axmol/thirdparty/openal/alc/backends/wave.cpp

407 lines
12 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "wave.h"
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <chrono>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <exception>
#include <functional>
#include <thread>
#include <vector>
#include "albit.h"
#include "alc/alconfig.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "core/device.h"
#include "core/helpers.h"
#include "core/logging.h"
#include "opthelpers.h"
#include "strutils.h"
#include "threads.h"
namespace {
using std::chrono::seconds;
using std::chrono::milliseconds;
using std::chrono::nanoseconds;
using ubyte = unsigned char;
using ushort = unsigned short;
constexpr char waveDevice[] = "Wave File Writer";
constexpr ubyte SUBTYPE_PCM[]{
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0xaa,
0x00, 0x38, 0x9b, 0x71
};
constexpr ubyte SUBTYPE_FLOAT[]{
0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0xaa,
0x00, 0x38, 0x9b, 0x71
};
constexpr ubyte SUBTYPE_BFORMAT_PCM[]{
0x01, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
0xca, 0x00, 0x00, 0x00
};
constexpr ubyte SUBTYPE_BFORMAT_FLOAT[]{
0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
0xca, 0x00, 0x00, 0x00
};
void fwrite16le(ushort val, FILE *f)
{
ubyte data[2]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff) };
fwrite(data, 1, 2, f);
}
void fwrite32le(uint val, FILE *f)
{
ubyte data[4]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff) };
fwrite(data, 1, 4, f);
}
struct WaveBackend final : public BackendBase {
WaveBackend(DeviceBase *device) noexcept : BackendBase{device} { }
~WaveBackend() override;
int mixerProc();
void open(const char *name) override;
bool reset() override;
void start() override;
void stop() override;
FILE *mFile{nullptr};
long mDataStart{-1};
std::vector<std::byte> mBuffer;
std::atomic<bool> mKillNow{true};
std::thread mThread;
DEF_NEWDEL(WaveBackend)
};
WaveBackend::~WaveBackend()
{
if(mFile)
fclose(mFile);
mFile = nullptr;
}
int WaveBackend::mixerProc()
{
const milliseconds restTime{mDevice->UpdateSize*1000/mDevice->Frequency / 2};
althrd_setname(MIXER_THREAD_NAME);
const size_t frameStep{mDevice->channelsFromFmt()};
const size_t frameSize{mDevice->frameSizeFromFmt()};
int64_t done{0};
auto start = std::chrono::steady_clock::now();
while(!mKillNow.load(std::memory_order_acquire)
&& mDevice->Connected.load(std::memory_order_acquire))
{
auto now = std::chrono::steady_clock::now();
/* This converts from nanoseconds to nanosamples, then to samples. */
int64_t avail{std::chrono::duration_cast<seconds>((now-start) *
mDevice->Frequency).count()};
if(avail-done < mDevice->UpdateSize)
{
std::this_thread::sleep_for(restTime);
continue;
}
while(avail-done >= mDevice->UpdateSize)
{
mDevice->renderSamples(mBuffer.data(), mDevice->UpdateSize, frameStep);
done += mDevice->UpdateSize;
if(al::endian::native != al::endian::little)
{
const uint bytesize{mDevice->bytesFromFmt()};
if(bytesize == 2)
{
const size_t len{mBuffer.size() & ~size_t{1}};
for(size_t i{0};i < len;i+=2)
std::swap(mBuffer[i], mBuffer[i+1]);
}
else if(bytesize == 4)
{
const size_t len{mBuffer.size() & ~size_t{3}};
for(size_t i{0};i < len;i+=4)
{
std::swap(mBuffer[i ], mBuffer[i+3]);
std::swap(mBuffer[i+1], mBuffer[i+2]);
}
}
}
const size_t fs{fwrite(mBuffer.data(), frameSize, mDevice->UpdateSize, mFile)};
if(fs < mDevice->UpdateSize || ferror(mFile))
{
ERR("Error writing to file\n");
mDevice->handleDisconnect("Failed to write playback samples");
break;
}
}
/* For every completed second, increment the start time and reduce the
* samples done. This prevents the difference between the start time
* and current time from growing too large, while maintaining the
* correct number of samples to render.
*/
if(done >= mDevice->Frequency)
{
seconds s{done/mDevice->Frequency};
done %= mDevice->Frequency;
start += s;
}
}
return 0;
}
void WaveBackend::open(const char *name)
{
auto fname = ConfigValueStr(nullptr, "wave", "file");
if(!fname) throw al::backend_exception{al::backend_error::NoDevice,
"No wave output filename"};
if(!name)
name = waveDevice;
else if(strcmp(name, waveDevice) != 0)
throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found",
name};
/* There's only one "device", so if it's already open, we're done. */
if(mFile) return;
#ifdef _WIN32
{
std::wstring wname{utf8_to_wstr(fname->c_str())};
mFile = _wfopen(wname.c_str(), L"wb");
}
#else
mFile = fopen(fname->c_str(), "wb");
#endif
if(!mFile)
throw al::backend_exception{al::backend_error::DeviceError, "Could not open file '%s': %s",
fname->c_str(), strerror(errno)};
mDevice->DeviceName = name;
}
bool WaveBackend::reset()
{
uint channels{0}, bytes{0}, chanmask{0};
bool isbformat{false};
size_t val;
fseek(mFile, 0, SEEK_SET);
clearerr(mFile);
if(GetConfigValueBool(nullptr, "wave", "bformat", false))
{
mDevice->FmtChans = DevFmtAmbi3D;
mDevice->mAmbiOrder = 1;
}
switch(mDevice->FmtType)
{
case DevFmtByte:
mDevice->FmtType = DevFmtUByte;
break;
case DevFmtUShort:
mDevice->FmtType = DevFmtShort;
break;
case DevFmtUInt:
mDevice->FmtType = DevFmtInt;
break;
case DevFmtUByte:
case DevFmtShort:
case DevFmtInt:
case DevFmtFloat:
break;
}
switch(mDevice->FmtChans)
{
case DevFmtMono: chanmask = 0x04; break;
case DevFmtStereo: chanmask = 0x01 | 0x02; break;
case DevFmtQuad: chanmask = 0x01 | 0x02 | 0x10 | 0x20; break;
case DevFmtX51: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x200 | 0x400; break;
case DevFmtX61: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x100 | 0x200 | 0x400; break;
case DevFmtX71: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x010 | 0x020 | 0x200 | 0x400; break;
case DevFmtX714:
chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x010 | 0x020 | 0x200 | 0x400 | 0x1000 | 0x4000
| 0x8000 | 0x20000;
break;
/* NOTE: Same as 7.1. */
case DevFmtX3D71: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x010 | 0x020 | 0x200 | 0x400; break;
case DevFmtAmbi3D:
/* .amb output requires FuMa */
mDevice->mAmbiOrder = minu(mDevice->mAmbiOrder, 3);
mDevice->mAmbiLayout = DevAmbiLayout::FuMa;
mDevice->mAmbiScale = DevAmbiScaling::FuMa;
isbformat = true;
chanmask = 0;
break;
}
bytes = mDevice->bytesFromFmt();
channels = mDevice->channelsFromFmt();
rewind(mFile);
fputs("RIFF", mFile);
fwrite32le(0xFFFFFFFF, mFile); // 'RIFF' header len; filled in at close
fputs("WAVE", mFile);
fputs("fmt ", mFile);
fwrite32le(40, mFile); // 'fmt ' header len; 40 bytes for EXTENSIBLE
// 16-bit val, format type id (extensible: 0xFFFE)
fwrite16le(0xFFFE, mFile);
// 16-bit val, channel count
fwrite16le(static_cast<ushort>(channels), mFile);
// 32-bit val, frequency
fwrite32le(mDevice->Frequency, mFile);
// 32-bit val, bytes per second
fwrite32le(mDevice->Frequency * channels * bytes, mFile);
// 16-bit val, frame size
fwrite16le(static_cast<ushort>(channels * bytes), mFile);
// 16-bit val, bits per sample
fwrite16le(static_cast<ushort>(bytes * 8), mFile);
// 16-bit val, extra byte count
fwrite16le(22, mFile);
// 16-bit val, valid bits per sample
fwrite16le(static_cast<ushort>(bytes * 8), mFile);
// 32-bit val, channel mask
fwrite32le(chanmask, mFile);
// 16 byte GUID, sub-type format
val = fwrite((mDevice->FmtType == DevFmtFloat) ?
(isbformat ? SUBTYPE_BFORMAT_FLOAT : SUBTYPE_FLOAT) :
(isbformat ? SUBTYPE_BFORMAT_PCM : SUBTYPE_PCM), 1, 16, mFile);
(void)val;
fputs("data", mFile);
fwrite32le(0xFFFFFFFF, mFile); // 'data' header len; filled in at close
if(ferror(mFile))
{
ERR("Error writing header: %s\n", strerror(errno));
return false;
}
mDataStart = ftell(mFile);
setDefaultWFXChannelOrder();
const uint bufsize{mDevice->frameSizeFromFmt() * mDevice->UpdateSize};
mBuffer.resize(bufsize);
return true;
}
void WaveBackend::start()
{
if(mDataStart > 0 && fseek(mFile, 0, SEEK_END) != 0)
WARN("Failed to seek on output file\n");
try {
mKillNow.store(false, std::memory_order_release);
mThread = std::thread{std::mem_fn(&WaveBackend::mixerProc), this};
}
catch(std::exception& e) {
throw al::backend_exception{al::backend_error::DeviceError,
"Failed to start mixing thread: %s", e.what()};
}
}
void WaveBackend::stop()
{
if(mKillNow.exchange(true, std::memory_order_acq_rel) || !mThread.joinable())
return;
mThread.join();
if(mDataStart > 0)
{
long size{ftell(mFile)};
if(size > 0)
{
long dataLen{size - mDataStart};
if(fseek(mFile, 4, SEEK_SET) == 0)
fwrite32le(static_cast<uint>(size-8), mFile); // 'WAVE' header len
if(fseek(mFile, mDataStart-4, SEEK_SET) == 0)
fwrite32le(static_cast<uint>(dataLen), mFile); // 'data' header len
}
}
}
} // namespace
bool WaveBackendFactory::init()
{ return true; }
bool WaveBackendFactory::querySupport(BackendType type)
{ return type == BackendType::Playback; }
std::string WaveBackendFactory::probe(BackendType type)
{
std::string outnames;
switch(type)
{
case BackendType::Playback:
/* Includes null char. */
outnames.append(waveDevice, sizeof(waveDevice));
break;
case BackendType::Capture:
break;
}
return outnames;
}
BackendPtr WaveBackendFactory::createBackend(DeviceBase *device, BackendType type)
{
if(type == BackendType::Playback)
return BackendPtr{new WaveBackend{device}};
return nullptr;
}
BackendFactory &WaveBackendFactory::getFactory()
{
static WaveBackendFactory factory{};
return factory;
}