mirror of https://github.com/axmolengine/axmol.git
1126 lines
35 KiB
C++
1126 lines
35 KiB
C++
/*
|
|
Copyright 2011 Google Inc.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
#ifndef GrRedBlackTree_DEFINED
|
|
#define GrRedBlackTree_DEFINED
|
|
|
|
#include "GrNoncopyable.h"
|
|
|
|
template <typename T>
|
|
class GrLess {
|
|
public:
|
|
bool operator()(const T& a, const T& b) const { return a < b; }
|
|
};
|
|
|
|
template <typename T>
|
|
class GrLess<T*> {
|
|
public:
|
|
bool operator()(const T* a, const T* b) const { return *a < *b; }
|
|
};
|
|
|
|
/**
|
|
* In debug build this will cause full traversals of the tree when the validate
|
|
* is called on insert and remove. Useful for debugging but very slow.
|
|
*/
|
|
#define DEEP_VALIDATE 0
|
|
|
|
/**
|
|
* A sorted tree that uses the red-black tree algorithm. Allows duplicate
|
|
* entries. Data is of type T and is compared using functor C. A single C object
|
|
* will be created and used for all comparisons.
|
|
*/
|
|
template <typename T, typename C = GrLess<T> >
|
|
class GrRedBlackTree : public GrNoncopyable {
|
|
public:
|
|
/**
|
|
* Creates an empty tree.
|
|
*/
|
|
GrRedBlackTree();
|
|
virtual ~GrRedBlackTree();
|
|
|
|
/**
|
|
* Class used to iterater through the tree. The valid range of the tree
|
|
* is given by [begin(), end()). It is legal to dereference begin() but not
|
|
* end(). The iterator has preincrement and predecrement operators, it is
|
|
* legal to decerement end() if the tree is not empty to get the last
|
|
* element. However, a last() helper is provided.
|
|
*/
|
|
class Iter;
|
|
|
|
/**
|
|
* Add an element to the tree. Duplicates are allowed.
|
|
* @param t the item to add.
|
|
* @return an iterator to the item.
|
|
*/
|
|
Iter insert(const T& t);
|
|
|
|
/**
|
|
* Removes all items in the tree.
|
|
*/
|
|
void reset();
|
|
|
|
/**
|
|
* @return true if there are no items in the tree, false otherwise.
|
|
*/
|
|
bool empty() const {return 0 == fCount;}
|
|
|
|
/**
|
|
* @return the number of items in the tree.
|
|
*/
|
|
int count() const {return fCount;}
|
|
|
|
/**
|
|
* @return an iterator to the first item in sorted order, or end() if empty
|
|
*/
|
|
Iter begin();
|
|
/**
|
|
* Gets the last valid iterator. This is always valid, even on an empty.
|
|
* However, it can never be dereferenced. Useful as a loop terminator.
|
|
* @return an iterator that is just beyond the last item in sorted order.
|
|
*/
|
|
Iter end();
|
|
/**
|
|
* @return an iterator that to the last item in sorted order, or end() if
|
|
* empty.
|
|
*/
|
|
Iter last();
|
|
|
|
/**
|
|
* Finds an occurrence of an item.
|
|
* @param t the item to find.
|
|
* @return an iterator to a tree element equal to t or end() if none exists.
|
|
*/
|
|
Iter find(const T& t);
|
|
/**
|
|
* Finds the first of an item in iterator order.
|
|
* @param t the item to find.
|
|
* @return an iterator to the first element equal to t or end() if
|
|
* none exists.
|
|
*/
|
|
Iter findFirst(const T& t);
|
|
/**
|
|
* Finds the last of an item in iterator order.
|
|
* @param t the item to find.
|
|
* @return an iterator to the last element equal to t or end() if
|
|
* none exists.
|
|
*/
|
|
Iter findLast(const T& t);
|
|
/**
|
|
* Gets the number of items in the tree equal to t.
|
|
* @param t the item to count.
|
|
* @return number of items equal to t in the tree
|
|
*/
|
|
int countOf(const T& t) const;
|
|
|
|
/**
|
|
* Removes the item indicated by an iterator. The iterator will not be valid
|
|
* afterwards.
|
|
*
|
|
* @param iter iterator of item to remove. Must be valid (not end()).
|
|
*/
|
|
void remove(const Iter& iter) { deleteAtNode(iter.fN); }
|
|
|
|
static void UnitTest();
|
|
|
|
private:
|
|
enum Color {
|
|
kRed_Color,
|
|
kBlack_Color
|
|
};
|
|
|
|
enum Child {
|
|
kLeft_Child = 0,
|
|
kRight_Child = 1
|
|
};
|
|
|
|
struct Node {
|
|
T fItem;
|
|
Color fColor;
|
|
|
|
Node* fParent;
|
|
Node* fChildren[2];
|
|
};
|
|
|
|
void rotateRight(Node* n);
|
|
void rotateLeft(Node* n);
|
|
|
|
static Node* SuccessorNode(Node* x);
|
|
static Node* PredecessorNode(Node* x);
|
|
|
|
void deleteAtNode(Node* x);
|
|
static void RecursiveDelete(Node* x);
|
|
|
|
int onCountOf(const Node* n, const T& t) const;
|
|
|
|
#if GR_DEBUG
|
|
void validate() const;
|
|
int checkNode(Node* n, int* blackHeight) const;
|
|
// checks relationship between a node and its children. allowRedRed means
|
|
// node may be in an intermediate state where a red parent has a red child.
|
|
bool validateChildRelations(const Node* n, bool allowRedRed) const;
|
|
// place to stick break point if validateChildRelations is failing.
|
|
bool validateChildRelationsFailed() const { return false; }
|
|
#else
|
|
void validate() const {}
|
|
#endif
|
|
|
|
int fCount;
|
|
Node* fRoot;
|
|
Node* fFirst;
|
|
Node* fLast;
|
|
|
|
const C fComp;
|
|
};
|
|
|
|
template <typename T, typename C>
|
|
class GrRedBlackTree<T,C>::Iter {
|
|
public:
|
|
Iter() {};
|
|
Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
|
|
Iter& operator =(const Iter& i) {
|
|
fN = i.fN;
|
|
fTree = i.fTree;
|
|
return *this;
|
|
}
|
|
// altering the sort value of the item using this method will cause
|
|
// errors.
|
|
T& operator *() const { return fN->fItem; }
|
|
bool operator ==(const Iter& i) const {
|
|
return fN == i.fN && fTree == i.fTree;
|
|
}
|
|
bool operator !=(const Iter& i) const { return !(*this == i); }
|
|
Iter& operator ++() {
|
|
GrAssert(*this != fTree->end());
|
|
fN = SuccessorNode(fN);
|
|
return *this;
|
|
}
|
|
Iter& operator --() {
|
|
GrAssert(*this != fTree->begin());
|
|
if (NULL != fN) {
|
|
fN = PredecessorNode(fN);
|
|
} else {
|
|
*this = fTree->last();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
friend class GrRedBlackTree;
|
|
explicit Iter(Node* n, GrRedBlackTree* tree) {
|
|
fN = n;
|
|
fTree = tree;
|
|
}
|
|
Node* fN;
|
|
GrRedBlackTree* fTree;
|
|
};
|
|
|
|
template <typename T, typename C>
|
|
GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
|
|
fRoot = NULL;
|
|
fFirst = NULL;
|
|
fLast = NULL;
|
|
fCount = 0;
|
|
validate();
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
GrRedBlackTree<T,C>::~GrRedBlackTree() {
|
|
RecursiveDelete(fRoot);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
|
|
return Iter(fFirst, this);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
|
|
return Iter(NULL, this);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
|
|
return Iter(fLast, this);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
|
|
Node* n = fRoot;
|
|
while (NULL != n) {
|
|
if (fComp(t, n->fItem)) {
|
|
n = n->fChildren[kLeft_Child];
|
|
} else {
|
|
if (!fComp(n->fItem, t)) {
|
|
return Iter(n, this);
|
|
}
|
|
n = n->fChildren[kRight_Child];
|
|
}
|
|
}
|
|
return end();
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
|
|
Node* n = fRoot;
|
|
Node* leftMost = NULL;
|
|
while (NULL != n) {
|
|
if (fComp(t, n->fItem)) {
|
|
n = n->fChildren[kLeft_Child];
|
|
} else {
|
|
if (!fComp(n->fItem, t)) {
|
|
// found one. check if another in left subtree.
|
|
leftMost = n;
|
|
n = n->fChildren[kLeft_Child];
|
|
} else {
|
|
n = n->fChildren[kRight_Child];
|
|
}
|
|
}
|
|
}
|
|
return Iter(leftMost, this);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
|
|
Node* n = fRoot;
|
|
Node* rightMost = NULL;
|
|
while (NULL != n) {
|
|
if (fComp(t, n->fItem)) {
|
|
n = n->fChildren[kLeft_Child];
|
|
} else {
|
|
if (!fComp(n->fItem, t)) {
|
|
// found one. check if another in right subtree.
|
|
rightMost = n;
|
|
}
|
|
n = n->fChildren[kRight_Child];
|
|
}
|
|
}
|
|
return Iter(rightMost, this);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
int GrRedBlackTree<T,C>::countOf(const T& t) const {
|
|
return onCountOf(fRoot, t);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
|
|
// this is count*log(n) :(
|
|
while (NULL != n) {
|
|
if (fComp(t, n->fItem)) {
|
|
n = n->fChildren[kLeft_Child];
|
|
} else {
|
|
if (!fComp(n->fItem, t)) {
|
|
int count = 1;
|
|
count += onCountOf(n->fChildren[kLeft_Child], t);
|
|
count += onCountOf(n->fChildren[kRight_Child], t);
|
|
return count;
|
|
}
|
|
n = n->fChildren[kRight_Child];
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
void GrRedBlackTree<T,C>::reset() {
|
|
RecursiveDelete(fRoot);
|
|
fRoot = NULL;
|
|
fFirst = NULL;
|
|
fLast = NULL;
|
|
fCount = 0;
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
|
validate();
|
|
|
|
++fCount;
|
|
|
|
Node* x = new Node;
|
|
x->fChildren[kLeft_Child] = NULL;
|
|
x->fChildren[kRight_Child] = NULL;
|
|
x->fItem = t;
|
|
|
|
Node* returnNode = x;
|
|
|
|
Node* gp = NULL;
|
|
Node* p = NULL;
|
|
Node* n = fRoot;
|
|
Child pc = kLeft_Child; // suppress uninit warning
|
|
Child gpc;
|
|
|
|
bool first = true;
|
|
bool last = true;
|
|
while (NULL != n) {
|
|
gpc = pc;
|
|
pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
|
|
first = first && kLeft_Child == pc;
|
|
last = last && kRight_Child == pc;
|
|
gp = p;
|
|
p = n;
|
|
n = p->fChildren[pc];
|
|
}
|
|
if (last) {
|
|
fLast = x;
|
|
}
|
|
if (first) {
|
|
fFirst = x;
|
|
}
|
|
|
|
if (NULL == p) {
|
|
fRoot = x;
|
|
x->fColor = kBlack_Color;
|
|
x->fParent = NULL;
|
|
GrAssert(1 == fCount);
|
|
return Iter(returnNode, this);
|
|
}
|
|
p->fChildren[pc] = x;
|
|
x->fColor = kRed_Color;
|
|
x->fParent = p;
|
|
|
|
do {
|
|
// assumptions at loop start.
|
|
GrAssert(NULL != x);
|
|
GrAssert(kRed_Color == x->fColor);
|
|
// can't have a grandparent but no parent.
|
|
GrAssert(!(NULL != gp && NULL == p));
|
|
// make sure pc and gpc are correct
|
|
GrAssert(NULL == p || p->fChildren[pc] == x);
|
|
GrAssert(NULL == gp || gp->fChildren[gpc] == p);
|
|
|
|
// if x's parent is black then we didn't violate any of the
|
|
// red/black properties when we added x as red.
|
|
if (kBlack_Color == p->fColor) {
|
|
return Iter(returnNode, this);
|
|
}
|
|
// gp must be valid because if p was the root then it is black
|
|
GrAssert(NULL != gp);
|
|
// gp must be black since it's child, p, is red.
|
|
GrAssert(kBlack_Color == gp->fColor);
|
|
|
|
|
|
// x and its parent are red, violating red-black property.
|
|
Node* u = gp->fChildren[1-gpc];
|
|
// if x's uncle (p's sibling) is also red then we can flip
|
|
// p and u to black and make gp red. But then we have to recurse
|
|
// up to gp since it's parent may also be red.
|
|
if (NULL != u && kRed_Color == u->fColor) {
|
|
p->fColor = kBlack_Color;
|
|
u->fColor = kBlack_Color;
|
|
gp->fColor = kRed_Color;
|
|
x = gp;
|
|
p = x->fParent;
|
|
if (NULL == p) {
|
|
// x (prev gp) is the root, color it black and be done.
|
|
GrAssert(fRoot == x);
|
|
x->fColor = kBlack_Color;
|
|
validate();
|
|
return Iter(returnNode, this);
|
|
}
|
|
gp = p->fParent;
|
|
pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
|
|
kRight_Child;
|
|
if (NULL != gp) {
|
|
gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
|
|
kRight_Child;
|
|
}
|
|
continue;
|
|
} break;
|
|
} while (true);
|
|
// Here p is red but u is black and we still have to resolve the fact
|
|
// that x and p are both red.
|
|
GrAssert(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
|
|
GrAssert(kRed_Color == x->fColor);
|
|
GrAssert(kRed_Color == p->fColor);
|
|
GrAssert(kBlack_Color == gp->fColor);
|
|
|
|
// make x be on the same side of p as p is of gp. If it isn't already
|
|
// the case then rotate x up to p and swap their labels.
|
|
if (pc != gpc) {
|
|
if (kRight_Child == pc) {
|
|
rotateLeft(p);
|
|
Node* temp = p;
|
|
p = x;
|
|
x = temp;
|
|
pc = kLeft_Child;
|
|
} else {
|
|
rotateRight(p);
|
|
Node* temp = p;
|
|
p = x;
|
|
x = temp;
|
|
pc = kRight_Child;
|
|
}
|
|
}
|
|
// we now rotate gp down, pulling up p to be it's new parent.
|
|
// gp's child, u, that is not affected we know to be black. gp's new
|
|
// child is p's previous child (x's pre-rotation sibling) which must be
|
|
// black since p is red.
|
|
GrAssert(NULL == p->fChildren[1-pc] ||
|
|
kBlack_Color == p->fChildren[1-pc]->fColor);
|
|
// Since gp's two children are black it can become red if p is made
|
|
// black. This leaves the black-height of both of p's new subtrees
|
|
// preserved and removes the red/red parent child relationship.
|
|
p->fColor = kBlack_Color;
|
|
gp->fColor = kRed_Color;
|
|
if (kLeft_Child == pc) {
|
|
rotateRight(gp);
|
|
} else {
|
|
rotateLeft(gp);
|
|
}
|
|
validate();
|
|
return Iter(returnNode, this);
|
|
}
|
|
|
|
|
|
template <typename T, typename C>
|
|
void GrRedBlackTree<T,C>::rotateRight(Node* n) {
|
|
/* d? d?
|
|
* / /
|
|
* n s
|
|
* / \ ---> / \
|
|
* s a? c? n
|
|
* / \ / \
|
|
* c? b? b? a?
|
|
*/
|
|
Node* d = n->fParent;
|
|
Node* s = n->fChildren[kLeft_Child];
|
|
GrAssert(NULL != s);
|
|
Node* b = s->fChildren[kRight_Child];
|
|
|
|
if (NULL != d) {
|
|
Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
|
|
kRight_Child;
|
|
d->fChildren[c] = s;
|
|
} else {
|
|
GrAssert(fRoot == n);
|
|
fRoot = s;
|
|
}
|
|
s->fParent = d;
|
|
s->fChildren[kRight_Child] = n;
|
|
n->fParent = s;
|
|
n->fChildren[kLeft_Child] = b;
|
|
if (NULL != b) {
|
|
b->fParent = n;
|
|
}
|
|
|
|
GR_DEBUGASSERT(validateChildRelations(d, true));
|
|
GR_DEBUGASSERT(validateChildRelations(s, true));
|
|
GR_DEBUGASSERT(validateChildRelations(n, false));
|
|
GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
|
|
GR_DEBUGASSERT(validateChildRelations(b, true));
|
|
GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
|
|
|
|
Node* d = n->fParent;
|
|
Node* s = n->fChildren[kRight_Child];
|
|
GrAssert(NULL != s);
|
|
Node* b = s->fChildren[kLeft_Child];
|
|
|
|
if (NULL != d) {
|
|
Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
|
|
kLeft_Child;
|
|
d->fChildren[c] = s;
|
|
} else {
|
|
GrAssert(fRoot == n);
|
|
fRoot = s;
|
|
}
|
|
s->fParent = d;
|
|
s->fChildren[kLeft_Child] = n;
|
|
n->fParent = s;
|
|
n->fChildren[kRight_Child] = b;
|
|
if (NULL != b) {
|
|
b->fParent = n;
|
|
}
|
|
|
|
GR_DEBUGASSERT(validateChildRelations(d, true));
|
|
GR_DEBUGASSERT(validateChildRelations(s, true));
|
|
GR_DEBUGASSERT(validateChildRelations(n, true));
|
|
GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
|
|
GR_DEBUGASSERT(validateChildRelations(b, true));
|
|
GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
|
|
GrAssert(NULL != x);
|
|
if (NULL != x->fChildren[kRight_Child]) {
|
|
x = x->fChildren[kRight_Child];
|
|
while (NULL != x->fChildren[kLeft_Child]) {
|
|
x = x->fChildren[kLeft_Child];
|
|
}
|
|
return x;
|
|
}
|
|
while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) {
|
|
x = x->fParent;
|
|
}
|
|
return x->fParent;
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
|
|
GrAssert(NULL != x);
|
|
if (NULL != x->fChildren[kLeft_Child]) {
|
|
x = x->fChildren[kLeft_Child];
|
|
while (NULL != x->fChildren[kRight_Child]) {
|
|
x = x->fChildren[kRight_Child];
|
|
}
|
|
return x;
|
|
}
|
|
while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
|
|
x = x->fParent;
|
|
}
|
|
return x->fParent;
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
|
GrAssert(NULL != x);
|
|
validate();
|
|
--fCount;
|
|
|
|
bool hasLeft = NULL != x->fChildren[kLeft_Child];
|
|
bool hasRight = NULL != x->fChildren[kRight_Child];
|
|
Child c = hasLeft ? kLeft_Child : kRight_Child;
|
|
|
|
if (hasLeft && hasRight) {
|
|
// first and last can't have two children.
|
|
GrAssert(fFirst != x);
|
|
GrAssert(fLast != x);
|
|
// if x is an interior node then we find it's successor
|
|
// and swap them.
|
|
Node* s = x->fChildren[kRight_Child];
|
|
while (NULL != s->fChildren[kLeft_Child]) {
|
|
s = s->fChildren[kLeft_Child];
|
|
}
|
|
GrAssert(NULL != s);
|
|
// this might be expensive relative to swapping node ptrs around.
|
|
// depends on T.
|
|
x->fItem = s->fItem;
|
|
x = s;
|
|
c = kRight_Child;
|
|
} else if (NULL == x->fParent) {
|
|
// if x was the root we just replace it with its child and make
|
|
// the new root (if the tree is not empty) black.
|
|
GrAssert(fRoot == x);
|
|
fRoot = x->fChildren[c];
|
|
if (NULL != fRoot) {
|
|
fRoot->fParent = NULL;
|
|
fRoot->fColor = kBlack_Color;
|
|
if (x == fLast) {
|
|
GrAssert(c == kLeft_Child);
|
|
fLast = fRoot;
|
|
} else if (x == fFirst) {
|
|
GrAssert(c == kRight_Child);
|
|
fFirst = fRoot;
|
|
}
|
|
} else {
|
|
GrAssert(fFirst == fLast && x == fFirst);
|
|
fFirst = NULL;
|
|
fLast = NULL;
|
|
GrAssert(0 == fCount);
|
|
}
|
|
delete x;
|
|
validate();
|
|
return;
|
|
}
|
|
|
|
Child pc;
|
|
Node* p = x->fParent;
|
|
pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
|
|
|
|
if (NULL == x->fChildren[c]) {
|
|
if (fLast == x) {
|
|
fLast = p;
|
|
GrAssert(p == PredecessorNode(x));
|
|
} else if (fFirst == x) {
|
|
fFirst = p;
|
|
GrAssert(p == SuccessorNode(x));
|
|
}
|
|
// x has two implicit black children.
|
|
Color xcolor = x->fColor;
|
|
p->fChildren[pc] = NULL;
|
|
delete x;
|
|
x = NULL;
|
|
// when x is red it can be with an implicit black leaf without
|
|
// violating any of the red-black tree properties.
|
|
if (kRed_Color == xcolor) {
|
|
validate();
|
|
return;
|
|
}
|
|
// s is p's other child (x's sibling)
|
|
Node* s = p->fChildren[1-pc];
|
|
|
|
//s cannot be an implicit black node because the original
|
|
// black-height at x was >= 2 and s's black-height must equal the
|
|
// initial black height of x.
|
|
GrAssert(NULL != s);
|
|
GrAssert(p == s->fParent);
|
|
|
|
// assigned in loop
|
|
Node* sl;
|
|
Node* sr;
|
|
bool slRed;
|
|
bool srRed;
|
|
|
|
do {
|
|
// When we start this loop x may already be deleted it is/was
|
|
// p's child on its pc side. x's children are/were black. The
|
|
// first time through the loop they are implict children.
|
|
// On later passes we will be walking up the tree and they will
|
|
// be real nodes.
|
|
// The x side of p has a black-height that is one less than the
|
|
// s side. It must be rebalanced.
|
|
GrAssert(NULL != s);
|
|
GrAssert(p == s->fParent);
|
|
GrAssert(NULL == x || x->fParent == p);
|
|
|
|
//sl and sr are s's children, which may be implicit.
|
|
sl = s->fChildren[kLeft_Child];
|
|
sr = s->fChildren[kRight_Child];
|
|
|
|
// if the s is red we will rotate s and p, swap their colors so
|
|
// that x's new sibling is black
|
|
if (kRed_Color == s->fColor) {
|
|
// if s is red then it's parent must be black.
|
|
GrAssert(kBlack_Color == p->fColor);
|
|
// s's children must also be black since s is red. They can't
|
|
// be implicit since s is red and it's black-height is >= 2.
|
|
GrAssert(NULL != sl && kBlack_Color == sl->fColor);
|
|
GrAssert(NULL != sr && kBlack_Color == sr->fColor);
|
|
p->fColor = kRed_Color;
|
|
s->fColor = kBlack_Color;
|
|
if (kLeft_Child == pc) {
|
|
rotateLeft(p);
|
|
s = sl;
|
|
} else {
|
|
rotateRight(p);
|
|
s = sr;
|
|
}
|
|
sl = s->fChildren[kLeft_Child];
|
|
sr = s->fChildren[kRight_Child];
|
|
}
|
|
// x and s are now both black.
|
|
GrAssert(kBlack_Color == s->fColor);
|
|
GrAssert(NULL == x || kBlack_Color == x->fColor);
|
|
GrAssert(p == s->fParent);
|
|
GrAssert(NULL == x || p == x->fParent);
|
|
|
|
// when x is deleted its subtree will have reduced black-height.
|
|
slRed = (NULL != sl && kRed_Color == sl->fColor);
|
|
srRed = (NULL != sr && kRed_Color == sr->fColor);
|
|
if (!slRed && !srRed) {
|
|
// if s can be made red that will balance out x's removal
|
|
// to make both subtrees of p have the same black-height.
|
|
if (kBlack_Color == p->fColor) {
|
|
s->fColor = kRed_Color;
|
|
// now subtree at p has black-height of one less than
|
|
// p's parent's other child's subtree. We move x up to
|
|
// p and go through the loop again. At the top of loop
|
|
// we assumed x and x's children are black, which holds
|
|
// by above ifs.
|
|
// if p is the root there is no other subtree to balance
|
|
// against.
|
|
x = p;
|
|
p = x->fParent;
|
|
if (NULL == p) {
|
|
GrAssert(fRoot == x);
|
|
validate();
|
|
return;
|
|
} else {
|
|
pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
|
|
kRight_Child;
|
|
|
|
}
|
|
s = p->fChildren[1-pc];
|
|
GrAssert(NULL != s);
|
|
GrAssert(p == s->fParent);
|
|
continue;
|
|
} else if (kRed_Color == p->fColor) {
|
|
// we can make p black and s red. This balance out p's
|
|
// two subtrees and keep the same black-height as it was
|
|
// before the delete.
|
|
s->fColor = kRed_Color;
|
|
p->fColor = kBlack_Color;
|
|
validate();
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
} while (true);
|
|
// if we made it here one or both of sl and sr is red.
|
|
// s and x are black. We make sure that a red child is on
|
|
// the same side of s as s is of p.
|
|
GrAssert(slRed || srRed);
|
|
if (kLeft_Child == pc && !srRed) {
|
|
s->fColor = kRed_Color;
|
|
sl->fColor = kBlack_Color;
|
|
rotateRight(s);
|
|
sr = s;
|
|
s = sl;
|
|
//sl = s->fChildren[kLeft_Child]; don't need this
|
|
} else if (kRight_Child == pc && !slRed) {
|
|
s->fColor = kRed_Color;
|
|
sr->fColor = kBlack_Color;
|
|
rotateLeft(s);
|
|
sl = s;
|
|
s = sr;
|
|
//sr = s->fChildren[kRight_Child]; don't need this
|
|
}
|
|
// now p is either red or black, x and s are red and s's 1-pc
|
|
// child is red.
|
|
// We rotate p towards x, pulling s up to replace p. We make
|
|
// p be black and s takes p's old color.
|
|
// Whether p was red or black, we've increased its pc subtree
|
|
// rooted at x by 1 (balancing the imbalance at the start) and
|
|
// we've also its subtree rooted at s's black-height by 1. This
|
|
// can be balanced by making s's red child be black.
|
|
s->fColor = p->fColor;
|
|
p->fColor = kBlack_Color;
|
|
if (kLeft_Child == pc) {
|
|
GrAssert(NULL != sr && kRed_Color == sr->fColor);
|
|
sr->fColor = kBlack_Color;
|
|
rotateLeft(p);
|
|
} else {
|
|
GrAssert(NULL != sl && kRed_Color == sl->fColor);
|
|
sl->fColor = kBlack_Color;
|
|
rotateRight(p);
|
|
}
|
|
}
|
|
else {
|
|
// x has exactly one implicit black child. x cannot be red.
|
|
// Proof by contradiction: Assume X is red. Let c0 be x's implicit
|
|
// child and c1 be its non-implicit child. c1 must be black because
|
|
// red nodes always have two black children. Then the two subtrees
|
|
// of x rooted at c0 and c1 will have different black-heights.
|
|
GrAssert(kBlack_Color == x->fColor);
|
|
// So we know x is black and has one implicit black child, c0. c1
|
|
// must be red, otherwise the subtree at c1 will have a different
|
|
// black-height than the subtree rooted at c0.
|
|
GrAssert(kRed_Color == x->fChildren[c]->fColor);
|
|
// replace x with c1, making c1 black, preserves all red-black tree
|
|
// props.
|
|
Node* c1 = x->fChildren[c];
|
|
if (x == fFirst) {
|
|
GrAssert(c == kRight_Child);
|
|
fFirst = c1;
|
|
while (NULL != fFirst->fChildren[kLeft_Child]) {
|
|
fFirst = fFirst->fChildren[kLeft_Child];
|
|
}
|
|
GrAssert(fFirst == SuccessorNode(x));
|
|
} else if (x == fLast) {
|
|
GrAssert(c == kLeft_Child);
|
|
fLast = c1;
|
|
while (NULL != fLast->fChildren[kRight_Child]) {
|
|
fLast = fLast->fChildren[kRight_Child];
|
|
}
|
|
GrAssert(fLast == PredecessorNode(x));
|
|
}
|
|
c1->fParent = p;
|
|
p->fChildren[pc] = c1;
|
|
c1->fColor = kBlack_Color;
|
|
delete x;
|
|
validate();
|
|
}
|
|
validate();
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
|
|
if (NULL != x) {
|
|
RecursiveDelete(x->fChildren[kLeft_Child]);
|
|
RecursiveDelete(x->fChildren[kRight_Child]);
|
|
delete x;
|
|
}
|
|
}
|
|
|
|
#if GR_DEBUG
|
|
template <typename T, typename C>
|
|
void GrRedBlackTree<T,C>::validate() const {
|
|
if (fCount) {
|
|
GrAssert(NULL == fRoot->fParent);
|
|
GrAssert(NULL != fFirst);
|
|
GrAssert(NULL != fLast);
|
|
|
|
GrAssert(kBlack_Color == fRoot->fColor);
|
|
if (1 == fCount) {
|
|
GrAssert(fFirst == fRoot);
|
|
GrAssert(fLast == fRoot);
|
|
GrAssert(0 == fRoot->fChildren[kLeft_Child]);
|
|
GrAssert(0 == fRoot->fChildren[kRight_Child]);
|
|
}
|
|
} else {
|
|
GrAssert(NULL == fRoot);
|
|
GrAssert(NULL == fFirst);
|
|
GrAssert(NULL == fLast);
|
|
}
|
|
#if DEEP_VALIDATE
|
|
int bh;
|
|
int count = checkNode(fRoot, &bh);
|
|
GrAssert(count == fCount);
|
|
#endif
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
|
|
if (NULL != n) {
|
|
GrAssert(validateChildRelations(n, false));
|
|
if (kBlack_Color == n->fColor) {
|
|
*bh += 1;
|
|
}
|
|
GrAssert(!fComp(n->fItem, fFirst->fItem));
|
|
GrAssert(!fComp(fLast->fItem, n->fItem));
|
|
int leftBh = *bh;
|
|
int rightBh = *bh;
|
|
int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
|
|
int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
|
|
GrAssert(leftBh == rightBh);
|
|
*bh = leftBh;
|
|
return 1 + cl + cr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
|
|
bool allowRedRed) const {
|
|
if (NULL != n) {
|
|
if (NULL != n->fChildren[kLeft_Child] ||
|
|
NULL != n->fChildren[kRight_Child]) {
|
|
if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
if (n->fChildren[kLeft_Child] == n->fParent &&
|
|
NULL != n->fParent) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
if (n->fChildren[kRight_Child] == n->fParent &&
|
|
NULL != n->fParent) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
if (NULL != n->fChildren[kLeft_Child]) {
|
|
if (!allowRedRed &&
|
|
kRed_Color == n->fChildren[kLeft_Child]->fColor &&
|
|
kRed_Color == n->fColor) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
if (n->fChildren[kLeft_Child]->fParent != n) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
|
|
(!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
|
|
!fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
}
|
|
if (NULL != n->fChildren[kRight_Child]) {
|
|
if (!allowRedRed &&
|
|
kRed_Color == n->fChildren[kRight_Child]->fColor &&
|
|
kRed_Color == n->fColor) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
if (n->fChildren[kRight_Child]->fParent != n) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
|
|
(!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
|
|
!fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
|
|
return validateChildRelationsFailed();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#include "GrRandom.h"
|
|
|
|
template <typename T, typename C>
|
|
void GrRedBlackTree<T,C>::UnitTest() {
|
|
GrRedBlackTree<int> tree;
|
|
typedef GrRedBlackTree<int>::Iter iter;
|
|
|
|
GrRandom r;
|
|
|
|
int count[100] = {0};
|
|
// add 10K ints
|
|
for (int i = 0; i < 10000; ++i) {
|
|
int x = r.nextU()%100;
|
|
Iter xi = tree.insert(x);
|
|
GrAssert(*xi == x);
|
|
++count[x];
|
|
}
|
|
|
|
tree.insert(0);
|
|
++count[0];
|
|
tree.insert(99);
|
|
++count[99];
|
|
GrAssert(*tree.begin() == 0);
|
|
GrAssert(*tree.last() == 99);
|
|
GrAssert(--(++tree.begin()) == tree.begin());
|
|
GrAssert(--tree.end() == tree.last());
|
|
GrAssert(tree.count() == 10002);
|
|
|
|
int c = 0;
|
|
// check that we iterate through the correct number of
|
|
// elements and they are properly sorted.
|
|
for (Iter a = tree.begin(); tree.end() != a; ++a) {
|
|
Iter b = a;
|
|
++b;
|
|
++c;
|
|
GrAssert(b == tree.end() || *a <= *b);
|
|
}
|
|
GrAssert(c == tree.count());
|
|
|
|
// check that the tree reports the correct number of each int
|
|
// and that we can iterate through them correctly both forward
|
|
// and backward.
|
|
for (int i = 0; i < 100; ++i) {
|
|
int c;
|
|
c = tree.countOf(i);
|
|
GrAssert(c == count[i]);
|
|
c = 0;
|
|
Iter iter = tree.findFirst(i);
|
|
while (iter != tree.end() && *iter == i) {
|
|
++c;
|
|
++iter;
|
|
}
|
|
GrAssert(count[i] == c);
|
|
c = 0;
|
|
iter = tree.findLast(i);
|
|
if (iter != tree.end()) {
|
|
do {
|
|
if (*iter == i) {
|
|
++c;
|
|
} else {
|
|
break;
|
|
}
|
|
if (iter != tree.begin()) {
|
|
--iter;
|
|
} else {
|
|
break;
|
|
}
|
|
} while (true);
|
|
}
|
|
GrAssert(c == count[i]);
|
|
}
|
|
// remove all the ints between 25 and 74. Randomly chose to remove
|
|
// the first, last, or any entry for each.
|
|
for (int i = 25; i < 75; ++i) {
|
|
while (0 != tree.countOf(i)) {
|
|
--count[i];
|
|
int x = r.nextU() % 3;
|
|
Iter iter;
|
|
switch (x) {
|
|
case 0:
|
|
iter = tree.findFirst(i);
|
|
break;
|
|
case 1:
|
|
iter = tree.findLast(i);
|
|
break;
|
|
case 2:
|
|
default:
|
|
iter = tree.find(i);
|
|
break;
|
|
}
|
|
tree.remove(iter);
|
|
}
|
|
GrAssert(0 == count[i]);
|
|
GrAssert(tree.findFirst(i) == tree.end());
|
|
GrAssert(tree.findLast(i) == tree.end());
|
|
GrAssert(tree.find(i) == tree.end());
|
|
}
|
|
// remove all of the 0 entries. (tests removing begin())
|
|
GrAssert(*tree.begin() == 0);
|
|
GrAssert(*(--tree.end()) == 99);
|
|
while (0 != tree.countOf(0)) {
|
|
--count[0];
|
|
tree.remove(tree.find(0));
|
|
}
|
|
GrAssert(0 == count[0]);
|
|
GrAssert(tree.findFirst(0) == tree.end());
|
|
GrAssert(tree.findLast(0) == tree.end());
|
|
GrAssert(tree.find(0) == tree.end());
|
|
GrAssert(0 < *tree.begin());
|
|
|
|
// remove all the 99 entries (tests removing last()).
|
|
while (0 != tree.countOf(99)) {
|
|
--count[99];
|
|
tree.remove(tree.find(99));
|
|
}
|
|
GrAssert(0 == count[99]);
|
|
GrAssert(tree.findFirst(99) == tree.end());
|
|
GrAssert(tree.findLast(99) == tree.end());
|
|
GrAssert(tree.find(99) == tree.end());
|
|
GrAssert(99 > *(--tree.end()));
|
|
GrAssert(tree.last() == --tree.end());
|
|
|
|
// Make sure iteration still goes through correct number of entries
|
|
// and is still sorted correctly.
|
|
c = 0;
|
|
for (Iter a = tree.begin(); tree.end() != a; ++a) {
|
|
Iter b = a;
|
|
++b;
|
|
++c;
|
|
GrAssert(b == tree.end() || *a <= *b);
|
|
}
|
|
GrAssert(c == tree.count());
|
|
|
|
// repeat check that correct number of each entry is in the tree
|
|
// and iterates correctly both forward and backward.
|
|
for (int i = 0; i < 100; ++i) {
|
|
GrAssert(tree.countOf(i) == count[i]);
|
|
int c = 0;
|
|
Iter iter = tree.findFirst(i);
|
|
while (iter != tree.end() && *iter == i) {
|
|
++c;
|
|
++iter;
|
|
}
|
|
GrAssert(count[i] == c);
|
|
c = 0;
|
|
iter = tree.findLast(i);
|
|
if (iter != tree.end()) {
|
|
do {
|
|
if (*iter == i) {
|
|
++c;
|
|
} else {
|
|
break;
|
|
}
|
|
if (iter != tree.begin()) {
|
|
--iter;
|
|
} else {
|
|
break;
|
|
}
|
|
} while (true);
|
|
}
|
|
GrAssert(count[i] == c);
|
|
}
|
|
|
|
// remove all entries
|
|
while (!tree.empty()) {
|
|
tree.remove(tree.begin());
|
|
}
|
|
|
|
// test reset on empty tree.
|
|
tree.reset();
|
|
}
|
|
|
|
#endif
|