axmol/external/astc/astc_compress_symbolic.cpp

1703 lines
56 KiB
C++

// ----------------------------------------------------------------------------
// This confidential and proprietary software may be used only as authorised
// by a licensing agreement from Arm Limited.
// (C) COPYRIGHT 2011-2020 Arm Limited, ALL RIGHTS RESERVED
// The entire notice above must be reproduced on all authorised copies and
// copies may only be made to the extent permitted by a licensing agreement
// from Arm Limited.
// ----------------------------------------------------------------------------
/**
* @brief Functions to compress a symbolic block.
*/
#include "astc_codec_internals.h"
#include "softfloat.h"
#include <string.h>
#include <stdio.h>
#ifdef DEBUG_CAPTURE_NAN
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <fenv.h>
#endif
int realign_weights(astc_decode_mode decode_mode,
int xdim, int ydim, int zdim, const imageblock * blk, const error_weight_block * ewb, symbolic_compressed_block * scb, uint8_t * weight_set8, uint8_t * plane2_weight_set8)
{
int i, j;
// get the appropriate partition descriptor.
int partition_count = scb->partition_count;
const partition_info *pt = get_partition_table(xdim, ydim, zdim, partition_count);
pt += scb->partition_index;
// get the appropriate block descriptor
const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim);
const decimation_table *const *ixtab2 = bsd->decimation_tables;
const decimation_table *it = ixtab2[bsd->block_modes[scb->block_mode].decimation_mode];
int is_dual_plane = bsd->block_modes[scb->block_mode].is_dual_plane;
// get quantization-parameters
int weight_quantization_level = bsd->block_modes[scb->block_mode].quantization_mode;
// decode the color endpoints
ushort4 color_endpoint0[4];
ushort4 color_endpoint1[4];
int rgb_hdr[4];
int alpha_hdr[4];
int nan_endpoint[4];
for (i = 0; i < partition_count; i++)
unpack_color_endpoints(decode_mode,
scb->color_formats[i], scb->color_quantization_level, scb->color_values[i], &rgb_hdr[i], &alpha_hdr[i], &nan_endpoint[i], &(color_endpoint0[i]), &(color_endpoint1[i]));
float uq_plane1_weights[MAX_WEIGHTS_PER_BLOCK];
float uq_plane2_weights[MAX_WEIGHTS_PER_BLOCK];
int weight_count = it->num_weights;
// read and unquantize the weights.
const quantization_and_transfer_table *qat = &(quant_and_xfer_tables[weight_quantization_level]);
for (i = 0; i < weight_count; i++)
{
uq_plane1_weights[i] = qat->unquantized_value_flt[weight_set8[i]];
}
if (is_dual_plane)
{
for (i = 0; i < weight_count; i++)
uq_plane2_weights[i] = qat->unquantized_value_flt[plane2_weight_set8[i]];
}
int plane2_color_component = is_dual_plane ? scb->plane2_color_component : -1;
// for each weight, unquantize the weight, use it to compute a color and a color error.
// then, increment the weight until the color error stops decreasing
// then, decrement the weight until the color error stops increasing
#define COMPUTE_ERROR( errorvar ) \
errorvar = 0.0f; \
for(j=0;j<texels_to_evaluate;j++) \
{ \
int texel = it->weight_texel[i][j]; \
int partition = pt->partition_of_texel[texel]; \
float plane1_weight = compute_value_of_texel_flt( texel, it, uq_plane1_weights ); \
float plane2_weight = 0.0f; \
if( is_dual_plane ) \
plane2_weight = compute_value_of_texel_flt( texel, it, uq_plane2_weights ); \
int int_plane1_weight = static_cast<int>(floor( plane1_weight*64.0f + 0.5f ) ); \
int int_plane2_weight = static_cast<int>(floor( plane2_weight*64.0f + 0.5f ) ); \
ushort4 lrp_color = lerp_color_int( \
decode_mode, \
color_endpoint0[partition], \
color_endpoint1[partition], \
int_plane1_weight, \
int_plane2_weight, \
plane2_color_component ); \
float4 color = float4( lrp_color.x, lrp_color.y, lrp_color.z, lrp_color.w ); \
float4 origcolor = float4( \
blk->work_data[4*texel], \
blk->work_data[4*texel+1], \
blk->work_data[4*texel+2], \
blk->work_data[4*texel+3] ); \
float4 error_weight = ewb->error_weights[texel]; \
float4 colordiff = color - origcolor; \
errorvar += dot( colordiff*colordiff, error_weight ); \
}
int adjustments = 0;
for (i = 0; i < weight_count; i++)
{
int current_wt = weight_set8[i];
int texels_to_evaluate = it->weight_num_texels[i];
float current_error;
COMPUTE_ERROR(current_error);
// increment until error starts increasing.
while (1)
{
int next_wt = qat->next_quantized_value[current_wt];
if (next_wt == current_wt)
break;
uq_plane1_weights[i] = qat->unquantized_value_flt[next_wt];
float next_error;
COMPUTE_ERROR(next_error);
if (next_error < current_error)
{
// succeeded, increment the weight
current_wt = next_wt;
current_error = next_error;
adjustments++;
}
else
{
// failed, back out the attempted increment
uq_plane1_weights[i] = qat->unquantized_value_flt[current_wt];
break;
}
}
// decrement until error starts increasing
while (1)
{
int prev_wt = qat->prev_quantized_value[current_wt];
if (prev_wt == current_wt)
break;
uq_plane1_weights[i] = qat->unquantized_value_flt[prev_wt];
float prev_error;
COMPUTE_ERROR(prev_error);
if (prev_error < current_error)
{
// succeeded, decrement the weight
current_wt = prev_wt;
current_error = prev_error;
adjustments++;
}
else
{
// failed, back out the attempted decrement
uq_plane1_weights[i] = qat->unquantized_value_flt[current_wt];
break;
}
}
weight_set8[i] = current_wt;
}
if (!is_dual_plane)
return adjustments;
// processing of the second plane of weights
for (i = 0; i < weight_count; i++)
{
int current_wt = plane2_weight_set8[i];
int texels_to_evaluate = it->weight_num_texels[i];
float current_error;
COMPUTE_ERROR(current_error);
// increment until error starts increasing.
while (1)
{
int next_wt = qat->next_quantized_value[current_wt];
if (next_wt == current_wt)
break;
uq_plane2_weights[i] = qat->unquantized_value_flt[next_wt];
float next_error;
COMPUTE_ERROR(next_error);
if (next_error < current_error)
{
// succeeded, increment the weight
current_wt = next_wt;
current_error = next_error;
adjustments++;
}
else
{
// failed, back out the attempted increment
uq_plane2_weights[i] = qat->unquantized_value_flt[current_wt];
break;
}
}
// decrement until error starts increasing
while (1)
{
int prev_wt = qat->prev_quantized_value[current_wt];
if (prev_wt == current_wt)
break;
uq_plane2_weights[i] = qat->unquantized_value_flt[prev_wt];
float prev_error;
COMPUTE_ERROR(prev_error);
if (prev_error < current_error)
{
// succeeded, decrement the weight
current_wt = prev_wt;
current_error = prev_error;
adjustments++;
}
else
{
// failed, back out the attempted decrement
uq_plane2_weights[i] = qat->unquantized_value_flt[current_wt];
break;
}
}
plane2_weight_set8[i] = current_wt;
}
return adjustments;
}
/*
function for compressing a block symbolically, given that we have already decided on a partition
*/
static void compress_symbolic_block_fixed_partition_1_plane(astc_decode_mode decode_mode,
float mode_cutoff,
int max_refinement_iters,
int xdim, int ydim, int zdim,
int partition_count, int partition_index,
const imageblock * blk, const error_weight_block * ewb, symbolic_compressed_block * scb,
compress_fixed_partition_buffers * tmpbuf)
{
int i, j, k;
static const int free_bits_for_partition_count[5] = { 0, 115 - 4, 111 - 4 - PARTITION_BITS, 108 - 4 - PARTITION_BITS, 105 - 4 - PARTITION_BITS };
const partition_info *pi = get_partition_table(xdim, ydim, zdim, partition_count);
pi += partition_index;
// first, compute ideal weights and endpoint colors, under thre assumption that
// there is no quantization or decimation going on.
endpoints_and_weights *ei = tmpbuf->ei1;
endpoints_and_weights *eix = tmpbuf->eix1;
compute_endpoints_and_ideal_weights_1_plane(xdim, ydim, zdim, pi, blk, ewb, ei);
// next, compute ideal weights and endpoint colors for every decimation.
const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim);
const decimation_table *const *ixtab2 = bsd->decimation_tables;
float *decimated_quantized_weights = tmpbuf->decimated_quantized_weights;
float *decimated_weights = tmpbuf->decimated_weights;
float *flt_quantized_decimated_quantized_weights = tmpbuf->flt_quantized_decimated_quantized_weights;
uint8_t *u8_quantized_decimated_quantized_weights = tmpbuf->u8_quantized_decimated_quantized_weights;
// for each decimation mode, compute an ideal set of weights
// (that is, weights computed with the assumption that they are not quantized)
for (i = 0; i < MAX_DECIMATION_MODES; i++)
{
if (bsd->permit_encode[i] == 0 || bsd->decimation_mode_maxprec_1plane[i] < 0 || bsd->decimation_mode_percentile[i] > mode_cutoff)
continue;
eix[i] = *ei;
compute_ideal_weights_for_decimation_table(&(eix[i]), ixtab2[i], decimated_quantized_weights + i * MAX_WEIGHTS_PER_BLOCK, decimated_weights + i * MAX_WEIGHTS_PER_BLOCK);
}
// compute maximum colors for the endpoints and ideal weights.
// for each endpoint-and-ideal-weight pair, compute the smallest weight value
// that will result in a color value greater than 1.
float4 min_ep = float4(10, 10, 10, 10);
for (i = 0; i < partition_count; i++)
{
#ifdef DEBUG_CAPTURE_NAN
fedisableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
float4 ep = (float4(1, 1, 1, 1) - ei->ep.endpt0[i]) / (ei->ep.endpt1[i] - ei->ep.endpt0[i]);
if (ep.x > 0.5f && ep.x < min_ep.x)
min_ep.x = ep.x;
if (ep.y > 0.5f && ep.y < min_ep.y)
min_ep.y = ep.y;
if (ep.z > 0.5f && ep.z < min_ep.z)
min_ep.z = ep.z;
if (ep.w > 0.5f && ep.w < min_ep.w)
min_ep.w = ep.w;
#ifdef DEBUG_CAPTURE_NAN
feenableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
}
float min_wt_cutoff = MIN(MIN(min_ep.x, min_ep.y), MIN(min_ep.z, min_ep.w));
// for each mode, use the angular method to compute a shift.
float weight_low_value[MAX_WEIGHT_MODES];
float weight_high_value[MAX_WEIGHT_MODES];
compute_angular_endpoints_1plane(mode_cutoff, bsd, decimated_quantized_weights, decimated_weights, weight_low_value, weight_high_value);
// for each mode (which specifies a decimation and a quantization):
// * compute number of bits needed for the quantized weights.
// * generate an optimized set of quantized weights.
// * compute quantization errors for the mode.
int qwt_bitcounts[MAX_WEIGHT_MODES];
float qwt_errors[MAX_WEIGHT_MODES];
for (i = 0; i < MAX_WEIGHT_MODES; i++)
{
if (bsd->block_modes[i].permit_encode == 0 || bsd->block_modes[i].is_dual_plane != 0 || bsd->block_modes[i].percentile > mode_cutoff)
{
qwt_errors[i] = 1e38f;
continue;
}
if (weight_high_value[i] > 1.02f * min_wt_cutoff)
weight_high_value[i] = 1.0f;
int decimation_mode = bsd->block_modes[i].decimation_mode;
if (bsd->decimation_mode_percentile[decimation_mode] > mode_cutoff)
ASTC_CODEC_INTERNAL_ERROR();
// compute weight bitcount for the mode
int bits_used_by_weights = compute_ise_bitcount(ixtab2[decimation_mode]->num_weights,
(quantization_method) bsd->block_modes[i].quantization_mode);
int bitcount = free_bits_for_partition_count[partition_count] - bits_used_by_weights;
if (bitcount <= 0 || bits_used_by_weights < 24 || bits_used_by_weights > 96)
{
qwt_errors[i] = 1e38f;
continue;
}
qwt_bitcounts[i] = bitcount;
// then, generate the optimized set of weights for the weight mode.
compute_ideal_quantized_weights_for_decimation_table(&(eix[decimation_mode]),
ixtab2[decimation_mode],
weight_low_value[i], weight_high_value[i],
decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * decimation_mode,
flt_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * i,
u8_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * i,
bsd->block_modes[i].quantization_mode);
// then, compute weight-errors for the weight mode.
qwt_errors[i] = compute_error_of_weight_set(&(eix[decimation_mode]), ixtab2[decimation_mode], flt_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * i);
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
printf("Block mode %d -> weight error = %f\n", i, qwt_errors[i]);
#endif
}
// for each weighting mode, determine the optimal combination of color endpoint encodings
// and weight encodings; return results for the 4 best-looking modes.
int partition_format_specifiers[4][4];
int quantized_weight[4];
int color_quantization_level[4];
int color_quantization_level_mod[4];
determine_optimal_set_of_endpoint_formats_to_use(xdim, ydim, zdim, pi, blk, ewb, &(ei->ep), -1, // used to flag that we are in single-weight mode
qwt_bitcounts, qwt_errors, partition_format_specifiers, quantized_weight, color_quantization_level, color_quantization_level_mod);
// then iterate over the 4 believed-to-be-best modes to find out which one is
// actually best.
for (i = 0; i < 4; i++)
{
uint8_t *u8_weight_src;
int weights_to_copy;
if (quantized_weight[i] < 0)
{
scb->error_block = 1;
scb++;
continue;
}
int decimation_mode = bsd->block_modes[quantized_weight[i]].decimation_mode;
int weight_quantization_mode = bsd->block_modes[quantized_weight[i]].quantization_mode;
const decimation_table *it = ixtab2[decimation_mode];
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("Selected mode = %d\n", quantized_weight[i]);
printf("Selected decimation mode = %d\n", decimation_mode);
printf("Selected weight-quantization mode = %d\n", weight_quantization_mode);
}
#endif
u8_weight_src = u8_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * quantized_weight[i];
weights_to_copy = it->num_weights;
// recompute the ideal color endpoints before storing them.
float4 rgbs_colors[4];
float4 rgbo_colors[4];
int l;
for (l = 0; l < max_refinement_iters; l++)
{
recompute_ideal_colors(xdim, ydim, zdim, weight_quantization_mode, &(eix[decimation_mode].ep), rgbs_colors, rgbo_colors, u8_weight_src, NULL, -1, pi, it, blk, ewb);
// quantize the chosen color
// store the colors for the block
for (j = 0; j < partition_count; j++)
{
scb->color_formats[j] = pack_color_endpoints(eix[decimation_mode].ep.endpt0[j],
eix[decimation_mode].ep.endpt1[j],
rgbs_colors[j], rgbo_colors[j], partition_format_specifiers[i][j], scb->color_values[j], color_quantization_level[i]);
}
// if all the color endpoint modes are the same, we get a few more
// bits to store colors; let's see if we can take advantage of this:
// requantize all the colors and see if the endpoint modes remain the same;
// if they do, then exploit it.
scb->color_formats_matched = 0;
if ((partition_count >= 2 && scb->color_formats[0] == scb->color_formats[1]
&& color_quantization_level[i] != color_quantization_level_mod[i])
&& (partition_count == 2 || (scb->color_formats[0] == scb->color_formats[2] && (partition_count == 3 || (scb->color_formats[0] == scb->color_formats[3])))))
{
int colorvals[4][12];
int color_formats_mod[4];
for (j = 0; j < partition_count; j++)
{
color_formats_mod[j] = pack_color_endpoints(eix[decimation_mode].ep.endpt0[j],
eix[decimation_mode].ep.endpt1[j],
rgbs_colors[j], rgbo_colors[j], partition_format_specifiers[i][j], colorvals[j], color_quantization_level_mod[i]);
}
if (color_formats_mod[0] == color_formats_mod[1]
&& (partition_count == 2 || (color_formats_mod[0] == color_formats_mod[2] && (partition_count == 3 || (color_formats_mod[0] == color_formats_mod[3])))))
{
scb->color_formats_matched = 1;
for (j = 0; j < 4; j++)
for (k = 0; k < 12; k++)
scb->color_values[j][k] = colorvals[j][k];
for (j = 0; j < 4; j++)
scb->color_formats[j] = color_formats_mod[j];
}
}
// store header fields
scb->partition_count = partition_count;
scb->partition_index = partition_index;
scb->color_quantization_level = scb->color_formats_matched ? color_quantization_level_mod[i] : color_quantization_level[i];
scb->block_mode = quantized_weight[i];
scb->error_block = 0;
if (scb->color_quantization_level < 4)
{
scb->error_block = 1; // should never happen, but cannot prove it impossible.
}
// perform a final pass over the weights to try to improve them.
int adjustments = realign_weights(decode_mode,
xdim, ydim, zdim,
blk, ewb, scb,
u8_weight_src,
NULL);
if (adjustments == 0)
break;
}
for (j = 0; j < weights_to_copy; j++)
scb->plane1_weights[j] = u8_weight_src[j];
scb++;
}
}
static void compress_symbolic_block_fixed_partition_2_planes(astc_decode_mode decode_mode,
float mode_cutoff,
int max_refinement_iters,
int xdim, int ydim, int zdim,
int partition_count, int partition_index,
int separate_component, const imageblock * blk, const error_weight_block * ewb,
symbolic_compressed_block * scb,
compress_fixed_partition_buffers * tmpbuf)
{
int i, j, k;
static const int free_bits_for_partition_count[5] =
{ 0, 113 - 4, 109 - 4 - PARTITION_BITS, 106 - 4 - PARTITION_BITS, 103 - 4 - PARTITION_BITS };
const partition_info *pi = get_partition_table(xdim, ydim, zdim, partition_count);
pi += partition_index;
// first, compute ideal weights and endpoint colors
endpoints_and_weights *ei1 = tmpbuf->ei1;
endpoints_and_weights *ei2 = tmpbuf->ei2;
endpoints_and_weights *eix1 = tmpbuf->eix1;
endpoints_and_weights *eix2 = tmpbuf->eix2;
compute_endpoints_and_ideal_weights_2_planes(xdim, ydim, zdim, pi, blk, ewb, separate_component, ei1, ei2);
// next, compute ideal weights and endpoint colors for every decimation.
const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim);
const decimation_table *const *ixtab2 = bsd->decimation_tables;
float *decimated_quantized_weights = tmpbuf->decimated_quantized_weights;
float *decimated_weights = tmpbuf->decimated_weights;
float *flt_quantized_decimated_quantized_weights = tmpbuf->flt_quantized_decimated_quantized_weights;
uint8_t *u8_quantized_decimated_quantized_weights = tmpbuf->u8_quantized_decimated_quantized_weights;
// for each decimation mode, compute an ideal set of weights
for (i = 0; i < MAX_DECIMATION_MODES; i++)
{
if (bsd->permit_encode[i] == 0 || bsd->decimation_mode_maxprec_2planes[i] < 0 || bsd->decimation_mode_percentile[i] > mode_cutoff)
continue;
eix1[i] = *ei1;
eix2[i] = *ei2;
compute_ideal_weights_for_decimation_table(&(eix1[i]), ixtab2[i], decimated_quantized_weights + (2 * i) * MAX_WEIGHTS_PER_BLOCK, decimated_weights + (2 * i) * MAX_WEIGHTS_PER_BLOCK);
compute_ideal_weights_for_decimation_table(&(eix2[i]), ixtab2[i], decimated_quantized_weights + (2 * i + 1) * MAX_WEIGHTS_PER_BLOCK, decimated_weights + (2 * i + 1) * MAX_WEIGHTS_PER_BLOCK);
}
// compute maximum colors for the endpoints and ideal weights.
// for each endpoint-and-ideal-weight pair, compute the smallest weight value
// that will result in a color value greater than 1.
float4 min_ep1 = float4(10, 10, 10, 10);
float4 min_ep2 = float4(10, 10, 10, 10);
for (i = 0; i < partition_count; i++)
{
#ifdef DEBUG_CAPTURE_NAN
fedisableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
float4 ep1 = (float4(1, 1, 1, 1) - ei1->ep.endpt0[i]) / (ei1->ep.endpt1[i] - ei1->ep.endpt0[i]);
if (ep1.x > 0.5f && ep1.x < min_ep1.x)
min_ep1.x = ep1.x;
if (ep1.y > 0.5f && ep1.y < min_ep1.y)
min_ep1.y = ep1.y;
if (ep1.z > 0.5f && ep1.z < min_ep1.z)
min_ep1.z = ep1.z;
if (ep1.w > 0.5f && ep1.w < min_ep1.w)
min_ep1.w = ep1.w;
float4 ep2 = (float4(1, 1, 1, 1) - ei2->ep.endpt0[i]) / (ei2->ep.endpt1[i] - ei2->ep.endpt0[i]);
if (ep2.x > 0.5f && ep2.x < min_ep2.x)
min_ep2.x = ep2.x;
if (ep2.y > 0.5f && ep2.y < min_ep2.y)
min_ep2.y = ep2.y;
if (ep2.z > 0.5f && ep2.z < min_ep2.z)
min_ep2.z = ep2.z;
if (ep2.w > 0.5f && ep2.w < min_ep2.w)
min_ep2.w = ep2.w;
#ifdef DEBUG_CAPTURE_NAN
feenableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
}
float min_wt_cutoff1, min_wt_cutoff2;
switch (separate_component)
{
case 0:
min_wt_cutoff2 = min_ep2.x;
min_ep1.x = 1e30f;
break;
case 1:
min_wt_cutoff2 = min_ep2.y;
min_ep1.y = 1e30f;
break;
case 2:
min_wt_cutoff2 = min_ep2.z;
min_ep1.z = 1e30f;
break;
case 3:
min_wt_cutoff2 = min_ep2.w;
min_ep1.w = 1e30f;
break;
default:
min_wt_cutoff2 = 1e30f;
}
min_wt_cutoff1 = MIN(MIN(min_ep1.x, min_ep1.y), MIN(min_ep1.z, min_ep1.w));
float weight_low_value1[MAX_WEIGHT_MODES];
float weight_high_value1[MAX_WEIGHT_MODES];
float weight_low_value2[MAX_WEIGHT_MODES];
float weight_high_value2[MAX_WEIGHT_MODES];
compute_angular_endpoints_2planes(mode_cutoff, bsd, decimated_quantized_weights, decimated_weights, weight_low_value1, weight_high_value1, weight_low_value2, weight_high_value2);
// for each mode (which specifies a decimation and a quantization):
// * generate an optimized set of quantized weights.
// * compute quantization errors for each mode
// * compute number of bits needed for the quantized weights.
int qwt_bitcounts[MAX_WEIGHT_MODES];
float qwt_errors[MAX_WEIGHT_MODES];
for (i = 0; i < MAX_WEIGHT_MODES; i++)
{
if (bsd->block_modes[i].permit_encode == 0 || bsd->block_modes[i].is_dual_plane != 1 || bsd->block_modes[i].percentile > mode_cutoff)
{
qwt_errors[i] = 1e38f;
continue;
}
int decimation_mode = bsd->block_modes[i].decimation_mode;
if (weight_high_value1[i] > 1.02f * min_wt_cutoff1)
weight_high_value1[i] = 1.0f;
if (weight_high_value2[i] > 1.02f * min_wt_cutoff2)
weight_high_value2[i] = 1.0f;
// compute weight bitcount for the mode
int bits_used_by_weights = compute_ise_bitcount(2 * ixtab2[decimation_mode]->num_weights,
(quantization_method) bsd->block_modes[i].quantization_mode);
int bitcount = free_bits_for_partition_count[partition_count] - bits_used_by_weights;
if (bitcount <= 0 || bits_used_by_weights < 24 || bits_used_by_weights > 96)
{
qwt_errors[i] = 1e38f;
continue;
}
qwt_bitcounts[i] = bitcount;
// then, generate the optimized set of weights for the mode.
compute_ideal_quantized_weights_for_decimation_table(&(eix1[decimation_mode]),
ixtab2[decimation_mode],
weight_low_value1[i],
weight_high_value1[i],
decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * decimation_mode),
flt_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * i),
u8_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * i), bsd->block_modes[i].quantization_mode);
compute_ideal_quantized_weights_for_decimation_table(&(eix2[decimation_mode]),
ixtab2[decimation_mode],
weight_low_value2[i],
weight_high_value2[i],
decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * decimation_mode + 1),
flt_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * i + 1),
u8_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * i + 1), bsd->block_modes[i].quantization_mode);
// then, compute quantization errors for the block mode.
qwt_errors[i] =
compute_error_of_weight_set(&(eix1[decimation_mode]),
ixtab2[decimation_mode],
flt_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * i))
+ compute_error_of_weight_set(&(eix2[decimation_mode]), ixtab2[decimation_mode], flt_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * i + 1));
}
// decide the optimal combination of color endpoint encodings and weight encodings.
int partition_format_specifiers[4][4];
int quantized_weight[4];
int color_quantization_level[4];
int color_quantization_level_mod[4];
endpoints epm;
merge_endpoints(&(ei1->ep), &(ei2->ep), separate_component, &epm);
determine_optimal_set_of_endpoint_formats_to_use(xdim, ydim, zdim,
pi,
blk,
ewb,
&epm, separate_component, qwt_bitcounts, qwt_errors, partition_format_specifiers, quantized_weight, color_quantization_level, color_quantization_level_mod);
for (i = 0; i < 4; i++)
{
if (quantized_weight[i] < 0)
{
scb->error_block = 1;
scb++;
continue;
}
uint8_t *u8_weight1_src;
uint8_t *u8_weight2_src;
int weights_to_copy;
int decimation_mode = bsd->block_modes[quantized_weight[i]].decimation_mode;
int weight_quantization_mode = bsd->block_modes[quantized_weight[i]].quantization_mode;
const decimation_table *it = ixtab2[decimation_mode];
u8_weight1_src = u8_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * quantized_weight[i]);
u8_weight2_src = u8_quantized_decimated_quantized_weights + MAX_WEIGHTS_PER_BLOCK * (2 * quantized_weight[i] + 1);
weights_to_copy = it->num_weights;
// recompute the ideal color endpoints before storing them.
merge_endpoints(&(eix1[decimation_mode].ep), &(eix2[decimation_mode].ep), separate_component, &epm);
float4 rgbs_colors[4];
float4 rgbo_colors[4];
int l;
for (l = 0; l < max_refinement_iters; l++)
{
recompute_ideal_colors(xdim, ydim, zdim, weight_quantization_mode, &epm, rgbs_colors, rgbo_colors, u8_weight1_src, u8_weight2_src, separate_component, pi, it, blk, ewb);
// store the colors for the block
for (j = 0; j < partition_count; j++)
{
scb->color_formats[j] = pack_color_endpoints(epm.endpt0[j],
epm.endpt1[j],
rgbs_colors[j], rgbo_colors[j], partition_format_specifiers[i][j], scb->color_values[j], color_quantization_level[i]);
}
scb->color_formats_matched = 0;
if ((partition_count >= 2 && scb->color_formats[0] == scb->color_formats[1]
&& color_quantization_level[i] != color_quantization_level_mod[i])
&& (partition_count == 2 || (scb->color_formats[0] == scb->color_formats[2] && (partition_count == 3 || (scb->color_formats[0] == scb->color_formats[3])))))
{
int colorvals[4][12];
int color_formats_mod[4];
for (j = 0; j < partition_count; j++)
{
color_formats_mod[j] = pack_color_endpoints(epm.endpt0[j],
epm.endpt1[j],
rgbs_colors[j], rgbo_colors[j], partition_format_specifiers[i][j], colorvals[j], color_quantization_level_mod[i]);
}
if (color_formats_mod[0] == color_formats_mod[1]
&& (partition_count == 2 || (color_formats_mod[0] == color_formats_mod[2] && (partition_count == 3 || (color_formats_mod[0] == color_formats_mod[3])))))
{
scb->color_formats_matched = 1;
for (j = 0; j < 4; j++)
for (k = 0; k < 12; k++)
scb->color_values[j][k] = colorvals[j][k];
for (j = 0; j < 4; j++)
scb->color_formats[j] = color_formats_mod[j];
}
}
// store header fields
scb->partition_count = partition_count;
scb->partition_index = partition_index;
scb->color_quantization_level = scb->color_formats_matched ? color_quantization_level_mod[i] : color_quantization_level[i];
scb->block_mode = quantized_weight[i];
scb->plane2_color_component = separate_component;
scb->error_block = 0;
if (scb->color_quantization_level < 4)
{
scb->error_block = 1; // should never happen, but cannot prove it impossible
}
int adjustments = realign_weights(decode_mode,
xdim, ydim, zdim,
blk, ewb, scb,
u8_weight1_src,
u8_weight2_src);
if (adjustments == 0)
break;
}
for (j = 0; j < weights_to_copy; j++)
{
scb->plane1_weights[j] = u8_weight1_src[j];
scb->plane2_weights[j] = u8_weight2_src[j];
}
scb++;
}
}
void expand_block_artifact_suppression(int xdim, int ydim, int zdim, error_weighting_params * ewp)
{
int x, y, z;
float centerpos_x = (xdim - 1) * 0.5f;
float centerpos_y = (ydim - 1) * 0.5f;
float centerpos_z = (zdim - 1) * 0.5f;
float *bef = ewp->block_artifact_suppression_expanded;
for (z = 0; z < zdim; z++)
{
for (y = 0; y < ydim; y++)
{
for (x = 0; x < xdim; x++)
{
float xdif = (x - centerpos_x) / xdim;
float ydif = (y - centerpos_y) / ydim;
float zdif = (z - centerpos_z) / zdim;
float wdif = 0.36f;
float dist = sqrt(xdif * xdif + ydif * ydif + zdif * zdif + wdif * wdif);
*bef = pow(dist, ewp->block_artifact_suppression);
bef++;
}
}
}
}
// Function to set error weights for each color component for each texel in a block.
// Returns the sum of all the error values set.
float prepare_error_weight_block(const astc_codec_image * input_image,
int xdim, int ydim, int zdim, const error_weighting_params * ewp, const imageblock * blk, error_weight_block * ewb, error_weight_block_orig * ewbo)
{
int idx = 0;
int any_mean_stdev_weight =
ewp->rgb_base_weight != 1.0 || ewp->alpha_base_weight != 1.0 || ewp->rgb_mean_weight != 0.0 || ewp->rgb_stdev_weight != 0.0 || ewp->alpha_mean_weight != 0.0 || ewp->alpha_stdev_weight != 0.0;
float4 color_weights = float4(ewp->rgba_weights[0],
ewp->rgba_weights[1],
ewp->rgba_weights[2],
ewp->rgba_weights[3]);
ewb->contains_zeroweight_texels = 0;
for (int z = 0; z < zdim; z++)
{
for (int y = 0; y < ydim; y++)
{
for (int x = 0; x < xdim; x++)
{
int xpos = x + blk->xpos;
int ypos = y + blk->ypos;
int zpos = z + blk->zpos;
if (xpos >= input_image->xsize || ypos >= input_image->ysize || zpos >= input_image->zsize)
{
float4 weights = float4(1e-11f, 1e-11f, 1e-11f, 1e-11f);
ewb->error_weights[idx] = weights;
ewb->contains_zeroweight_texels = 1;
}
else
{
float4 error_weight = float4(ewp->rgb_base_weight,
ewp->rgb_base_weight,
ewp->rgb_base_weight,
ewp->alpha_base_weight);
if (any_mean_stdev_weight)
{
float4 avg = input_averages[zpos][ypos][xpos];
if (avg.x < 6e-5f)
avg.x = 6e-5f;
if (avg.y < 6e-5f)
avg.y = 6e-5f;
if (avg.z < 6e-5f)
avg.z = 6e-5f;
if (avg.w < 6e-5f)
avg.w = 6e-5f;
avg = avg * avg;
float4 variance = input_variances[zpos][ypos][xpos];
variance = variance * variance;
float favg = (avg.x + avg.y + avg.z) * (1.0f / 3.0f);
float fvar = (variance.x + variance.y + variance.z) * (1.0f / 3.0f);
float mixing = ewp->rgb_mean_and_stdev_mixing;
avg.xyz = float3(favg, favg, favg) * mixing + avg.xyz * (1.0f - mixing);
variance.xyz = float3(fvar, fvar, fvar) * mixing + variance.xyz * (1.0f - mixing);
float4 stdev = float4(sqrt(MAX(variance.x, 0.0f)),
sqrt(MAX(variance.y, 0.0f)),
sqrt(MAX(variance.z, 0.0f)),
sqrt(MAX(variance.w, 0.0f)));
avg.xyz = avg.xyz * ewp->rgb_mean_weight;
avg.w = avg.w * ewp->alpha_mean_weight;
stdev.xyz = stdev.xyz * ewp->rgb_stdev_weight;
stdev.w = stdev.w * ewp->alpha_stdev_weight;
error_weight = error_weight + avg + stdev;
error_weight = float4(1.0f, 1.0f, 1.0f, 1.0f) / error_weight;
}
if (ewp->ra_normal_angular_scale)
{
// Convert from 0 to 1 to -1 to +1 range.
float xN = (blk->orig_data[4 * idx] - 0.5f) * 2.0f;
float yN = (blk->orig_data[4 * idx + 3] - 0.5f) * 2.0f;
float denom = 1.0f - xN * xN - yN * yN;
if (denom < 0.1f)
denom = 0.1f;
denom = 1.0f / denom;
error_weight.x *= 1.0f + xN * xN * denom;
error_weight.w *= 1.0f + yN * yN * denom;
}
if (ewp->enable_rgb_scale_with_alpha)
{
float alpha_scale;
if (ewp->alpha_radius != 0)
alpha_scale = input_alpha_averages[zpos][ypos][xpos];
else
alpha_scale = blk->orig_data[4 * idx + 3];
if (alpha_scale < 0.0001f)
alpha_scale = 0.0001f;
alpha_scale *= alpha_scale;
error_weight.xyz = error_weight.xyz * alpha_scale;
}
error_weight = error_weight * color_weights;
error_weight = error_weight * ewp->block_artifact_suppression_expanded[idx];
// if we perform a conversion from linear to sRGB, then we multiply
// the weight with the derivative of the linear->sRGB transform function.
if (perform_srgb_transform)
{
float r = blk->orig_data[4 * idx];
float g = blk->orig_data[4 * idx + 1];
float b = blk->orig_data[4 * idx + 2];
if (r < 0.0031308f)
r = 12.92f;
else
r = 0.4396f * pow(r, -0.58333f);
if (g < 0.0031308f)
g = 12.92f;
else
g = 0.4396f * pow(g, -0.58333f);
if (b < 0.0031308f)
b = 12.92f;
else
b = 0.4396f * pow(b, -0.58333f);
error_weight.x *= r;
error_weight.y *= g;
error_weight.z *= b;
}
// when we loaded the block to begin with, we applied a transfer function
// and computed the derivative of the transfer function. However, the
// error-weight computation so far is based on the original color values,
// not the transfer-function values. As such, we must multiply the
// error weights by the derivative of the inverse of the transfer function,
// which is equivalent to dividing by the derivative of the transfer
// function.
ewbo->error_weights[idx] = error_weight;
error_weight.x /= (blk->deriv_data[4 * idx] * blk->deriv_data[4 * idx] * 1e-10f);
error_weight.y /= (blk->deriv_data[4 * idx + 1] * blk->deriv_data[4 * idx + 1] * 1e-10f);
error_weight.z /= (blk->deriv_data[4 * idx + 2] * blk->deriv_data[4 * idx + 2] * 1e-10f);
error_weight.w /= (blk->deriv_data[4 * idx + 3] * blk->deriv_data[4 * idx + 3] * 1e-10f);
ewb->error_weights[idx] = error_weight;
if (dot(error_weight, float4(1, 1, 1, 1)) < 1e-10f)
ewb->contains_zeroweight_texels = 1;
}
idx++;
}
}
}
float4 error_weight_sum = float4(0, 0, 0, 0);
int texels_per_block = xdim * ydim * zdim;
for (int i = 0; i < texels_per_block; i++)
{
error_weight_sum = error_weight_sum + ewb->error_weights[i];
ewb->texel_weight_r[i] = ewb->error_weights[i].x;
ewb->texel_weight_g[i] = ewb->error_weights[i].y;
ewb->texel_weight_b[i] = ewb->error_weights[i].z;
ewb->texel_weight_a[i] = ewb->error_weights[i].w;
ewb->texel_weight_rg[i] = (ewb->error_weights[i].x + ewb->error_weights[i].y) * 0.5f;
ewb->texel_weight_rb[i] = (ewb->error_weights[i].x + ewb->error_weights[i].z) * 0.5f;
ewb->texel_weight_gb[i] = (ewb->error_weights[i].y + ewb->error_weights[i].z) * 0.5f;
ewb->texel_weight_ra[i] = (ewb->error_weights[i].x + ewb->error_weights[i].w) * 0.5f;
ewb->texel_weight_gba[i] = (ewb->error_weights[i].y + ewb->error_weights[i].z + ewb->error_weights[i].w) * 0.333333f;
ewb->texel_weight_rba[i] = (ewb->error_weights[i].x + ewb->error_weights[i].z + ewb->error_weights[i].w) * 0.333333f;
ewb->texel_weight_rga[i] = (ewb->error_weights[i].x + ewb->error_weights[i].y + ewb->error_weights[i].w) * 0.333333f;
ewb->texel_weight_rgb[i] = (ewb->error_weights[i].x + ewb->error_weights[i].y + ewb->error_weights[i].z) * 0.333333f;
ewb->texel_weight[i] = (ewb->error_weights[i].x + ewb->error_weights[i].y + ewb->error_weights[i].z + ewb->error_weights[i].w) * 0.25f;
}
return dot(error_weight_sum, float4(1, 1, 1, 1));
}
/*
functions to analyze block statistical properties:
* simple properties: * mean * variance
* covariance-matrix correllation coefficients
*/
// compute averages and covariance matrices for 4 components
static void compute_covariance_matrix(int xdim, int ydim, int zdim, const imageblock * blk, const error_weight_block * ewb, mat4 * cov_matrix)
{
int i;
int texels_per_block = xdim * ydim * zdim;
float r_sum = 0.0f;
float g_sum = 0.0f;
float b_sum = 0.0f;
float a_sum = 0.0f;
float rr_sum = 0.0f;
float gg_sum = 0.0f;
float bb_sum = 0.0f;
float aa_sum = 0.0f;
float rg_sum = 0.0f;
float rb_sum = 0.0f;
float ra_sum = 0.0f;
float gb_sum = 0.0f;
float ga_sum = 0.0f;
float ba_sum = 0.0f;
float weight_sum = 0.0f;
for (i = 0; i < texels_per_block; i++)
{
float weight = ewb->texel_weight[i];
if (weight < 0.0f)
ASTC_CODEC_INTERNAL_ERROR();
weight_sum += weight;
float r = blk->work_data[4 * i];
float g = blk->work_data[4 * i + 1];
float b = blk->work_data[4 * i + 2];
float a = blk->work_data[4 * i + 3];
r_sum += r * weight;
rr_sum += r * (r * weight);
rg_sum += g * (r * weight);
rb_sum += b * (r * weight);
ra_sum += a * (r * weight);
g_sum += g * weight;
gg_sum += g * (g * weight);
gb_sum += b * (g * weight);
ga_sum += a * (g * weight);
b_sum += b * weight;
bb_sum += b * (b * weight);
ba_sum += a * (b * weight);
a_sum += a * weight;
aa_sum += a * (a * weight);
}
float rpt = 1.0f / MAX(weight_sum, 1e-7f);
float rs = r_sum;
float gs = g_sum;
float bs = b_sum;
float as = a_sum;
cov_matrix->v[0] = float4(rr_sum - rs * rs * rpt, rg_sum - rs * gs * rpt, rb_sum - rs * bs * rpt, ra_sum - rs * as * rpt);
cov_matrix->v[1] = float4(rg_sum - rs * gs * rpt, gg_sum - gs * gs * rpt, gb_sum - gs * bs * rpt, ga_sum - gs * as * rpt);
cov_matrix->v[2] = float4(rb_sum - rs * bs * rpt, gb_sum - gs * bs * rpt, bb_sum - bs * bs * rpt, ba_sum - bs * as * rpt);
cov_matrix->v[3] = float4(ra_sum - rs * as * rpt, ga_sum - gs * as * rpt, ba_sum - bs * as * rpt, aa_sum - as * as * rpt);
}
void prepare_block_statistics(int xdim, int ydim, int zdim, const imageblock * blk, const error_weight_block * ewb, int *is_normal_map, float *lowest_correl)
{
int i;
mat4 cov_matrix;
compute_covariance_matrix(xdim, ydim, zdim, blk, ewb, &cov_matrix);
// use the covariance matrix to compute
// correllation coefficients
float rr_var = cov_matrix.v[0].x;
float gg_var = cov_matrix.v[1].y;
float bb_var = cov_matrix.v[2].z;
float aa_var = cov_matrix.v[3].w;
float rg_correlation = cov_matrix.v[0].y / sqrt(MAX(rr_var * gg_var, 1e-30f));
float rb_correlation = cov_matrix.v[0].z / sqrt(MAX(rr_var * bb_var, 1e-30f));
float ra_correlation = cov_matrix.v[0].w / sqrt(MAX(rr_var * aa_var, 1e-30f));
float gb_correlation = cov_matrix.v[1].z / sqrt(MAX(gg_var * bb_var, 1e-30f));
float ga_correlation = cov_matrix.v[1].w / sqrt(MAX(gg_var * aa_var, 1e-30f));
float ba_correlation = cov_matrix.v[2].w / sqrt(MAX(bb_var * aa_var, 1e-30f));
if (astc_isnan(rg_correlation))
rg_correlation = 1.0f;
if (astc_isnan(rb_correlation))
rb_correlation = 1.0f;
if (astc_isnan(ra_correlation))
ra_correlation = 1.0f;
if (astc_isnan(gb_correlation))
gb_correlation = 1.0f;
if (astc_isnan(ga_correlation))
ga_correlation = 1.0f;
if (astc_isnan(ba_correlation))
ba_correlation = 1.0f;
float lowest_correlation = MIN(fabs(rg_correlation), fabs(rb_correlation));
lowest_correlation = MIN(lowest_correlation, fabs(ra_correlation));
lowest_correlation = MIN(lowest_correlation, fabs(gb_correlation));
lowest_correlation = MIN(lowest_correlation, fabs(ga_correlation));
lowest_correlation = MIN(lowest_correlation, fabs(ba_correlation));
*lowest_correl = lowest_correlation;
// compute a "normal-map" factor
// this factor should be exactly 0.0 for a normal map, while it may be all over the
// place for anything that is NOT a normal map. We can probably assume that a factor
// of less than 0.2f represents a normal map.
float nf_sum = 0.0f;
int texels_per_block = xdim * ydim * zdim;
for (i = 0; i < texels_per_block; i++)
{
float3 val = float3(blk->orig_data[4 * i],
blk->orig_data[4 * i + 1],
blk->orig_data[4 * i + 2]);
val = (val - float3(0.5f, 0.5f, 0.5f)) * 2.0f;
float length_squared = dot(val, val);
float nf = fabs(length_squared - 1.0f);
nf_sum += nf;
}
float nf_avg = nf_sum / texels_per_block;
*is_normal_map = nf_avg < 0.2;
}
void compress_constant_color_block(int xdim, int ydim, int zdim, const imageblock * blk, const error_weight_block * ewb, symbolic_compressed_block * scb)
{
int texel_count = xdim * ydim * zdim;
int i;
float4 color_sum = float4(0, 0, 0, 0);
float4 color_weight_sum = float4(0, 0, 0, 0);
const float *clp = blk->work_data;
for (i = 0; i < texel_count; i++)
{
float4 weights = ewb->error_weights[i];
float4 color_data = float4(clp[4 * i], clp[4 * i + 1], clp[4 * i + 2], clp[4 * i + 3]);
color_sum = color_sum + (color_data * weights);
color_weight_sum = color_weight_sum + weights;
}
float4 avg_color = color_sum / color_weight_sum;
int use_fp16 = blk->rgb_lns[0];
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("Averaged color: %f %f %f %f\n", avg_color.x, avg_color.y, avg_color.z, avg_color.w);
}
#endif
// convert the color
if (blk->rgb_lns[0])
{
int avg_red = static_cast < int >(floor(avg_color.x + 0.5f));
int avg_green = static_cast < int >(floor(avg_color.y + 0.5f));
int avg_blue = static_cast < int >(floor(avg_color.z + 0.5f));
if (avg_red < 0)
avg_red = 0;
else if (avg_red > 65535)
avg_red = 65535;
if (avg_green < 0)
avg_green = 0;
else if (avg_green > 65535)
avg_green = 65535;
if (avg_blue < 0)
avg_blue = 0;
else if (avg_blue > 65535)
avg_blue = 65535;
avg_color.x = sf16_to_float(lns_to_sf16(avg_red));
avg_color.y = sf16_to_float(lns_to_sf16(avg_green));
avg_color.z = sf16_to_float(lns_to_sf16(avg_blue));
}
else
{
avg_color.x *= (1.0f / 65535.0f);
avg_color.y *= (1.0f / 65535.0f);
avg_color.z *= (1.0f / 65535.0f);
}
if (blk->alpha_lns[0])
{
int avg_alpha = static_cast < int >(floor(avg_color.w + 0.5f));
if (avg_alpha < 0)
avg_alpha = 0;
else if (avg_alpha > 65535)
avg_alpha = 65535;
avg_color.w = sf16_to_float(lns_to_sf16(avg_alpha));
}
else
{
avg_color.w *= (1.0f / 65535.0f);
}
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("Averaged color: %f %f %f %f (%d)\n", avg_color.x, avg_color.y, avg_color.z, avg_color.w, use_fp16);
}
#endif
if (use_fp16)
{
scb->error_block = 0;
scb->block_mode = -1;
scb->partition_count = 0;
scb->constant_color[0] = float_to_sf16(avg_color.x, SF_NEARESTEVEN);
scb->constant_color[1] = float_to_sf16(avg_color.y, SF_NEARESTEVEN);
scb->constant_color[2] = float_to_sf16(avg_color.z, SF_NEARESTEVEN);
scb->constant_color[3] = float_to_sf16(avg_color.w, SF_NEARESTEVEN);
}
else
{
scb->error_block = 0;
scb->block_mode = -2;
scb->partition_count = 0;
float red = avg_color.x;
float green = avg_color.y;
float blue = avg_color.z;
float alpha = avg_color.w;
if (red < 0)
red = 0;
else if (red > 1)
red = 1;
if (green < 0)
green = 0;
else if (green > 1)
green = 1;
if (blue < 0)
blue = 0;
else if (blue > 1)
blue = 1;
if (alpha < 0)
alpha = 0;
else if (alpha > 1)
alpha = 1;
scb->constant_color[0] = static_cast < int >(floor(red * 65535.0f + 0.5f));
scb->constant_color[1] = static_cast < int >(floor(green * 65535.0f + 0.5f));
scb->constant_color[2] = static_cast < int >(floor(blue * 65535.0f + 0.5f));
scb->constant_color[3] = static_cast < int >(floor(alpha * 65535.0f + 0.5f));
}
}
int block_mode_histogram[2048];
float compress_symbolic_block(const astc_codec_image * input_image,
astc_decode_mode decode_mode, int xdim, int ydim, int zdim, const error_weighting_params * ewp, const imageblock * blk, symbolic_compressed_block * scb,
compress_symbolic_block_buffers * tmpbuf)
{
int i, j;
int xpos = blk->xpos;
int ypos = blk->ypos;
int zpos = blk->zpos;
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("Diagnostics of block of dimension %d x %d x %d\n\n", xdim, ydim, zdim);
printf("XPos: %d YPos: %d ZPos: %d\n", xpos, ypos, zpos);
printf("Red-min: %f Red-max: %f\n", blk->red_min, blk->red_max);
printf("Green-min: %f Green-max: %f\n", blk->green_min, blk->green_max);
printf("Blue-min: %f Blue-max: %f\n", blk->blue_min, blk->blue_max);
printf("Alpha-min: %f Alpha-max: %f\n", blk->alpha_min, blk->alpha_max);
printf("Grayscale: %d\n", blk->grayscale);
for (int z = 0; z < zdim; z++)
for (int y = 0; y < ydim; y++)
for (int x = 0; x < xdim; x++)
{
int idx = ((z * ydim + y) * xdim + x) * 4;
printf("Texel (%d %d %d) : orig=< %g, %g, %g, %g >, work=< %g, %g, %g, %g >\n",
x, y, z,
blk->orig_data[idx],
blk->orig_data[idx + 1], blk->orig_data[idx + 2], blk->orig_data[idx + 3], blk->work_data[idx], blk->work_data[idx + 1], blk->work_data[idx + 2], blk->work_data[idx + 3]);
}
printf("\n");
}
#endif
if (blk->red_min == blk->red_max && blk->green_min == blk->green_max && blk->blue_min == blk->blue_max && blk->alpha_min == blk->alpha_max)
{
// detected a constant-color block. Encode as FP16 if using HDR
scb->error_block = 0;
if (rgb_force_use_of_hdr)
{
scb->block_mode = -1;
scb->partition_count = 0;
scb->constant_color[0] = float_to_sf16(blk->orig_data[0], SF_NEARESTEVEN);
scb->constant_color[1] = float_to_sf16(blk->orig_data[1], SF_NEARESTEVEN);
scb->constant_color[2] = float_to_sf16(blk->orig_data[2], SF_NEARESTEVEN);
scb->constant_color[3] = float_to_sf16(blk->orig_data[3], SF_NEARESTEVEN);
}
else
{
// Encode as UNORM16 if NOT using HDR.
scb->block_mode = -2;
scb->partition_count = 0;
float red = blk->orig_data[0];
float green = blk->orig_data[1];
float blue = blk->orig_data[2];
float alpha = blk->orig_data[3];
if (red < 0)
red = 0;
else if (red > 1)
red = 1;
if (green < 0)
green = 0;
else if (green > 1)
green = 1;
if (blue < 0)
blue = 0;
else if (blue > 1)
blue = 1;
if (alpha < 0)
alpha = 0;
else if (alpha > 1)
alpha = 1;
scb->constant_color[0] = (int)floor(red * 65535.0f + 0.5f);
scb->constant_color[1] = (int)floor(green * 65535.0f + 0.5f);
scb->constant_color[2] = (int)floor(blue * 65535.0f + 0.5f);
scb->constant_color[3] = (int)floor(alpha * 65535.0f + 0.5f);
}
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("Block is single-color <%4.4X %4.4X %4.4X %4.4X>\n", scb->constant_color[0], scb->constant_color[1], scb->constant_color[2], scb->constant_color[3]);
}
#endif
if (print_tile_errors)
printf("0\n");
physical_compressed_block psb = symbolic_to_physical(xdim, ydim, zdim, scb);
physical_to_symbolic(xdim, ydim, zdim, psb, scb);
return 0.0f;
}
error_weight_block *ewb = tmpbuf->ewb;
error_weight_block_orig *ewbo = tmpbuf->ewbo;
float error_weight_sum = prepare_error_weight_block(input_image,
xdim, ydim, zdim,
ewp, blk, ewb, ewbo);
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("\n");
for (int z = 0; z < zdim; z++)
for (int y = 0; y < ydim; y++)
for (int x = 0; x < xdim; x++)
{
int idx = (z * ydim + y) * xdim + x;
printf("ErrorWeight (%d %d %d) : < %g, %g, %g, %g >\n", x, y, z, ewb->error_weights[idx].x, ewb->error_weights[idx].y, ewb->error_weights[idx].z, ewb->error_weights[idx].w);
}
printf("\n");
}
#endif
symbolic_compressed_block *tempblocks = tmpbuf->tempblocks;
float error_of_best_block = 1e20f;
// int modesel=0;
imageblock *temp = tmpbuf->temp;
float best_errorvals_in_modes[17];
for (i = 0; i < 17; i++)
best_errorvals_in_modes[i] = 1e30f;
int uses_alpha = imageblock_uses_alpha(blk);
// compression of average-color blocks disabled for the time being;
// they produce extremely severe block artifacts.
#if 0
// first, compress an averaged-color block
compress_constant_color_block(xdim, ydim, zdim, blk, ewb, scb);
decompress_symbolic_block(decode_mode, xdim, ydim, zdim, xpos, ypos, zpos, scb, temp);
float avgblock_errorval = compute_imageblock_difference(xdim, ydim, zdim,
blk, temp, ewb) * 4.0f; // bias somewhat against the average-color block.
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("\n-----------------------------------\n");
printf("Average-color block test completed\n");
printf("Resulting error value: %g\n", avgblock_errorval);
}
#endif
if (avgblock_errorval < error_of_best_block)
{
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
printf("Accepted as better than previous-best-error, which was %g\n", error_of_best_block);
#endif
error_of_best_block = avgblock_errorval;
// *scb = tempblocks[j];
modesel = 0;
}
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("-----------------------------------\n");
}
#endif
#endif
float mode_cutoff = ewp->block_mode_cutoff;
// next, test mode #0. This mode uses 1 plane of weights and 1 partition.
// we test it twice, first with a modecutoff of 0, then with the specified mode-cutoff.
// This causes an early-out that speeds up encoding of "easy" content.
float modecutoffs[2];
float errorval_mult[2] = { 2.5, 1 };
modecutoffs[0] = 0;
modecutoffs[1] = mode_cutoff;
#if 0
if ((error_of_best_block / error_weight_sum) < ewp->texel_avg_error_limit)
goto END_OF_TESTS;
#endif
float best_errorval_in_mode;
for (i = 0; i < 2; i++)
{
compress_symbolic_block_fixed_partition_1_plane(decode_mode, modecutoffs[i], ewp->max_refinement_iters, xdim, ydim, zdim, 1, // partition count
0, // partition index
blk, ewb, tempblocks, tmpbuf->plane1);
best_errorval_in_mode = 1e30f;
for (j = 0; j < 4; j++)
{
if (tempblocks[j].error_block)
continue;
decompress_symbolic_block(decode_mode, xdim, ydim, zdim, xpos, ypos, zpos, tempblocks + j, temp);
float errorval = compute_imageblock_difference(xdim, ydim, zdim,
blk, temp, ewb) * errorval_mult[i];
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("\n-----------------------------------\n");
printf("Single-weight partition test 0 (1 partition) completed\n");
printf("Resulting error value: %g\n", errorval);
}
#endif
if (errorval < best_errorval_in_mode)
best_errorval_in_mode = errorval;
if (errorval < error_of_best_block)
{
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
printf("Accepted as better than previous-best-error, which was %g\n", error_of_best_block);
#endif
error_of_best_block = errorval;
*scb = tempblocks[j];
}
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("-----------------------------------\n");
}
#endif
}
best_errorvals_in_modes[0] = best_errorval_in_mode;
if ((error_of_best_block / error_weight_sum) < ewp->texel_avg_error_limit)
goto END_OF_TESTS;
}
int is_normal_map;
float lowest_correl;
prepare_block_statistics(xdim, ydim, zdim, blk, ewb, &is_normal_map, &lowest_correl);
if (is_normal_map && lowest_correl < 0.99f)
lowest_correl = 0.99f;
// next, test the four possible 1-partition, 2-planes modes
for (i = 0; i < 4; i++)
{
if (lowest_correl > ewp->lowest_correlation_cutoff)
continue;
if (blk->grayscale && i != 3)
continue;
if (!uses_alpha && i == 3)
continue;
compress_symbolic_block_fixed_partition_2_planes(decode_mode, mode_cutoff, ewp->max_refinement_iters, xdim, ydim, zdim, 1, // partition count
0, // partition index
i, // the color component to test a separate plane of weights for.
blk, ewb, tempblocks, tmpbuf->planes2);
best_errorval_in_mode = 1e30f;
for (j = 0; j < 4; j++)
{
if (tempblocks[j].error_block)
continue;
decompress_symbolic_block(decode_mode, xdim, ydim, zdim, xpos, ypos, zpos, tempblocks + j, temp);
float errorval = compute_imageblock_difference(xdim, ydim, zdim,
blk, temp, ewb);
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("\n-----------------------------------\n");
printf("Dual-weight partition test %d (1 partition) completed\n", i);
printf("Resulting error value: %g\n", errorval);
}
#endif
if (errorval < best_errorval_in_mode)
best_errorval_in_mode = errorval;
if (errorval < error_of_best_block)
{
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
printf("Accepted as better than previous-best-error, which was %g\n", error_of_best_block);
#endif
error_of_best_block = errorval;
*scb = tempblocks[j];
}
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("-----------------------------------\n");
}
#endif
best_errorvals_in_modes[i + 1] = best_errorval_in_mode;
}
if ((error_of_best_block / error_weight_sum) < ewp->texel_avg_error_limit)
goto END_OF_TESTS;
}
// find best blocks for 2, 3 and 4 partitions
int partition_count;
for (partition_count = 2; partition_count <= 4; partition_count++)
{
int partition_indices_1plane[2];
int partition_indices_2planes[2];
find_best_partitionings(ewp->partition_search_limit,
xdim, ydim, zdim, partition_count, blk, ewb, 1,
&(partition_indices_1plane[0]), &(partition_indices_1plane[1]), &(partition_indices_2planes[0]));
for (i = 0; i < 2; i++)
{
compress_symbolic_block_fixed_partition_1_plane(decode_mode, mode_cutoff, ewp->max_refinement_iters, xdim, ydim, zdim, partition_count, partition_indices_1plane[i], blk, ewb, tempblocks, tmpbuf->plane1);
best_errorval_in_mode = 1e30f;
for (j = 0; j < 4; j++)
{
if (tempblocks[j].error_block)
continue;
decompress_symbolic_block(decode_mode, xdim, ydim, zdim, xpos, ypos, zpos, tempblocks + j, temp);
float errorval = compute_imageblock_difference(xdim, ydim, zdim,
blk, temp, ewb);
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("\n-----------------------------------\n");
printf("Single-weight partition test %d (%d partitions) completed\n", i, partition_count);
printf("Resulting error value: %g\n", errorval);
}
#endif
if (errorval < best_errorval_in_mode)
best_errorval_in_mode = errorval;
if (errorval < error_of_best_block)
{
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
printf("Accepted as better than previous-best-error, which was %g\n", error_of_best_block);
#endif
error_of_best_block = errorval;
*scb = tempblocks[j];
}
}
best_errorvals_in_modes[4 * (partition_count - 2) + 5 + i] = best_errorval_in_mode;
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("-----------------------------------\n");
}
#endif
if ((error_of_best_block / error_weight_sum) < ewp->texel_avg_error_limit)
goto END_OF_TESTS;
}
if (partition_count == 2 && !is_normal_map && MIN(best_errorvals_in_modes[5], best_errorvals_in_modes[6]) > (best_errorvals_in_modes[0] * ewp->partition_1_to_2_limit))
goto END_OF_TESTS;
// don't bother to check 4 partitions for dual plane of weights, ever.
if (partition_count == 4)
break;
for (i = 0; i < 2; i++)
{
if (lowest_correl > ewp->lowest_correlation_cutoff)
continue;
compress_symbolic_block_fixed_partition_2_planes(decode_mode,
mode_cutoff,
ewp->max_refinement_iters,
xdim, ydim, zdim,
partition_count,
partition_indices_2planes[i] & (PARTITION_COUNT - 1), partition_indices_2planes[i] >> PARTITION_BITS,
blk, ewb, tempblocks, tmpbuf->planes2);
best_errorval_in_mode = 1e30f;
for (j = 0; j < 4; j++)
{
if (tempblocks[j].error_block)
continue;
decompress_symbolic_block(decode_mode, xdim, ydim, zdim, xpos, ypos, zpos, tempblocks + j, temp);
float errorval = compute_imageblock_difference(xdim, ydim, zdim,
blk, temp, ewb);
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("\n-----------------------------------\n");
printf("Dual-weight partition test %d (%d partitions) completed\n", i, partition_count);
printf("Resulting error value: %g\n", errorval);
}
#endif
if (errorval < best_errorval_in_mode)
best_errorval_in_mode = errorval;
if (errorval < error_of_best_block)
{
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
printf("Accepted as better than previous-best-error, which was %g\n", error_of_best_block);
#endif
error_of_best_block = errorval;
*scb = tempblocks[j];
}
}
best_errorvals_in_modes[4 * (partition_count - 2) + 5 + 2 + i] = best_errorval_in_mode;
#ifdef DEBUG_PRINT_DIAGNOSTICS
if (print_diagnostics)
{
printf("-----------------------------------\n");
}
#endif
if ((error_of_best_block / error_weight_sum) < ewp->texel_avg_error_limit)
goto END_OF_TESTS;
}
}
END_OF_TESTS:
if (scb->block_mode >= 0)
block_mode_histogram[scb->block_mode & 0x7ff]++;
// compress/decompress to a physical block
physical_compressed_block psb = symbolic_to_physical(xdim, ydim, zdim, scb);
physical_to_symbolic(xdim, ydim, zdim, psb, scb);
if (print_tile_errors)
printf("%g\n", error_of_best_block);
// mean squared error per color component.
return error_of_best_block / ((float)xdim * ydim * zdim);
}