axmol/Box2D/Dynamics/Joints/b2FrictionJoint.cpp

230 lines
6.1 KiB
C++

/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Dynamics/Joints/b2FrictionJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>
// Point-to-point constraint
// Cdot = v2 - v1
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
// Angle constraint
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
{
bodyA = bA;
bodyB = bB;
localAnchorA = bodyA->GetLocalPoint(anchor);
localAnchorB = bodyB->GetLocalPoint(anchor);
}
b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
: b2Joint(def)
{
m_localAnchorA = def->localAnchorA;
m_localAnchorB = def->localAnchorB;
m_linearImpulse.SetZero();
m_angularImpulse = 0.0f;
m_maxForce = def->maxForce;
m_maxTorque = def->maxTorque;
}
void b2FrictionJoint::InitVelocityConstraints(const b2TimeStep& step)
{
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
// Compute the effective mass matrix.
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
float32 mA = bA->m_invMass, mB = bB->m_invMass;
float32 iA = bA->m_invI, iB = bB->m_invI;
b2Mat22 K1;
K1.col1.x = mA + mB; K1.col2.x = 0.0f;
K1.col1.y = 0.0f; K1.col2.y = mA + mB;
b2Mat22 K2;
K2.col1.x = iA * rA.y * rA.y; K2.col2.x = -iA * rA.x * rA.y;
K2.col1.y = -iA * rA.x * rA.y; K2.col2.y = iA * rA.x * rA.x;
b2Mat22 K3;
K3.col1.x = iB * rB.y * rB.y; K3.col2.x = -iB * rB.x * rB.y;
K3.col1.y = -iB * rB.x * rB.y; K3.col2.y = iB * rB.x * rB.x;
b2Mat22 K = K1 + K2 + K3;
m_linearMass = K.GetInverse();
m_angularMass = iA + iB;
if (m_angularMass > 0.0f)
{
m_angularMass = 1.0f / m_angularMass;
}
if (step.warmStarting)
{
// Scale impulses to support a variable time step.
m_linearImpulse *= step.dtRatio;
m_angularImpulse *= step.dtRatio;
b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
bA->m_linearVelocity -= mA * P;
bA->m_angularVelocity -= iA * (b2Cross(rA, P) + m_angularImpulse);
bB->m_linearVelocity += mB * P;
bB->m_angularVelocity += iB * (b2Cross(rB, P) + m_angularImpulse);
}
else
{
m_linearImpulse.SetZero();
m_angularImpulse = 0.0f;
}
}
void b2FrictionJoint::SolveVelocityConstraints(const b2TimeStep& step)
{
B2_NOT_USED(step);
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
b2Vec2 vA = bA->m_linearVelocity;
float32 wA = bA->m_angularVelocity;
b2Vec2 vB = bB->m_linearVelocity;
float32 wB = bB->m_angularVelocity;
float32 mA = bA->m_invMass, mB = bB->m_invMass;
float32 iA = bA->m_invI, iB = bB->m_invI;
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
// Solve angular friction
{
float32 Cdot = wB - wA;
float32 impulse = -m_angularMass * Cdot;
float32 oldImpulse = m_angularImpulse;
float32 maxImpulse = step.dt * m_maxTorque;
m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
impulse = m_angularImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
// Solve linear friction
{
b2Vec2 Cdot = vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA);
b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
b2Vec2 oldImpulse = m_linearImpulse;
m_linearImpulse += impulse;
float32 maxImpulse = step.dt * m_maxForce;
if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
{
m_linearImpulse.Normalize();
m_linearImpulse *= maxImpulse;
}
impulse = m_linearImpulse - oldImpulse;
vA -= mA * impulse;
wA -= iA * b2Cross(rA, impulse);
vB += mB * impulse;
wB += iB * b2Cross(rB, impulse);
}
bA->m_linearVelocity = vA;
bA->m_angularVelocity = wA;
bB->m_linearVelocity = vB;
bB->m_angularVelocity = wB;
}
bool b2FrictionJoint::SolvePositionConstraints(float32 baumgarte)
{
B2_NOT_USED(baumgarte);
return true;
}
b2Vec2 b2FrictionJoint::GetAnchorA() const
{
return m_bodyA->GetWorldPoint(m_localAnchorA);
}
b2Vec2 b2FrictionJoint::GetAnchorB() const
{
return m_bodyB->GetWorldPoint(m_localAnchorB);
}
b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const
{
return inv_dt * m_linearImpulse;
}
float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const
{
return inv_dt * m_angularImpulse;
}
void b2FrictionJoint::SetMaxForce(float32 force)
{
b2Assert(b2IsValid(force) && force >= 0.0f);
m_maxForce = force;
}
float32 b2FrictionJoint::GetMaxForce() const
{
return m_maxForce;
}
void b2FrictionJoint::SetMaxTorque(float32 torque)
{
b2Assert(b2IsValid(torque) && torque >= 0.0f);
m_maxTorque = torque;
}
float32 b2FrictionJoint::GetMaxTorque() const
{
return m_maxTorque;
}