axmol/core/renderer/backend/ProgramState.cpp

594 lines
17 KiB
C++

/****************************************************************************
Copyright (c) 2018-2019 Xiamen Yaji Software Co., Ltd.
Copyright (c) 2021 Bytedance Inc.
https://axys1.github.io/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "renderer/backend/ProgramState.h"
#include "renderer/backend/ProgramCache.h"
#include "renderer/backend/Program.h"
#include "renderer/backend/Texture.h"
#include "renderer/backend/Types.h"
#include "base/CCEventDispatcher.h"
#include "base/CCEventType.h"
#include "base/CCDirector.h"
#include <algorithm>
#include "xxhash.h"
#ifdef AX_USE_METAL
# include "glsl_optimizer.h"
#endif
NS_AX_BACKEND_BEGIN
namespace
{
#define MAT3_SIZE 36
#define MAT4X3_SIZE 48
#define VEC3_SIZE 12
#define VEC4_SIZE 16
#define BVEC3_SIZE 3
#define BVEC4_SIZE 4
#define IVEC3_SIZE 12
#define IVEC4_SIZE 16
void convertbVec3TobVec4(const bool* src, bool* dst)
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = false;
}
void convertiVec3ToiVec4(const int* src, int* dst)
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = 0;
}
void convertVec3ToVec4(const float* src, float* dst)
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = 0.0f;
}
void convertMat3ToMat4x3(const float* src, float* dst)
{
dst[3] = dst[7] = dst[11] = 0.0f;
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[4] = src[3];
dst[5] = src[4];
dst[6] = src[5];
dst[8] = src[6];
dst[9] = src[7];
dst[10] = src[8];
}
} // namespace
// static field
std::vector<ProgramState::AutoBindingResolver*> ProgramState::_customAutoBindingResolvers;
TextureInfo::TextureInfo(std::vector<int>&& _slots, std::vector<backend::TextureBackend*>&& _textures)
: TextureInfo(std::move(_slots), std::vector<int>(_slots.size(), 0), std::move(_textures))
{}
TextureInfo::TextureInfo(std::vector<int>&& _slots,
std::vector<int>&& _indexs,
std::vector<backend::TextureBackend*>&& _textures)
: slots(std::move(_slots)), indexs(std::move(_indexs)), textures(std::move(_textures))
{
retainTextures();
}
/* CLASS TextureInfo */
TextureInfo::TextureInfo(const TextureInfo& other)
{
this->assign(other);
}
TextureInfo::TextureInfo(TextureInfo&& other)
{
this->assign(std::move(other));
}
TextureInfo::~TextureInfo()
{
releaseTextures();
}
void TextureInfo::retainTextures()
{
for (auto&& texture : textures)
AX_SAFE_RETAIN(texture);
}
void TextureInfo::releaseTextures()
{
for (auto&& texture : textures)
AX_SAFE_RELEASE(texture);
textures.clear();
}
TextureInfo& TextureInfo::operator=(const TextureInfo& other) noexcept
{
this->assign(other);
return *this;
}
TextureInfo& TextureInfo::operator=(TextureInfo&& other) noexcept
{
this->assign(std::move(other));
return *this;
}
void TextureInfo::assign(const TextureInfo& other)
{
if (this != &other)
{
releaseTextures();
indexs = other.indexs;
slots = other.slots;
textures = other.textures;
retainTextures();
#if AX_ENABLE_CACHE_TEXTURE_DATA
location = other.location;
#endif
}
}
void TextureInfo::assign(TextureInfo&& other)
{
if (this != &other)
{
releaseTextures();
indexs = std::move(other.indexs);
slots = std::move(other.slots);
textures = std::move(other.textures);
#if AX_ENABLE_CACHE_TEXTURE_DATA
location = other.location;
other.location = -1;
#endif
}
}
/* CLASS ProgramState */
ProgramState::ProgramState(Program* program)
{
init(program);
}
bool ProgramState::init(Program* program)
{
AX_SAFE_RETAIN(program);
_program = program;
_vertexLayout = program->getVertexLayout();
_ownVertexLayout = false;
_vertexUniformBufferSize = _program->getUniformBufferSize(ShaderStage::VERTEX);
_vertexUniformBuffer = (char*)calloc(1, _vertexUniformBufferSize);
#ifdef AX_USE_METAL
_fragmentUniformBufferSize = _program->getUniformBufferSize(ShaderStage::FRAGMENT);
_fragmentUniformBuffer = (char*)calloc(1, _fragmentUniformBufferSize);
#endif
#ifdef AX_USE_METAL
_uniformHashState = XXH32_createState();
#endif
#if AX_ENABLE_CACHE_TEXTURE_DATA
_backToForegroundListener =
EventListenerCustom::create(EVENT_RENDERER_RECREATED, [this](EventCustom*) { this->resetUniforms(); });
Director::getInstance()->getEventDispatcher()->addEventListenerWithFixedPriority(_backToForegroundListener, -1);
#endif
return true;
}
void ProgramState::resetUniforms()
{
#if AX_ENABLE_CACHE_TEXTURE_DATA
if (_program == nullptr)
return;
const auto& uniformLocation = _program->getAllUniformsLocation();
for (const auto& uniform : uniformLocation)
{
auto location = uniform.second;
auto mappedLocation = _program->getMappedLocation(location);
// check if current location had been set before
if (_vertexTextureInfos.find(location) != _vertexTextureInfos.end())
{
_vertexTextureInfos[location].location = mappedLocation;
}
}
#endif
}
ProgramState::~ProgramState()
{
#ifdef AX_USE_METAL
XXH32_freeState(_uniformHashState);
#endif
AX_SAFE_RELEASE(_program);
AX_SAFE_FREE(_vertexUniformBuffer);
AX_SAFE_FREE(_fragmentUniformBuffer);
#if AX_ENABLE_CACHE_TEXTURE_DATA
Director::getInstance()->getEventDispatcher()->removeEventListener(_backToForegroundListener);
#endif
if (_ownVertexLayout)
AX_SAFE_DELETE(_vertexLayout);
}
ProgramState* ProgramState::clone() const
{
ProgramState* cp = new ProgramState(_program);
cp->_vertexTextureInfos = _vertexTextureInfos;
cp->_fragmentTextureInfos = _fragmentTextureInfos;
memcpy(cp->_vertexUniformBuffer, _vertexUniformBuffer, _vertexUniformBufferSize);
cp->_ownVertexLayout = _ownVertexLayout;
cp->_vertexLayout = !_ownVertexLayout ? _vertexLayout : new VertexLayout(*_vertexLayout);
#ifdef AX_USE_METAL
memcpy(cp->_fragmentUniformBuffer, _fragmentUniformBuffer, _fragmentUniformBufferSize);
#endif
cp->_uniformID = _uniformID;
return cp;
}
backend::UniformLocation ProgramState::getUniformLocation(backend::Uniform name) const
{
return _program->getUniformLocation(name);
}
backend::UniformLocation ProgramState::getUniformLocation(std::string_view uniform) const
{
return _program->getUniformLocation(uniform);
}
void ProgramState::setCallbackUniform(const backend::UniformLocation& uniformLocation, const UniformCallback& callback)
{
_callbackUniforms[uniformLocation] = callback;
}
void ProgramState::setUniform(const backend::UniformLocation& uniformLocation, const void* data, std::size_t size)
{
switch (uniformLocation.shaderStage)
{
case backend::ShaderStage::VERTEX:
setVertexUniform(uniformLocation.location[0], data, size, uniformLocation.location[1]);
break;
case backend::ShaderStage::FRAGMENT:
setFragmentUniform(uniformLocation.location[1], data, size);
break;
case backend::ShaderStage::VERTEX_AND_FRAGMENT:
setVertexUniform(uniformLocation.location[0], data, size, uniformLocation.location[1]);
setFragmentUniform(uniformLocation.location[1], data, size);
break;
default:
break;
}
}
#ifdef AX_USE_METAL
void ProgramState::convertAndCopyUniformData(const backend::UniformInfo& uniformInfo,
const void* srcData,
std::size_t srcSize,
void* buffer)
{
auto basicType = static_cast<glslopt_basic_type>(uniformInfo.type);
char* convertedData = new char[uniformInfo.size];
memset(convertedData, 0, uniformInfo.size);
int offset = 0;
switch (basicType)
{
case kGlslTypeFloat:
{
if (uniformInfo.isMatrix)
{
for (int i = 0; i < uniformInfo.count; i++)
{
if (offset >= srcSize)
break;
convertMat3ToMat4x3((float*)srcData + offset, (float*)convertedData + i * MAT4X3_SIZE);
offset += MAT3_SIZE;
}
}
else
{
for (int i = 0; i < uniformInfo.count; i++)
{
if (offset >= srcSize)
break;
convertVec3ToVec4((float*)srcData + offset, (float*)convertedData + i * VEC4_SIZE);
offset += VEC3_SIZE;
}
}
break;
}
case kGlslTypeBool:
{
for (int i = 0; i < uniformInfo.count; i++)
{
if (offset >= srcSize)
break;
convertbVec3TobVec4((bool*)srcData + offset, (bool*)convertedData + i * BVEC4_SIZE);
offset += BVEC3_SIZE;
}
break;
}
case kGlslTypeInt:
{
for (int i = 0; i < uniformInfo.count; i++)
{
if (offset >= srcSize)
break;
convertiVec3ToiVec4((int*)srcData + offset, (int*)convertedData + i * IVEC4_SIZE);
offset += IVEC3_SIZE;
}
break;
}
default:
AX_ASSERT(false);
break;
}
memcpy((char*)buffer + uniformInfo.location, convertedData, uniformInfo.size);
AX_SAFE_DELETE_ARRAY(convertedData);
}
#endif
void ProgramState::setVertexUniform(int location, const void* data, std::size_t size, std::size_t offset)
{
if (location < 0)
return;
// float3 etc in Metal has both sizeof and alignment same as float4, need convert to correct laytout
#ifdef AX_USE_METAL
const auto& uniformInfo = _program->getActiveUniformInfo(ShaderStage::VERTEX, location);
if (uniformInfo.needConvert)
{
convertAndCopyUniformData(uniformInfo, data, size, _vertexUniformBuffer);
}
else
{
memcpy(_vertexUniformBuffer + location, data, size);
}
#else
memcpy(_vertexUniformBuffer + offset, data, size);
#endif
}
void ProgramState::setFragmentUniform(int location, const void* data, std::size_t size)
{
if (location < 0)
return;
// float3 etc in Metal has both sizeof and alignment same as float4, need convert to correct laytout
#ifdef AX_USE_METAL
const auto& uniformInfo = _program->getActiveUniformInfo(ShaderStage::FRAGMENT, location);
if (uniformInfo.needConvert)
{
convertAndCopyUniformData(uniformInfo, data, size, _fragmentUniformBuffer);
}
else
{
memcpy(_fragmentUniformBuffer + location, data, size);
}
#endif
}
void ProgramState::setVertexAttrib(std::string_view name,
std::size_t index,
VertexFormat format,
std::size_t offset,
bool needToBeNormallized)
{
ensureVertexLayoutMutable();
_vertexLayout->setAttribute(name, index, format, offset, needToBeNormallized);
}
void ProgramState::setVertexStride(uint32_t stride)
{
ensureVertexLayoutMutable();
_vertexLayout->setStride(stride);
}
void ProgramState::setVertexLayout(const VertexLayout& vertexLayout) {
ensureVertexLayoutMutable();
*_vertexLayout = vertexLayout;
}
void ProgramState::ensureVertexLayoutMutable()
{
if (!_ownVertexLayout)
{
_vertexLayout = new VertexLayout();
_ownVertexLayout = true;
}
}
void ProgramState::updateUniformID(int uniformID)
{
if (uniformID == -1)
{
#ifdef AX_USE_METAL
XXH32_reset(_uniformHashState, 0);
XXH32_update(_uniformHashState, _vertexUniformBuffer, _vertexUniformBufferSize);
XXH32_update(_uniformHashState, _fragmentUniformBuffer, _fragmentUniformBufferSize);
_uniformID = XXH32_digest(_uniformHashState);
#else
_uniformID = XXH32(_vertexUniformBuffer, _vertexUniformBufferSize, 0);
#endif
}
else
{
_uniformID = uniformID;
}
}
void ProgramState::setTexture(backend::TextureBackend* texture)
{
for (int slot = 0; slot < texture->getCount() && slot < AX_META_TEXTURES; ++slot)
{
auto location = getUniformLocation((backend::Uniform)(backend::Uniform::TEXTURE + slot));
setTexture(location, slot, slot, texture);
}
}
void ProgramState::setTexture(const backend::UniformLocation& uniformLocation,
int slot,
backend::TextureBackend* texture)
{
setTexture(uniformLocation, slot, 0, texture);
}
void ProgramState::setTexture(const backend::UniformLocation& uniformLocation,
int slot,
int index,
backend::TextureBackend* texture)
{
switch (uniformLocation.shaderStage)
{
case backend::ShaderStage::VERTEX:
setTexture(uniformLocation.location[0], slot, index, texture, _vertexTextureInfos);
break;
case backend::ShaderStage::FRAGMENT:
setTexture(uniformLocation.location[1], slot, index, texture, _fragmentTextureInfos);
break;
case backend::ShaderStage::VERTEX_AND_FRAGMENT:
setTexture(uniformLocation.location[0], slot, index, texture, _vertexTextureInfos);
setTexture(uniformLocation.location[1], slot, index, texture, _fragmentTextureInfos);
break;
default:
break;
}
}
void ProgramState::setTextureArray(const backend::UniformLocation& uniformLocation,
std::vector<int> slots,
std::vector<backend::TextureBackend*> textures)
{
switch (uniformLocation.shaderStage)
{
case backend::ShaderStage::VERTEX:
setTextureArray(uniformLocation.location[0], std::move(slots), std::move(textures), _vertexTextureInfos);
break;
case backend::ShaderStage::FRAGMENT:
setTextureArray(uniformLocation.location[1], std::move(slots), std::move(textures), _fragmentTextureInfos);
break;
case backend::ShaderStage::VERTEX_AND_FRAGMENT:
setTextureArray(uniformLocation.location[0], std::move(slots), std::move(textures), _vertexTextureInfos);
setTextureArray(uniformLocation.location[1], std::move(slots), std::move(textures), _fragmentTextureInfos);
break;
default:
break;
}
}
void ProgramState::setTexture(int location,
int slot,
int index,
backend::TextureBackend* texture,
std::unordered_map<int, TextureInfo>& textureInfo)
{
if (location < 0)
return;
auto& info = textureInfo[location];
info = {{slot}, {index}, {texture}};
#if AX_ENABLE_CACHE_TEXTURE_DATA
info.location = location;
#endif
}
void ProgramState::setTextureArray(int location,
std::vector<int> slots,
std::vector<backend::TextureBackend*> textures,
std::unordered_map<int, TextureInfo>& textureInfo)
{
assert(slots.size() == textures.size());
auto& info = textureInfo[location];
info = {std::move(slots), std::move(textures)};
#if AX_ENABLE_CACHE_TEXTURE_DATA
info.location = location;
#endif
}
void ProgramState::setParameterAutoBinding(std::string_view uniform, std::string_view autoBinding)
{
_autoBindings.emplace(uniform, autoBinding);
applyAutoBinding(uniform, autoBinding);
}
void ProgramState::applyAutoBinding(std::string_view uniformName, std::string_view autoBinding)
{
for (const auto resolver : _customAutoBindingResolvers)
{
if (resolver->resolveAutoBinding(this, uniformName, autoBinding))
break;
}
}
ProgramState::AutoBindingResolver::AutoBindingResolver()
{
_customAutoBindingResolvers.emplace_back(this);
}
ProgramState::AutoBindingResolver::~AutoBindingResolver()
{
auto& list = _customAutoBindingResolvers;
list.erase(std::remove(list.begin(), list.end(), this), list.end());
}
void ProgramState::getVertexUniformBuffer(char** buffer, std::size_t& size) const
{
*buffer = _vertexUniformBuffer;
size = _vertexUniformBufferSize;
}
void ProgramState::getFragmentUniformBuffer(char** buffer, std::size_t& size) const
{
*buffer = _fragmentUniformBuffer;
size = _fragmentUniformBufferSize;
}
NS_AX_BACKEND_END