_cast<ushort>(revidx);
|
|
++ret_i;
|
|
}
|
|
}
|
|
assert(ret_i == al::size(mData));
|
|
}
|
|
};
|
|
|
|
/* These bit-reversal swap tables support up to 10-bit indices (1024 elements),
|
|
* which is the largest used by OpenAL Soft's filters and effects. Larger FFT
|
|
* requests, used by some utilities where performance is less important, will
|
|
* use a slower table-less path.
|
|
*/
|
|
constexpr BitReverser<2> BitReverser2{};
|
|
constexpr BitReverser<3> BitReverser3{};
|
|
constexpr BitReverser<4> BitReverser4{};
|
|
constexpr BitReverser<5> BitReverser5{};
|
|
constexpr BitReverser<6> BitReverser6{};
|
|
constexpr BitReverser<7> BitReverser7{};
|
|
constexpr BitReverser<8> BitReverser8{};
|
|
constexpr BitReverser<9> BitReverser9{};
|
|
constexpr BitReverser<10> BitReverser10{};
|
|
constexpr std::array<al::span<const ushort2>,11> gBitReverses{{
|
|
{}, {},
|
|
BitReverser2.mData,
|
|
BitReverser3.mData,
|
|
BitReverser4.mData,
|
|
BitReverser5.mData,
|
|
BitReverser6.mData,
|
|
BitReverser7.mData,
|
|
BitReverser8.mData,
|
|
BitReverser9.mData,
|
|
BitReverser10.mData
|
|
}};
|
|
|
|
} // namespace
|
|
|
|
template<typename Real>
|
|
std::enable_if_t<std::is_floating_point<Real>::value>
|
|
complex_fft(const al::span<std::complex<Real>> buffer, const al::type_identity_t<Real> sign)
|
|
{
|
|
const size_t fftsize{buffer.size()};
|
|
/* Get the number of bits used for indexing. Simplifies bit-reversal and
|
|
* the main loop count.
|
|
*/
|
|
const size_t log2_size{static_cast<size_t>(al::countr_zero(fftsize))};
|
|
|
|
if(log2_size >= gBitReverses.size()) UNLIKELY
|
|
{
|
|
for(size_t idx{1u};idx < fftsize-1;++idx)
|
|
{
|
|
size_t revidx{0u}, imask{idx};
|
|
for(size_t i{0};i < log2_size;++i)
|
|
{
|
|
revidx = (revidx<<1) | (imask&1);
|
|
imask >>= 1;
|
|
}
|
|
|
|
if(idx < revidx)
|
|
std::swap(buffer[idx], buffer[revidx]);
|
|
}
|
|
}
|
|
else for(auto &rev : gBitReverses[log2_size])
|
|
std::swap(buffer[rev.first], buffer[rev.second]);
|
|
|
|
/* Iterative form of Danielson-Lanczos lemma */
|
|
const Real pi{al::numbers::pi_v<Real> * sign};
|
|
size_t step2{1u};
|
|
for(size_t i{0};i < log2_size;++i)
|
|
{
|
|
const Real arg{pi / static_cast<Real>(step2)};
|
|
|
|
/* TODO: Would std::polar(1.0, arg) be any better? */
|
|
const std::complex<Real> w{std::cos(arg), std::sin(arg)};
|
|
std::complex<Real> u{1.0, 0.0};
|
|
const size_t step{step2 << 1};
|
|
for(size_t j{0};j < step2;j++)
|
|
{
|
|
for(size_t k{j};k < fftsize;k+=step)
|
|
{
|
|
std::complex<Real> temp{buffer[k+step2] * u};
|
|
buffer[k+step2] = buffer[k] - temp;
|
|
buffer[k] += temp;
|
|
}
|
|
|
|
u *= w;
|
|
}
|
|
|
|
step2 <<= 1;
|
|
}
|
|
}
|
|
|
|
void complex_hilbert(const al::span<std::complex<double>> buffer)
|
|
{
|
|
using namespace std::placeholders;
|
|
|
|
inverse_fft(buffer);
|
|
|
|
const double inverse_size = 1.0/static_cast<double>(buffer.size());
|
|
auto bufiter = buffer.begin();
|
|
const auto halfiter = bufiter + (buffer.size()>>1);
|
|
|
|
*bufiter *= inverse_size; ++bufiter;
|
|
bufiter = std::transform(bufiter, halfiter, bufiter,
|
|
[scale=inverse_size*2.0](std::complex<double> d){ return d * scale; });
|
|
*bufiter *= inverse_size; ++bufiter;
|
|
|
|
std::fill(bufiter, buffer.end(), std::complex<double>{});
|
|
|
|
forward_fft(buffer);
|
|
}
|
|
|
|
|
|
template void complex_fft<>(const al::span<std::complex<float>> buffer, const float sign);
|
|
template void complex_fft<>(const al::span<std::complex<double>> buffer, const double sign);
|