mirror of https://github.com/axmolengine/axmol.git
261 lines
7.1 KiB
C++
261 lines
7.1 KiB
C++
/*
|
|
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include <Box2D/Dynamics/Joints/b2DistanceJoint.h>
|
|
#include <Box2D/Dynamics/b2Body.h>
|
|
#include <Box2D/Dynamics/b2TimeStep.h>
|
|
|
|
// 1-D constrained system
|
|
// m (v2 - v1) = lambda
|
|
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
|
|
// x2 = x1 + h * v2
|
|
|
|
// 1-D mass-damper-spring system
|
|
// m (v2 - v1) + h * d * v2 + h * k *
|
|
|
|
// C = norm(p2 - p1) - L
|
|
// u = (p2 - p1) / norm(p2 - p1)
|
|
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
|
// J = [-u -cross(r1, u) u cross(r2, u)]
|
|
// K = J * invM * JT
|
|
// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
|
|
|
|
void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2,
|
|
const b2Vec2& anchor1, const b2Vec2& anchor2)
|
|
{
|
|
bodyA = b1;
|
|
bodyB = b2;
|
|
localAnchorA = bodyA->GetLocalPoint(anchor1);
|
|
localAnchorB = bodyB->GetLocalPoint(anchor2);
|
|
b2Vec2 d = anchor2 - anchor1;
|
|
length = d.Length();
|
|
}
|
|
|
|
b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def)
|
|
: b2Joint(def)
|
|
{
|
|
m_localAnchorA = def->localAnchorA;
|
|
m_localAnchorB = def->localAnchorB;
|
|
m_length = def->length;
|
|
m_frequencyHz = def->frequencyHz;
|
|
m_dampingRatio = def->dampingRatio;
|
|
m_impulse = 0.0f;
|
|
m_gamma = 0.0f;
|
|
m_bias = 0.0f;
|
|
}
|
|
|
|
void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data)
|
|
{
|
|
m_indexA = m_bodyA->m_islandIndex;
|
|
m_indexB = m_bodyB->m_islandIndex;
|
|
m_localCenterA = m_bodyA->m_sweep.localCenter;
|
|
m_localCenterB = m_bodyB->m_sweep.localCenter;
|
|
m_invMassA = m_bodyA->m_invMass;
|
|
m_invMassB = m_bodyB->m_invMass;
|
|
m_invIA = m_bodyA->m_invI;
|
|
m_invIB = m_bodyB->m_invI;
|
|
|
|
b2Vec2 cA = data.positions[m_indexA].c;
|
|
float32 aA = data.positions[m_indexA].a;
|
|
b2Vec2 vA = data.velocities[m_indexA].v;
|
|
float32 wA = data.velocities[m_indexA].w;
|
|
|
|
b2Vec2 cB = data.positions[m_indexB].c;
|
|
float32 aB = data.positions[m_indexB].a;
|
|
b2Vec2 vB = data.velocities[m_indexB].v;
|
|
float32 wB = data.velocities[m_indexB].w;
|
|
|
|
b2Rot qA(aA), qB(aB);
|
|
|
|
m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
|
|
m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
|
|
m_u = cB + m_rB - cA - m_rA;
|
|
|
|
// Handle singularity.
|
|
float32 length = m_u.Length();
|
|
if (length > b2_linearSlop)
|
|
{
|
|
m_u *= 1.0f / length;
|
|
}
|
|
else
|
|
{
|
|
m_u.Set(0.0f, 0.0f);
|
|
}
|
|
|
|
float32 crAu = b2Cross(m_rA, m_u);
|
|
float32 crBu = b2Cross(m_rB, m_u);
|
|
float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu;
|
|
|
|
// Compute the effective mass matrix.
|
|
m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
|
|
|
|
if (m_frequencyHz > 0.0f)
|
|
{
|
|
float32 C = length - m_length;
|
|
|
|
// Frequency
|
|
float32 omega = 2.0f * b2_pi * m_frequencyHz;
|
|
|
|
// Damping coefficient
|
|
float32 d = 2.0f * m_mass * m_dampingRatio * omega;
|
|
|
|
// Spring stiffness
|
|
float32 k = m_mass * omega * omega;
|
|
|
|
// magic formulas
|
|
float32 h = data.step.dt;
|
|
m_gamma = h * (d + h * k);
|
|
m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
|
|
m_bias = C * h * k * m_gamma;
|
|
|
|
invMass += m_gamma;
|
|
m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
|
|
}
|
|
else
|
|
{
|
|
m_gamma = 0.0f;
|
|
m_bias = 0.0f;
|
|
}
|
|
|
|
if (data.step.warmStarting)
|
|
{
|
|
// Scale the impulse to support a variable time step.
|
|
m_impulse *= data.step.dtRatio;
|
|
|
|
b2Vec2 P = m_impulse * m_u;
|
|
vA -= m_invMassA * P;
|
|
wA -= m_invIA * b2Cross(m_rA, P);
|
|
vB += m_invMassB * P;
|
|
wB += m_invIB * b2Cross(m_rB, P);
|
|
}
|
|
else
|
|
{
|
|
m_impulse = 0.0f;
|
|
}
|
|
|
|
data.velocities[m_indexA].v = vA;
|
|
data.velocities[m_indexA].w = wA;
|
|
data.velocities[m_indexB].v = vB;
|
|
data.velocities[m_indexB].w = wB;
|
|
}
|
|
|
|
void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data)
|
|
{
|
|
b2Vec2 vA = data.velocities[m_indexA].v;
|
|
float32 wA = data.velocities[m_indexA].w;
|
|
b2Vec2 vB = data.velocities[m_indexB].v;
|
|
float32 wB = data.velocities[m_indexB].w;
|
|
|
|
// Cdot = dot(u, v + cross(w, r))
|
|
b2Vec2 vpA = vA + b2Cross(wA, m_rA);
|
|
b2Vec2 vpB = vB + b2Cross(wB, m_rB);
|
|
float32 Cdot = b2Dot(m_u, vpB - vpA);
|
|
|
|
float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse);
|
|
m_impulse += impulse;
|
|
|
|
b2Vec2 P = impulse * m_u;
|
|
vA -= m_invMassA * P;
|
|
wA -= m_invIA * b2Cross(m_rA, P);
|
|
vB += m_invMassB * P;
|
|
wB += m_invIB * b2Cross(m_rB, P);
|
|
|
|
data.velocities[m_indexA].v = vA;
|
|
data.velocities[m_indexA].w = wA;
|
|
data.velocities[m_indexB].v = vB;
|
|
data.velocities[m_indexB].w = wB;
|
|
}
|
|
|
|
bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data)
|
|
{
|
|
if (m_frequencyHz > 0.0f)
|
|
{
|
|
// There is no position correction for soft distance constraints.
|
|
return true;
|
|
}
|
|
|
|
b2Vec2 cA = data.positions[m_indexA].c;
|
|
float32 aA = data.positions[m_indexA].a;
|
|
b2Vec2 cB = data.positions[m_indexB].c;
|
|
float32 aB = data.positions[m_indexB].a;
|
|
|
|
b2Rot qA(aA), qB(aB);
|
|
|
|
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
|
|
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
|
|
b2Vec2 u = cB + rB - cA - rA;
|
|
|
|
float32 length = u.Normalize();
|
|
float32 C = length - m_length;
|
|
C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection);
|
|
|
|
float32 impulse = -m_mass * C;
|
|
b2Vec2 P = impulse * u;
|
|
|
|
cA -= m_invMassA * P;
|
|
aA -= m_invIA * b2Cross(rA, P);
|
|
cB += m_invMassB * P;
|
|
aB += m_invIB * b2Cross(rB, P);
|
|
|
|
data.positions[m_indexA].c = cA;
|
|
data.positions[m_indexA].a = aA;
|
|
data.positions[m_indexB].c = cB;
|
|
data.positions[m_indexB].a = aB;
|
|
|
|
return b2Abs(C) < b2_linearSlop;
|
|
}
|
|
|
|
b2Vec2 b2DistanceJoint::GetAnchorA() const
|
|
{
|
|
return m_bodyA->GetWorldPoint(m_localAnchorA);
|
|
}
|
|
|
|
b2Vec2 b2DistanceJoint::GetAnchorB() const
|
|
{
|
|
return m_bodyB->GetWorldPoint(m_localAnchorB);
|
|
}
|
|
|
|
b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const
|
|
{
|
|
b2Vec2 F = (inv_dt * m_impulse) * m_u;
|
|
return F;
|
|
}
|
|
|
|
float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const
|
|
{
|
|
B2_NOT_USED(inv_dt);
|
|
return 0.0f;
|
|
}
|
|
|
|
void b2DistanceJoint::Dump()
|
|
{
|
|
int32 indexA = m_bodyA->m_islandIndex;
|
|
int32 indexB = m_bodyB->m_islandIndex;
|
|
|
|
b2Log(" b2DistanceJointDef jd;\n");
|
|
b2Log(" jd.bodyA = bodies[%d];\n", indexA);
|
|
b2Log(" jd.bodyB = bodies[%d];\n", indexB);
|
|
b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected);
|
|
b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
|
|
b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
|
|
b2Log(" jd.length = %.15lef;\n", m_length);
|
|
b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz);
|
|
b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio);
|
|
b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
|
|
}
|