axmol/thirdparty/openal/core/mixer/mixer_neon.cpp

363 lines
12 KiB
C++

#include "config.h"
#include <arm_neon.h>
#include <cmath>
#include <limits>
#include "alnumeric.h"
#include "core/bsinc_defs.h"
#include "core/cubic_defs.h"
#include "defs.h"
#include "hrtfbase.h"
struct NEONTag;
struct LerpTag;
struct CubicTag;
struct BSincTag;
struct FastBSincTag;
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ARM_NEON)
#pragma GCC target("fpu=neon")
#endif
namespace {
constexpr uint BSincPhaseDiffBits{MixerFracBits - BSincPhaseBits};
constexpr uint BSincPhaseDiffOne{1 << BSincPhaseDiffBits};
constexpr uint BSincPhaseDiffMask{BSincPhaseDiffOne - 1u};
constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
inline float32x4_t set_f4(float l0, float l1, float l2, float l3)
{
float32x4_t ret{vmovq_n_f32(l0)};
ret = vsetq_lane_f32(l1, ret, 1);
ret = vsetq_lane_f32(l2, ret, 2);
ret = vsetq_lane_f32(l3, ret, 3);
return ret;
}
inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
const float left, const float right)
{
float32x4_t leftright4;
{
float32x2_t leftright2{vmov_n_f32(left)};
leftright2 = vset_lane_f32(right, leftright2, 1);
leftright4 = vcombine_f32(leftright2, leftright2);
}
ASSUME(IrSize >= MinIrLength);
for(size_t c{0};c < IrSize;c += 2)
{
float32x4_t vals = vld1q_f32(&Values[c][0]);
float32x4_t coefs = vld1q_f32(&Coeffs[c][0]);
vals = vmlaq_f32(vals, coefs, leftright4);
vst1q_f32(&Values[c][0], vals);
}
}
force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst,
float &CurrentGain, const float TargetGain, const float delta, const size_t min_len,
const size_t aligned_len, size_t Counter)
{
float gain{CurrentGain};
const float step{(TargetGain-gain) * delta};
size_t pos{0};
if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
gain = TargetGain;
else
{
float step_count{0.0f};
/* Mix with applying gain steps in aligned multiples of 4. */
if(size_t todo{min_len >> 2})
{
const float32x4_t four4{vdupq_n_f32(4.0f)};
const float32x4_t step4{vdupq_n_f32(step)};
const float32x4_t gain4{vdupq_n_f32(gain)};
float32x4_t step_count4{vdupq_n_f32(0.0f)};
step_count4 = vsetq_lane_f32(1.0f, step_count4, 1);
step_count4 = vsetq_lane_f32(2.0f, step_count4, 2);
step_count4 = vsetq_lane_f32(3.0f, step_count4, 3);
do {
const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
float32x4_t dry4 = vld1q_f32(&dst[pos]);
dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
step_count4 = vaddq_f32(step_count4, four4);
vst1q_f32(&dst[pos], dry4);
pos += 4;
} while(--todo);
/* NOTE: step_count4 now represents the next four counts after the
* last four mixed samples, so the lowest element represents the
* next step count to apply.
*/
step_count = vgetq_lane_f32(step_count4, 0);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(size_t leftover{min_len&3};leftover;++pos,--leftover)
{
dst[pos] += InSamples[pos] * (gain + step*step_count);
step_count += 1.0f;
}
if(pos == Counter)
gain = TargetGain;
else
gain += step*step_count;
/* Mix until pos is aligned with 4 or the mix is done. */
for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
dst[pos] += InSamples[pos] * gain;
}
CurrentGain = gain;
if(!(std::abs(gain) > GainSilenceThreshold))
return;
if(size_t todo{(InSamples.size()-pos) >> 2})
{
const float32x4_t gain4 = vdupq_n_f32(gain);
do {
const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
float32x4_t dry4 = vld1q_f32(&dst[pos]);
dry4 = vmlaq_f32(dry4, val4, gain4);
vst1q_f32(&dst[pos], dry4);
pos += 4;
} while(--todo);
}
for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
dst[pos] += InSamples[pos] * gain;
}
} // namespace
template<>
void Resample_<LerpTag,NEONTag>(const InterpState*, const float *RESTRICT src, uint frac,
const uint increment, const al::span<float> dst)
{
ASSUME(frac < MixerFracOne);
const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4));
const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne);
const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask);
alignas(16) uint pos_[4], frac_[4];
int32x4_t pos4, frac4;
InitPosArrays(frac, increment, frac_, pos_);
frac4 = vld1q_s32(reinterpret_cast<int*>(frac_));
pos4 = vld1q_s32(reinterpret_cast<int*>(pos_));
auto dst_iter = dst.begin();
for(size_t todo{dst.size()>>2};todo;--todo)
{
const int pos0{vgetq_lane_s32(pos4, 0)};
const int pos1{vgetq_lane_s32(pos4, 1)};
const int pos2{vgetq_lane_s32(pos4, 2)};
const int pos3{vgetq_lane_s32(pos4, 3)};
const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])};
const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
/* val1 + (val2-val1)*mu */
const float32x4_t r0{vsubq_f32(val2, val1)};
const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)};
const float32x4_t out{vmlaq_f32(val1, mu, r0)};
vst1q_f32(dst_iter, out);
dst_iter += 4;
frac4 = vaddq_s32(frac4, increment4);
pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits));
frac4 = vandq_s32(frac4, fracMask4);
}
if(size_t todo{dst.size()&3})
{
src += static_cast<uint>(vgetq_lane_s32(pos4, 0));
frac = static_cast<uint>(vgetq_lane_s32(frac4, 0));
do {
*(dst_iter++) = lerpf(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
frac += increment;
src += frac>>MixerFracBits;
frac &= MixerFracMask;
} while(--todo);
}
}
template<>
void Resample_<CubicTag,NEONTag>(const InterpState *state, const float *RESTRICT src, uint frac,
const uint increment, const al::span<float> dst)
{
ASSUME(frac < MixerFracOne);
const CubicCoefficients *RESTRICT filter = al::assume_aligned<16>(state->cubic.filter);
src -= 1;
for(float &out_sample : dst)
{
const uint pi{frac >> CubicPhaseDiffBits};
const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
const float32x4_t pf4{vdupq_n_f32(pf)};
/* Apply the phase interpolated filter. */
/* f = fil + pf*phd */
const float32x4_t f4 = vmlaq_f32(vld1q_f32(filter[pi].mCoeffs), pf4,
vld1q_f32(filter[pi].mDeltas));
/* r = f*src */
float32x4_t r4{vmulq_f32(f4, vld1q_f32(src))};
r4 = vaddq_f32(r4, vrev64q_f32(r4));
out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>MixerFracBits;
frac &= MixerFracMask;
}
}
template<>
void Resample_<BSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src, uint frac,
const uint increment, const al::span<float> dst)
{
const float *const filter{state->bsinc.filter};
const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)};
const size_t m{state->bsinc.m};
ASSUME(m > 0);
ASSUME(frac < MixerFracOne);
src -= state->bsinc.l;
for(float &out_sample : dst)
{
// Calculate the phase index and factor.
const uint pi{frac >> BSincPhaseDiffBits};
const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
// Apply the scale and phase interpolated filter.
float32x4_t r4{vdupq_n_f32(0.0f)};
{
const float32x4_t pf4{vdupq_n_f32(pf)};
const float *RESTRICT fil{filter + m*pi*2};
const float *RESTRICT phd{fil + m};
const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
const float *RESTRICT spd{scd + m};
size_t td{m >> 2};
size_t j{0u};
do {
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const float32x4_t f4 = vmlaq_f32(
vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])),
pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j])));
/* r += f*src */
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
j += 4;
} while(--td);
}
r4 = vaddq_f32(r4, vrev64q_f32(r4));
out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>MixerFracBits;
frac &= MixerFracMask;
}
}
template<>
void Resample_<FastBSincTag,NEONTag>(const InterpState *state, const float *RESTRICT src, uint frac,
const uint increment, const al::span<float> dst)
{
const float *const filter{state->bsinc.filter};
const size_t m{state->bsinc.m};
ASSUME(m > 0);
ASSUME(frac < MixerFracOne);
src -= state->bsinc.l;
for(float &out_sample : dst)
{
// Calculate the phase index and factor.
const uint pi{frac >> BSincPhaseDiffBits};
const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
// Apply the phase interpolated filter.
float32x4_t r4{vdupq_n_f32(0.0f)};
{
const float32x4_t pf4{vdupq_n_f32(pf)};
const float *RESTRICT fil{filter + m*pi*2};
const float *RESTRICT phd{fil + m};
size_t td{m >> 2};
size_t j{0u};
do {
/* f = fil + pf*phd */
const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j]));
/* r += f*src */
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
j += 4;
} while(--td);
}
r4 = vaddq_f32(r4, vrev64q_f32(r4));
out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>MixerFracBits;
frac &= MixerFracMask;
}
}
template<>
void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
template<>
void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
{
MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
BufferSize);
}
template<>
void MixDirectHrtf_<NEONTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
{
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
IrSize, BufferSize);
}
template<>
void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
{
const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
const auto min_len = minz(Counter, InSamples.size());
const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
for(FloatBufferLine &output : OutBuffer)
MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++,
*TargetGains++, delta, min_len, aligned_len, Counter);
}
template<>
void Mix_<NEONTag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
const float TargetGain, const size_t Counter)
{
const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
const auto min_len = minz(Counter, InSamples.size());
const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len,
aligned_len, Counter);
}