axmol/thirdparty/openal/core/voice.cpp

1305 lines
48 KiB
C++

#include "config.h"
#include "voice.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <climits>
#include <cstdint>
#include <iterator>
#include <memory>
#include <new>
#include <stdlib.h>
#include <utility>
#include <vector>
#include "albyte.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "ambidefs.h"
#include "async_event.h"
#include "buffer_storage.h"
#include "context.h"
#include "cpu_caps.h"
#include "devformat.h"
#include "device.h"
#include "filters/biquad.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "fmt_traits.h"
#include "logging.h"
#include "mixer.h"
#include "mixer/defs.h"
#include "mixer/hrtfdefs.h"
#include "opthelpers.h"
#include "resampler_limits.h"
#include "ringbuffer.h"
#include "vector.h"
#include "voice_change.h"
struct CTag;
#ifdef HAVE_SSE
struct SSETag;
#endif
#ifdef HAVE_NEON
struct NEONTag;
#endif
static_assert(!(sizeof(DeviceBase::MixerBufferLine)&15),
"DeviceBase::MixerBufferLine must be a multiple of 16 bytes");
static_assert(!(MaxResamplerEdge&3), "MaxResamplerEdge is not a multiple of 4");
static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!");
static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize,
"MaxPitch and/or BufferLineSize are too large for MixerFracBits!");
Resampler ResamplerDefault{Resampler::Cubic};
namespace {
using uint = unsigned int;
using namespace std::chrono;
using HrtfMixerFunc = void(*)(const float *InSamples, float2 *AccumSamples, const uint IrSize,
const MixHrtfFilter *hrtfparams, const size_t BufferSize);
using HrtfMixerBlendFunc = void(*)(const float *InSamples, float2 *AccumSamples,
const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
const size_t BufferSize);
HrtfMixerFunc MixHrtfSamples{MixHrtf_<CTag>};
HrtfMixerBlendFunc MixHrtfBlendSamples{MixHrtfBlend_<CTag>};
inline MixerOutFunc SelectMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Mix_<SSETag>;
#endif
return Mix_<CTag>;
}
inline MixerOneFunc SelectMixerOne()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Mix_<SSETag>;
#endif
return Mix_<CTag>;
}
inline HrtfMixerFunc SelectHrtfMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtf_<SSETag>;
#endif
return MixHrtf_<CTag>;
}
inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtfBlend_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtfBlend_<SSETag>;
#endif
return MixHrtfBlend_<CTag>;
}
} // namespace
void Voice::InitMixer(al::optional<std::string> resampler)
{
if(resampler)
{
struct ResamplerEntry {
const char name[16];
const Resampler resampler;
};
constexpr ResamplerEntry ResamplerList[]{
{ "none", Resampler::Point },
{ "point", Resampler::Point },
{ "linear", Resampler::Linear },
{ "cubic", Resampler::Cubic },
{ "bsinc12", Resampler::BSinc12 },
{ "fast_bsinc12", Resampler::FastBSinc12 },
{ "bsinc24", Resampler::BSinc24 },
{ "fast_bsinc24", Resampler::FastBSinc24 },
};
const char *str{resampler->c_str()};
if(al::strcasecmp(str, "bsinc") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
str = "bsinc12";
}
else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
str = "cubic";
}
auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList),
[str](const ResamplerEntry &entry) -> bool
{ return al::strcasecmp(str, entry.name) == 0; });
if(iter == std::end(ResamplerList))
ERR("Invalid resampler: %s\n", str);
else
ResamplerDefault = iter->resampler;
}
MixSamplesOut = SelectMixer();
MixSamplesOne = SelectMixerOne();
MixHrtfBlendSamples = SelectHrtfBlendMixer();
MixHrtfSamples = SelectHrtfMixer();
}
namespace {
/* IMA ADPCM Stepsize table */
constexpr int IMAStep_size[89] = {
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19,
21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55,
60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157,
173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449,
494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282,
1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660,
4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442,
11487,12635,13899,15289,16818,18500,20350,22358,24633,27086,29794,
32767
};
/* IMA4 ADPCM Codeword decode table */
constexpr int IMA4Codeword[16] = {
1, 3, 5, 7, 9, 11, 13, 15,
-1,-3,-5,-7,-9,-11,-13,-15,
};
/* IMA4 ADPCM Step index adjust decode table */
constexpr int IMA4Index_adjust[16] = {
-1,-1,-1,-1, 2, 4, 6, 8,
-1,-1,-1,-1, 2, 4, 6, 8
};
/* MSADPCM Adaption table */
constexpr int MSADPCMAdaption[16] = {
230, 230, 230, 230, 307, 409, 512, 614,
768, 614, 512, 409, 307, 230, 230, 230
};
/* MSADPCM Adaption Coefficient tables */
constexpr int MSADPCMAdaptionCoeff[7][2] = {
{ 256, 0 },
{ 512, -256 },
{ 0, 0 },
{ 192, 64 },
{ 240, 0 },
{ 460, -208 },
{ 392, -232 }
};
void SendSourceStoppedEvent(ContextBase *context, uint id)
{
RingBuffer *ring{context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len < 1) return;
AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
AsyncEvent::SourceStateChange)};
evt->u.srcstate.id = id;
evt->u.srcstate.state = AsyncEvent::SrcState::Stop;
ring->writeAdvance(1);
}
const float *DoFilters(BiquadFilter &lpfilter, BiquadFilter &hpfilter, float *dst,
const al::span<const float> src, int type)
{
switch(type)
{
case AF_None:
lpfilter.clear();
hpfilter.clear();
break;
case AF_LowPass:
lpfilter.process(src, dst);
hpfilter.clear();
return dst;
case AF_HighPass:
lpfilter.clear();
hpfilter.process(src, dst);
return dst;
case AF_BandPass:
DualBiquad{lpfilter, hpfilter}.process(src, dst);
return dst;
}
return src.data();
}
template<FmtType Type>
inline void LoadSamples(float *RESTRICT dstSamples, const al::byte *src, const size_t srcChan,
const size_t srcOffset, const size_t srcStep, const size_t /*samplesPerBlock*/,
const size_t samplesToLoad) noexcept
{
constexpr size_t sampleSize{sizeof(typename al::FmtTypeTraits<Type>::Type)};
auto s = src + (srcOffset*srcStep + srcChan)*sampleSize;
al::LoadSampleArray<Type>(dstSamples, s, srcStep, samplesToLoad);
}
template<>
inline void LoadSamples<FmtIMA4>(float *RESTRICT dstSamples, const al::byte *src,
const size_t srcChan, const size_t srcOffset, const size_t srcStep,
const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
{
const size_t blockBytes{((samplesPerBlock-1)/2 + 4)*srcStep};
/* Skip to the ADPCM block containing the srcOffset sample. */
src += srcOffset/samplesPerBlock*blockBytes;
/* Calculate how many samples need to be skipped in the block. */
size_t skip{srcOffset % samplesPerBlock};
/* NOTE: This could probably be optimized better. */
size_t wrote{0};
do {
/* Each IMA4 block starts with a signed 16-bit sample, and a signed
* 16-bit table index. The table index needs to be clamped.
*/
int sample{src[srcChan*4] | (src[srcChan*4 + 1] << 8)};
int index{src[srcChan*4 + 2] | (src[srcChan*4 + 3] << 8)};
sample = (sample^0x8000) - 32768;
index = clampi((index^0x8000) - 32768, 0, al::size(IMAStep_size)-1);
if(skip == 0)
{
dstSamples[wrote++] = static_cast<float>(sample) / 32768.0f;
if(wrote == samplesToLoad) return;
}
else
--skip;
auto decode_sample = [&sample,&index](const uint nibble)
{
sample += IMA4Codeword[nibble] * IMAStep_size[index] / 8;
sample = clampi(sample, -32768, 32767);
index += IMA4Index_adjust[nibble];
index = clampi(index, 0, al::size(IMAStep_size)-1);
return sample;
};
/* The rest of the block is arranged as a series of nibbles, contained
* in 4 *bytes* per channel interleaved. So every 8 nibbles we need to
* skip 4 bytes per channel to get the next nibbles for this channel.
*
* First, decode the samples that we need to skip in the block (will
* always be less than the block size). They need to be decoded despite
* being ignored for proper state on the remaining samples.
*/
const al::byte *nibbleData{src + (srcStep+srcChan)*4};
size_t nibbleOffset{0};
const size_t startOffset{skip + 1};
for(;skip;--skip)
{
const size_t byteShift{(nibbleOffset&1) * 4};
const size_t wordOffset{(nibbleOffset>>1) & ~size_t{3}};
const size_t byteOffset{wordOffset*srcStep + ((nibbleOffset>>1)&3u)};
++nibbleOffset;
std::ignore = decode_sample((nibbleData[byteOffset]>>byteShift) & 15u);
}
/* Second, decode the rest of the block and write to the output, until
* the end of the block or the end of output.
*/
const size_t todo{minz(samplesPerBlock-startOffset, samplesToLoad-wrote)};
for(size_t i{0};i < todo;++i)
{
const size_t byteShift{(nibbleOffset&1) * 4};
const size_t wordOffset{(nibbleOffset>>1) & ~size_t{3}};
const size_t byteOffset{wordOffset*srcStep + ((nibbleOffset>>1)&3u)};
++nibbleOffset;
const int result{decode_sample((nibbleData[byteOffset]>>byteShift) & 15u)};
dstSamples[wrote++] = static_cast<float>(result) / 32768.0f;
}
if(wrote == samplesToLoad)
return;
src += blockBytes;
} while(true);
}
template<>
inline void LoadSamples<FmtMSADPCM>(float *RESTRICT dstSamples, const al::byte *src,
const size_t srcChan, const size_t srcOffset, const size_t srcStep,
const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
{
const size_t blockBytes{((samplesPerBlock-2)/2 + 7)*srcStep};
src += srcOffset/samplesPerBlock*blockBytes;
size_t skip{srcOffset % samplesPerBlock};
size_t wrote{0};
do {
/* Each MS ADPCM block starts with an 8-bit block predictor, used to
* dictate how the two sample history values are mixed with the decoded
* sample, and an initial signed 16-bit delta value which scales the
* nibble sample value. This is followed by the two initial 16-bit
* sample history values.
*/
const al::byte *input{src};
const uint8_t blockpred{std::min(input[srcChan], uint8_t{6})};
input += srcStep;
int delta{input[2*srcChan + 0] | (input[2*srcChan + 1] << 8)};
input += srcStep*2;
int sampleHistory[2]{};
sampleHistory[0] = input[2*srcChan + 0] | (input[2*srcChan + 1]<<8);
input += srcStep*2;
sampleHistory[1] = input[2*srcChan + 0] | (input[2*srcChan + 1]<<8);
input += srcStep*2;
const auto coeffs = al::as_span(MSADPCMAdaptionCoeff[blockpred]);
delta = (delta^0x8000) - 32768;
sampleHistory[0] = (sampleHistory[0]^0x8000) - 32768;
sampleHistory[1] = (sampleHistory[1]^0x8000) - 32768;
/* The second history sample is "older", so it's the first to be
* written out.
*/
if(skip == 0)
{
dstSamples[wrote++] = static_cast<float>(sampleHistory[1]) / 32768.0f;
if(wrote == samplesToLoad) return;
dstSamples[wrote++] = static_cast<float>(sampleHistory[0]) / 32768.0f;
if(wrote == samplesToLoad) return;
}
else if(skip == 1)
{
--skip;
dstSamples[wrote++] = static_cast<float>(sampleHistory[0]) / 32768.0f;
if(wrote == samplesToLoad) return;
}
else
skip -= 2;
auto decode_sample = [&sampleHistory,&delta,coeffs](const int nibble)
{
int pred{(sampleHistory[0]*coeffs[0] + sampleHistory[1]*coeffs[1]) / 256};
pred += ((nibble^0x08) - 0x08) * delta;
pred = clampi(pred, -32768, 32767);
sampleHistory[1] = sampleHistory[0];
sampleHistory[0] = pred;
delta = (MSADPCMAdaption[nibble] * delta) / 256;
delta = maxi(16, delta);
return pred;
};
/* The rest of the block is a series of nibbles, interleaved per-
* channel. First, skip samples.
*/
const size_t startOffset{skip + 2};
size_t nibbleOffset{srcChan};
for(;skip;--skip)
{
const size_t byteOffset{nibbleOffset>>1};
const size_t byteShift{((nibbleOffset&1)^1) * 4};
nibbleOffset += srcStep;
std::ignore = decode_sample((input[byteOffset]>>byteShift) & 15);
}
/* Now decode the rest of the block, until the end of the block or the
* dst buffer is filled.
*/
const size_t todo{minz(samplesPerBlock-startOffset, samplesToLoad-wrote)};
for(size_t j{0};j < todo;++j)
{
const size_t byteOffset{nibbleOffset>>1};
const size_t byteShift{((nibbleOffset&1)^1) * 4};
nibbleOffset += srcStep;
const int sample{decode_sample((input[byteOffset]>>byteShift) & 15)};
dstSamples[wrote++] = static_cast<float>(sample) / 32768.0f;
}
if(wrote == samplesToLoad)
return;
src += blockBytes;
} while(true);
}
void LoadSamples(float *dstSamples, const al::byte *src, const size_t srcChan,
const size_t srcOffset, const FmtType srcType, const size_t srcStep,
const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
{
#define HANDLE_FMT(T) case T: \
LoadSamples<T>(dstSamples, src, srcChan, srcOffset, srcStep, \
samplesPerBlock, samplesToLoad); \
break
switch(srcType)
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
HANDLE_FMT(FmtAlaw);
HANDLE_FMT(FmtIMA4);
HANDLE_FMT(FmtMSADPCM);
}
#undef HANDLE_FMT
}
void LoadBufferStatic(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
const size_t dataPosInt, const FmtType sampleType, const size_t srcChannel,
const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad,
float *voiceSamples)
{
if(!bufferLoopItem)
{
/* Load what's left to play from the buffer */
if(buffer->mSampleLen > dataPosInt) LIKELY
{
const size_t buffer_remaining{buffer->mSampleLen - dataPosInt};
const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer_remaining)};
LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
sampleType, srcStep, buffer->mBlockAlign, remaining);
samplesLoaded += remaining;
}
if(const size_t toFill{samplesToLoad - samplesLoaded})
{
auto srcsamples = voiceSamples + samplesLoaded;
std::fill_n(srcsamples, toFill, *(srcsamples-1));
}
}
else
{
const size_t loopStart{buffer->mLoopStart};
const size_t loopEnd{buffer->mLoopEnd};
ASSUME(loopEnd > loopStart);
const size_t intPos{(dataPosInt < loopEnd) ? dataPosInt
: (((dataPosInt-loopStart)%(loopEnd-loopStart)) + loopStart)};
/* Load what's left of this loop iteration */
const size_t remaining{minz(samplesToLoad-samplesLoaded, loopEnd-dataPosInt)};
LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, intPos, sampleType,
srcStep, buffer->mBlockAlign, remaining);
samplesLoaded += remaining;
/* Load repeats of the loop to fill the buffer. */
const size_t loopSize{loopEnd - loopStart};
while(const size_t toFill{minz(samplesToLoad - samplesLoaded, loopSize)})
{
LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, loopStart,
sampleType, srcStep, buffer->mBlockAlign, toFill);
samplesLoaded += toFill;
}
}
}
void LoadBufferCallback(VoiceBufferItem *buffer, const size_t dataPosInt,
const size_t numCallbackSamples, const FmtType sampleType, const size_t srcChannel,
const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad, float *voiceSamples)
{
/* Load what's left to play from the buffer */
if(numCallbackSamples > dataPosInt) LIKELY
{
const size_t remaining{minz(samplesToLoad-samplesLoaded, numCallbackSamples-dataPosInt)};
LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
sampleType, srcStep, buffer->mBlockAlign, remaining);
samplesLoaded += remaining;
}
if(const size_t toFill{samplesToLoad - samplesLoaded})
{
auto srcsamples = voiceSamples + samplesLoaded;
std::fill_n(srcsamples, toFill, *(srcsamples-1));
}
}
void LoadBufferQueue(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
size_t dataPosInt, const FmtType sampleType, const size_t srcChannel,
const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad,
float *voiceSamples)
{
/* Crawl the buffer queue to fill in the temp buffer */
while(buffer && samplesLoaded != samplesToLoad)
{
if(dataPosInt >= buffer->mSampleLen)
{
dataPosInt -= buffer->mSampleLen;
buffer = buffer->mNext.load(std::memory_order_acquire);
if(!buffer) buffer = bufferLoopItem;
continue;
}
const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer->mSampleLen-dataPosInt)};
LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
sampleType, srcStep, buffer->mBlockAlign, remaining);
samplesLoaded += remaining;
if(samplesLoaded == samplesToLoad)
break;
dataPosInt = 0;
buffer = buffer->mNext.load(std::memory_order_acquire);
if(!buffer) buffer = bufferLoopItem;
}
if(const size_t toFill{samplesToLoad - samplesLoaded})
{
auto srcsamples = voiceSamples + samplesLoaded;
std::fill_n(srcsamples, toFill, *(srcsamples-1));
}
}
void DoHrtfMix(const float *samples, const uint DstBufferSize, DirectParams &parms,
const float TargetGain, const uint Counter, uint OutPos, const bool IsPlaying,
DeviceBase *Device)
{
const uint IrSize{Device->mIrSize};
auto &HrtfSamples = Device->HrtfSourceData;
auto &AccumSamples = Device->HrtfAccumData;
/* Copy the HRTF history and new input samples into a temp buffer. */
auto src_iter = std::copy(parms.Hrtf.History.begin(), parms.Hrtf.History.end(),
std::begin(HrtfSamples));
std::copy_n(samples, DstBufferSize, src_iter);
/* Copy the last used samples back into the history buffer for later. */
if(IsPlaying) LIKELY
std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.History.size(),
parms.Hrtf.History.begin());
/* If fading and this is the first mixing pass, fade between the IRs. */
uint fademix{0u};
if(Counter && OutPos == 0)
{
fademix = minu(DstBufferSize, Counter);
float gain{TargetGain};
/* The new coefficients need to fade in completely since they're
* replacing the old ones. To keep the gain fading consistent,
* interpolate between the old and new target gains given how much of
* the fade time this mix handles.
*/
if(Counter > fademix)
{
const float a{static_cast<float>(fademix) / static_cast<float>(Counter)};
gain = lerpf(parms.Hrtf.Old.Gain, TargetGain, a);
}
MixHrtfFilter hrtfparams{
parms.Hrtf.Target.Coeffs,
parms.Hrtf.Target.Delay,
0.0f, gain / static_cast<float>(fademix)};
MixHrtfBlendSamples(HrtfSamples, AccumSamples+OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams,
fademix);
/* Update the old parameters with the result. */
parms.Hrtf.Old = parms.Hrtf.Target;
parms.Hrtf.Old.Gain = gain;
OutPos += fademix;
}
if(fademix < DstBufferSize)
{
const uint todo{DstBufferSize - fademix};
float gain{TargetGain};
/* Interpolate the target gain if the gain fading lasts longer than
* this mix.
*/
if(Counter > DstBufferSize)
{
const float a{static_cast<float>(todo) / static_cast<float>(Counter-fademix)};
gain = lerpf(parms.Hrtf.Old.Gain, TargetGain, a);
}
MixHrtfFilter hrtfparams{
parms.Hrtf.Target.Coeffs,
parms.Hrtf.Target.Delay,
parms.Hrtf.Old.Gain,
(gain - parms.Hrtf.Old.Gain) / static_cast<float>(todo)};
MixHrtfSamples(HrtfSamples+fademix, AccumSamples+OutPos, IrSize, &hrtfparams, todo);
/* Store the now-current gain for next time. */
parms.Hrtf.Old.Gain = gain;
}
}
void DoNfcMix(const al::span<const float> samples, FloatBufferLine *OutBuffer, DirectParams &parms,
const float *TargetGains, const uint Counter, const uint OutPos, DeviceBase *Device)
{
using FilterProc = void (NfcFilter::*)(const al::span<const float>, float*);
static constexpr FilterProc NfcProcess[MaxAmbiOrder+1]{
nullptr, &NfcFilter::process1, &NfcFilter::process2, &NfcFilter::process3};
float *CurrentGains{parms.Gains.Current.data()};
MixSamples(samples, {OutBuffer, 1u}, CurrentGains, TargetGains, Counter, OutPos);
++OutBuffer;
++CurrentGains;
++TargetGains;
const al::span<float> nfcsamples{Device->NfcSampleData, samples.size()};
size_t order{1};
while(const size_t chancount{Device->NumChannelsPerOrder[order]})
{
(parms.NFCtrlFilter.*NfcProcess[order])(samples, nfcsamples.data());
MixSamples(nfcsamples, {OutBuffer, chancount}, CurrentGains, TargetGains, Counter, OutPos);
OutBuffer += chancount;
CurrentGains += chancount;
TargetGains += chancount;
if(++order == MaxAmbiOrder+1)
break;
}
}
} // namespace
void Voice::mix(const State vstate, ContextBase *Context, const nanoseconds deviceTime,
const uint SamplesToDo)
{
static constexpr std::array<float,MAX_OUTPUT_CHANNELS> SilentTarget{};
ASSUME(SamplesToDo > 0);
DeviceBase *Device{Context->mDevice};
const uint NumSends{Device->NumAuxSends};
/* Get voice info */
int DataPosInt{mPosition.load(std::memory_order_relaxed)};
uint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)};
VoiceBufferItem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)};
VoiceBufferItem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)};
const uint increment{mStep};
if(increment < 1) UNLIKELY
{
/* If the voice is supposed to be stopping but can't be mixed, just
* stop it before bailing.
*/
if(vstate == Stopping)
mPlayState.store(Stopped, std::memory_order_release);
return;
}
/* If the static voice's current position is beyond the buffer loop end
* position, disable looping.
*/
if(mFlags.test(VoiceIsStatic) && BufferLoopItem)
{
if(DataPosInt >= 0 && static_cast<uint>(DataPosInt) >= BufferListItem->mLoopEnd)
BufferLoopItem = nullptr;
}
uint OutPos{0u};
/* Check if we're doing a delayed start, and we start in this update. */
if(mStartTime > deviceTime) UNLIKELY
{
/* If the voice is supposed to be stopping but hasn't actually started
* yet, make sure its stopped.
*/
if(vstate == Stopping)
{
mPlayState.store(Stopped, std::memory_order_release);
return;
}
/* If the start time is too far ahead, don't bother. */
auto diff = mStartTime - deviceTime;
if(diff >= seconds{1})
return;
/* Get the number of samples ahead of the current time that output
* should start at. Skip this update if it's beyond the output sample
* count.
*
* Round the start position to a multiple of 4, which some mixers want.
* This makes the start time accurate to 4 samples. This could be made
* sample-accurate by forcing non-SIMD functions on the first run.
*/
seconds::rep sampleOffset{duration_cast<seconds>(diff * Device->Frequency).count()};
sampleOffset = (sampleOffset+2) & ~seconds::rep{3};
if(sampleOffset >= SamplesToDo)
return;
OutPos = static_cast<uint>(sampleOffset);
}
/* Calculate the number of samples to mix, and the number of (resampled)
* samples that need to be loaded (mixing samples and decoder padding).
*/
const uint samplesToMix{SamplesToDo - OutPos};
const uint samplesToLoad{samplesToMix + mDecoderPadding};
/* Get a span of pointers to hold the floating point, deinterlaced,
* resampled buffer data to be mixed.
*/
std::array<float*,DeviceBase::MixerChannelsMax> SamplePointers;
const al::span<float*> MixingSamples{SamplePointers.data(), mChans.size()};
auto get_bufferline = [](DeviceBase::MixerBufferLine &bufline) noexcept -> float*
{ return bufline.data(); };
std::transform(Device->mSampleData.end() - mChans.size(), Device->mSampleData.end(),
MixingSamples.begin(), get_bufferline);
/* If there's a matching sample step and no phase offset, use a simple copy
* for resampling.
*/
const ResamplerFunc Resample{(increment == MixerFracOne && DataPosFrac == 0)
? ResamplerFunc{[](const InterpState*, const float *RESTRICT src, uint, const uint,
const al::span<float> dst) { std::copy_n(src, dst.size(), dst.begin()); }}
: mResampler};
/* UHJ2 and SuperStereo only have 2 buffer channels, but 3 mixing channels
* (3rd channel is generated from decoding).
*/
const size_t realChannels{(mFmtChannels == FmtUHJ2 || mFmtChannels == FmtSuperStereo) ? 2u
: MixingSamples.size()};
for(size_t chan{0};chan < realChannels;++chan)
{
using ResBufType = decltype(DeviceBase::mResampleData);
static constexpr uint srcSizeMax{static_cast<uint>(ResBufType{}.size()-MaxResamplerEdge)};
const auto prevSamples = al::as_span(mPrevSamples[chan]);
const auto resampleBuffer = std::copy(prevSamples.cbegin(), prevSamples.cend(),
Device->mResampleData.begin()) - MaxResamplerEdge;
int intPos{DataPosInt};
uint fracPos{DataPosFrac};
/* Load samples for this channel from the available buffer(s), with
* resampling.
*/
for(uint samplesLoaded{0};samplesLoaded < samplesToLoad;)
{
/* Calculate the number of dst samples that can be loaded this
* iteration, given the available resampler buffer size, and the
* number of src samples that are needed to load it.
*/
auto calc_buffer_sizes = [fracPos,increment](uint dstBufferSize)
{
/* If ext=true, calculate the last written dst pos from the dst
* count, convert to the last read src pos, then add one to get
* the src count.
*
* If ext=false, convert the dst count to src count directly.
*
* Without this, the src count could be short by one when
* increment < 1.0, or not have a full src at the end when
* increment > 1.0.
*/
const bool ext{increment <= MixerFracOne};
uint64_t dataSize64{dstBufferSize - ext};
dataSize64 = (dataSize64*increment + fracPos) >> MixerFracBits;
/* Also include resampler padding. */
dataSize64 += ext + MaxResamplerEdge;
if(dataSize64 <= srcSizeMax)
return std::make_pair(dstBufferSize, static_cast<uint>(dataSize64));
/* If the source size got saturated, we can't fill the desired
* dst size. Figure out how many dst samples we can fill.
*/
dataSize64 = srcSizeMax - MaxResamplerEdge;
dataSize64 = ((dataSize64<<MixerFracBits) - fracPos) / increment;
if(dataSize64 < dstBufferSize)
{
/* Some resamplers require the destination being 16-byte
* aligned, so limit to a multiple of 4 samples to maintain
* alignment if we need to do another iteration after this.
*/
dstBufferSize = static_cast<uint>(dataSize64) & ~3u;
}
return std::make_pair(dstBufferSize, srcSizeMax);
};
const auto bufferSizes = calc_buffer_sizes(samplesToLoad - samplesLoaded);
const auto dstBufferSize = bufferSizes.first;
const auto srcBufferSize = bufferSizes.second;
/* Load the necessary samples from the given buffer(s). */
if(!BufferListItem)
{
const uint avail{minu(srcBufferSize, MaxResamplerEdge)};
const uint tofill{maxu(srcBufferSize, MaxResamplerEdge)};
/* When loading from a voice that ended prematurely, only take
* the samples that get closest to 0 amplitude. This helps
* certain sounds fade out better.
*/
auto abs_lt = [](const float lhs, const float rhs) noexcept -> bool
{ return std::abs(lhs) < std::abs(rhs); };
auto srciter = std::min_element(resampleBuffer, resampleBuffer+avail, abs_lt);
std::fill(srciter+1, resampleBuffer+tofill, *srciter);
}
else
{
size_t srcSampleDelay{0};
if(intPos < 0) UNLIKELY
{
/* If the current position is negative, there's that many
* silent samples to load before using the buffer.
*/
srcSampleDelay = static_cast<uint>(-intPos);
if(srcSampleDelay >= srcBufferSize)
{
/* If the number of silent source samples exceeds the
* number to load, the output will be silent.
*/
std::fill_n(MixingSamples[chan]+samplesLoaded, dstBufferSize, 0.0f);
std::fill_n(resampleBuffer, srcBufferSize, 0.0f);
goto skip_resample;
}
std::fill_n(resampleBuffer, srcSampleDelay, 0.0f);
}
const uint uintPos{static_cast<uint>(maxi(intPos, 0))};
if(mFlags.test(VoiceIsStatic))
LoadBufferStatic(BufferListItem, BufferLoopItem, uintPos, mFmtType, chan,
mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
else if(mFlags.test(VoiceIsCallback))
{
const uint callbackBase{mCallbackBlockBase * mSamplesPerBlock};
const size_t bufferOffset{uintPos - callbackBase};
const size_t needSamples{bufferOffset + srcBufferSize - srcSampleDelay};
const size_t needBlocks{(needSamples + mSamplesPerBlock-1) / mSamplesPerBlock};
if(!mFlags.test(VoiceCallbackStopped) && needBlocks > mNumCallbackBlocks)
{
const size_t byteOffset{mNumCallbackBlocks*mBytesPerBlock};
const size_t needBytes{(needBlocks-mNumCallbackBlocks)*mBytesPerBlock};
const int gotBytes{BufferListItem->mCallback(BufferListItem->mUserData,
&BufferListItem->mSamples[byteOffset], static_cast<int>(needBytes))};
if(gotBytes < 0)
mFlags.set(VoiceCallbackStopped);
else if(static_cast<uint>(gotBytes) < needBytes)
{
mFlags.set(VoiceCallbackStopped);
mNumCallbackBlocks += static_cast<uint>(gotBytes) / mBytesPerBlock;
}
else
mNumCallbackBlocks = static_cast<uint>(needBlocks);
}
const size_t numSamples{uint{mNumCallbackBlocks} * mSamplesPerBlock};
LoadBufferCallback(BufferListItem, bufferOffset, numSamples, mFmtType, chan,
mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
}
else
LoadBufferQueue(BufferListItem, BufferLoopItem, uintPos, mFmtType, chan,
mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
}
Resample(&mResampleState, al::to_address(resampleBuffer), fracPos, increment,
{MixingSamples[chan]+samplesLoaded, dstBufferSize});
/* Store the last source samples used for next time. */
if(vstate == Playing) LIKELY
{
/* Only store samples for the end of the mix, excluding what
* gets loaded for decoder padding.
*/
const uint loadEnd{samplesLoaded + dstBufferSize};
if(samplesToMix > samplesLoaded && samplesToMix <= loadEnd) LIKELY
{
const size_t dstOffset{samplesToMix - samplesLoaded};
const size_t srcOffset{(dstOffset*increment + fracPos) >> MixerFracBits};
std::copy_n(resampleBuffer-MaxResamplerEdge+srcOffset, prevSamples.size(),
prevSamples.begin());
}
}
skip_resample:
samplesLoaded += dstBufferSize;
if(samplesLoaded < samplesToLoad)
{
fracPos += dstBufferSize*increment;
const uint srcOffset{fracPos >> MixerFracBits};
fracPos &= MixerFracMask;
intPos += srcOffset;
/* If more samples need to be loaded, copy the back of the
* resampleBuffer to the front to reuse it. prevSamples isn't
* reliable since it's only updated for the end of the mix.
*/
std::copy(resampleBuffer-MaxResamplerEdge+srcOffset,
resampleBuffer+MaxResamplerEdge+srcOffset, resampleBuffer-MaxResamplerEdge);
}
}
}
for(auto &samples : MixingSamples.subspan(realChannels))
std::fill_n(samples, samplesToLoad, 0.0f);
if(mDecoder)
mDecoder->decode(MixingSamples, samplesToMix, (vstate==Playing));
if(mFlags.test(VoiceIsAmbisonic))
{
auto voiceSamples = MixingSamples.begin();
for(auto &chandata : mChans)
{
chandata.mAmbiSplitter.processScale({*voiceSamples, samplesToMix},
chandata.mAmbiHFScale, chandata.mAmbiLFScale);
++voiceSamples;
}
}
const uint Counter{mFlags.test(VoiceIsFading) ? minu(samplesToMix, 64u) : 0u};
if(!Counter)
{
/* No fading, just overwrite the old/current params. */
for(auto &chandata : mChans)
{
{
DirectParams &parms = chandata.mDryParams;
if(!mFlags.test(VoiceHasHrtf))
parms.Gains.Current = parms.Gains.Target;
else
parms.Hrtf.Old = parms.Hrtf.Target;
}
for(uint send{0};send < NumSends;++send)
{
if(mSend[send].Buffer.empty())
continue;
SendParams &parms = chandata.mWetParams[send];
parms.Gains.Current = parms.Gains.Target;
}
}
}
auto voiceSamples = MixingSamples.begin();
for(auto &chandata : mChans)
{
/* Now filter and mix to the appropriate outputs. */
const al::span<float,BufferLineSize> FilterBuf{Device->FilteredData};
{
DirectParams &parms = chandata.mDryParams;
const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
{*voiceSamples, samplesToMix}, mDirect.FilterType)};
if(mFlags.test(VoiceHasHrtf))
{
const float TargetGain{parms.Hrtf.Target.Gain * (vstate == Playing)};
DoHrtfMix(samples, samplesToMix, parms, TargetGain, Counter, OutPos,
(vstate == Playing), Device);
}
else
{
const float *TargetGains{(vstate == Playing) ? parms.Gains.Target.data()
: SilentTarget.data()};
if(mFlags.test(VoiceHasNfc))
DoNfcMix({samples, samplesToMix}, mDirect.Buffer.data(), parms,
TargetGains, Counter, OutPos, Device);
else
MixSamples({samples, samplesToMix}, mDirect.Buffer,
parms.Gains.Current.data(), TargetGains, Counter, OutPos);
}
}
for(uint send{0};send < NumSends;++send)
{
if(mSend[send].Buffer.empty())
continue;
SendParams &parms = chandata.mWetParams[send];
const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
{*voiceSamples, samplesToMix}, mSend[send].FilterType)};
const float *TargetGains{(vstate == Playing) ? parms.Gains.Target.data()
: SilentTarget.data()};
MixSamples({samples, samplesToMix}, mSend[send].Buffer,
parms.Gains.Current.data(), TargetGains, Counter, OutPos);
}
++voiceSamples;
}
mFlags.set(VoiceIsFading);
/* Don't update positions and buffers if we were stopping. */
if(vstate == Stopping) UNLIKELY
{
mPlayState.store(Stopped, std::memory_order_release);
return;
}
/* Update voice positions and buffers as needed. */
DataPosFrac += increment*samplesToMix;
const uint SrcSamplesDone{DataPosFrac>>MixerFracBits};
DataPosInt += SrcSamplesDone;
DataPosFrac &= MixerFracMask;
uint buffers_done{0u};
if(BufferListItem && DataPosInt >= 0) LIKELY
{
if(mFlags.test(VoiceIsStatic))
{
if(BufferLoopItem)
{
/* Handle looping static source */
const uint LoopStart{BufferListItem->mLoopStart};
const uint LoopEnd{BufferListItem->mLoopEnd};
uint DataPosUInt{static_cast<uint>(DataPosInt)};
if(DataPosUInt >= LoopEnd)
{
assert(LoopEnd > LoopStart);
DataPosUInt = ((DataPosUInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
DataPosInt = static_cast<int>(DataPosUInt);
}
}
else
{
/* Handle non-looping static source */
if(static_cast<uint>(DataPosInt) >= BufferListItem->mSampleLen)
BufferListItem = nullptr;
}
}
else if(mFlags.test(VoiceIsCallback))
{
/* Handle callback buffer source */
const uint currentBlock{static_cast<uint>(DataPosInt) / mSamplesPerBlock};
const uint blocksDone{currentBlock - mCallbackBlockBase};
if(blocksDone < mNumCallbackBlocks)
{
const size_t byteOffset{blocksDone*mBytesPerBlock};
const size_t byteEnd{mNumCallbackBlocks*mBytesPerBlock};
al::byte *data{BufferListItem->mSamples};
std::copy(data+byteOffset, data+byteEnd, data);
mNumCallbackBlocks -= blocksDone;
mCallbackBlockBase += blocksDone;
}
else
{
BufferListItem = nullptr;
mNumCallbackBlocks = 0;
mCallbackBlockBase += blocksDone;
}
}
else
{
/* Handle streaming source */
do {
if(BufferListItem->mSampleLen > static_cast<uint>(DataPosInt))
break;
DataPosInt -= BufferListItem->mSampleLen;
++buffers_done;
BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed);
if(!BufferListItem) BufferListItem = BufferLoopItem;
} while(BufferListItem);
}
}
/* Capture the source ID in case it gets reset for stopping. */
const uint SourceID{mSourceID.load(std::memory_order_relaxed)};
/* Update voice info */
mPosition.store(DataPosInt, std::memory_order_relaxed);
mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
if(!BufferListItem)
{
mLoopBuffer.store(nullptr, std::memory_order_relaxed);
mSourceID.store(0u, std::memory_order_relaxed);
}
std::atomic_thread_fence(std::memory_order_release);
/* Send any events now, after the position/buffer info was updated. */
const auto enabledevt = Context->mEnabledEvts.load(std::memory_order_acquire);
if(buffers_done > 0 && enabledevt.test(AsyncEvent::BufferCompleted))
{
RingBuffer *ring{Context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len > 0)
{
AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
AsyncEvent::BufferCompleted)};
evt->u.bufcomp.id = SourceID;
evt->u.bufcomp.count = buffers_done;
ring->writeAdvance(1);
}
}
if(!BufferListItem)
{
/* If the voice just ended, set it to Stopping so the next render
* ensures any residual noise fades to 0 amplitude.
*/
mPlayState.store(Stopping, std::memory_order_release);
if(enabledevt.test(AsyncEvent::SourceStateChange))
SendSourceStoppedEvent(Context, SourceID);
}
}
void Voice::prepare(DeviceBase *device)
{
/* Even if storing really high order ambisonics, we only mix channels for
* orders up to the device order. The rest are simply dropped.
*/
uint num_channels{(mFmtChannels == FmtUHJ2 || mFmtChannels == FmtSuperStereo) ? 3 :
ChannelsFromFmt(mFmtChannels, minu(mAmbiOrder, device->mAmbiOrder))};
if(num_channels > device->mSampleData.size()) UNLIKELY
{
ERR("Unexpected channel count: %u (limit: %zu, %d:%d)\n", num_channels,
device->mSampleData.size(), mFmtChannels, mAmbiOrder);
num_channels = static_cast<uint>(device->mSampleData.size());
}
if(mChans.capacity() > 2 && num_channels < mChans.capacity())
{
decltype(mChans){}.swap(mChans);
decltype(mPrevSamples){}.swap(mPrevSamples);
}
mChans.reserve(maxu(2, num_channels));
mChans.resize(num_channels);
mPrevSamples.reserve(maxu(2, num_channels));
mPrevSamples.resize(num_channels);
mDecoder = nullptr;
mDecoderPadding = 0;
if(mFmtChannels == FmtSuperStereo)
{
switch(UhjDecodeQuality)
{
case UhjQualityType::IIR:
mDecoder = std::make_unique<UhjStereoDecoderIIR>();
mDecoderPadding = UhjStereoDecoderIIR::sInputPadding;
break;
case UhjQualityType::FIR256:
mDecoder = std::make_unique<UhjStereoDecoder<UhjLength256>>();
mDecoderPadding = UhjStereoDecoder<UhjLength256>::sInputPadding;
break;
case UhjQualityType::FIR512:
mDecoder = std::make_unique<UhjStereoDecoder<UhjLength512>>();
mDecoderPadding = UhjStereoDecoder<UhjLength512>::sInputPadding;
break;
}
}
else if(IsUHJ(mFmtChannels))
{
switch(UhjDecodeQuality)
{
case UhjQualityType::IIR:
mDecoder = std::make_unique<UhjDecoderIIR>();
mDecoderPadding = UhjDecoderIIR::sInputPadding;
break;
case UhjQualityType::FIR256:
mDecoder = std::make_unique<UhjDecoder<UhjLength256>>();
mDecoderPadding = UhjDecoder<UhjLength256>::sInputPadding;
break;
case UhjQualityType::FIR512:
mDecoder = std::make_unique<UhjDecoder<UhjLength512>>();
mDecoderPadding = UhjDecoder<UhjLength512>::sInputPadding;
break;
}
}
/* Clear the stepping value explicitly so the mixer knows not to mix this
* until the update gets applied.
*/
mStep = 0;
/* Make sure the sample history is cleared. */
std::fill(mPrevSamples.begin(), mPrevSamples.end(), HistoryLine{});
if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
{
/* 2-channel UHJ needs different shelf filters. However, we can't just
* use different shelf filters after mixing it, given any old speaker
* setup the user has. To make this work, we apply the expected shelf
* filters for decoding UHJ2 to quad (only needs LF scaling), and act
* as if those 4 quad channels are encoded right back into B-Format.
*
* This isn't perfect, but without an entirely separate and limited
* UHJ2 path, it's better than nothing.
*
* Note this isn't needed with UHJ output (UHJ2->B-Format->UHJ2 is
* identity, so don't mess with it).
*/
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
for(auto &chandata : mChans)
{
chandata.mAmbiHFScale = 1.0f;
chandata.mAmbiLFScale = 1.0f;
chandata.mAmbiSplitter = splitter;
chandata.mDryParams = DirectParams{};
chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
}
mChans[0].mAmbiLFScale = DecoderBase::sWLFScale;
mChans[1].mAmbiLFScale = DecoderBase::sXYLFScale;
mChans[2].mAmbiLFScale = DecoderBase::sXYLFScale;
mFlags.set(VoiceIsAmbisonic);
}
/* Don't need to set the VoiceIsAmbisonic flag if the device is not higher
* order than the voice. No HF scaling is necessary to mix it.
*/
else if(mAmbiOrder && device->mAmbiOrder > mAmbiOrder)
{
const uint8_t *OrderFromChan{Is2DAmbisonic(mFmtChannels) ?
AmbiIndex::OrderFrom2DChannel().data() : AmbiIndex::OrderFromChannel().data()};
const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
device->m2DMixing);
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
for(auto &chandata : mChans)
{
chandata.mAmbiHFScale = scales[*(OrderFromChan++)];
chandata.mAmbiLFScale = 1.0f;
chandata.mAmbiSplitter = splitter;
chandata.mDryParams = DirectParams{};
chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
}
mFlags.set(VoiceIsAmbisonic);
}
else
{
for(auto &chandata : mChans)
{
chandata.mDryParams = DirectParams{};
chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
}
mFlags.reset(VoiceIsAmbisonic);
}
}