axmol/core/2d/Node.cpp

2285 lines
56 KiB
C++

/****************************************************************************
Copyright (c) 2008-2010 Ricardo Quesada
Copyright (c) 2009 Valentin Milea
Copyright (c) 2010-2012 cocos2d-x.org
Copyright (c) 2011 Zynga Inc.
Copyright (c) 2013-2016 Chukong Technologies Inc.
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
Copyright (c) 2019-present Axmol Engine contributors (see AUTHORS.md).
https://axmol.dev/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "2d/Node.h"
#include <algorithm>
#include <string>
#include <regex>
#include "xxhash.h"
#include "base/Director.h"
#include "base/Scheduler.h"
#include "base/EventDispatcher.h"
#include "base/UTF8.h"
#include "2d/Camera.h"
#include "2d/ActionManager.h"
#include "2d/Scene.h"
#include "2d/Component.h"
#include "renderer/Material.h"
#include "math/TransformUtils.h"
#include "renderer/backend/ProgramManager.h"
#include "renderer/backend/ProgramStateRegistry.h"
#if AX_NODE_RENDER_SUBPIXEL
# define RENDER_IN_SUBPIXEL
#else
# define RENDER_IN_SUBPIXEL(__ARGS__) (ceil(__ARGS__))
#endif
/*
* 4.5x faster than std::hash in release mode
*/
#define AX_HASH_NODE_NAME(name) (!name.empty() ? XXH3_64bits(name.data(), name.length()) : 0)
NS_AX_BEGIN
// FIXME:: Yes, nodes might have a sort problem once every 30 days if the game runs at 60 FPS and each frame sprites are
// reordered.
std::uint32_t Node::s_globalOrderOfArrival = 0;
int Node::__attachedNodeCount = 0;
// MARK: Constructor, Destructor, Init
Node::Node()
: _rotationX(0.0f)
, _rotationY(0.0f)
, _rotationZ_X(0.0f)
, _rotationZ_Y(0.0f)
, _scaleX(1.0f)
, _scaleY(1.0f)
, _scaleZ(1.0f)
, _positionZ(0.0f)
, _usingNormalizedPosition(false)
, _normalizedPositionDirty(false)
, _skewX(0.0f)
, _skewY(0.0f)
, _anchorPoint(0, 0)
, _contentSize(Vec2::ZERO)
, _contentSizeDirty(true)
, _transformDirty(true)
, _inverseDirty(true)
, _additionalTransform(nullptr)
, _additionalTransformDirty(false)
, _transformUpdated(true)
// children (lazy allocs)
, _childrenIndexer(nullptr)
// lazy alloc
, _localZOrder$Arrival(0LL)
, _globalZOrder(0)
, _parent(nullptr)
// "whole screen" objects. like Scenes and Layers, should set _ignoreAnchorPointForPosition to true
, _tag(Node::INVALID_TAG)
, _name()
, _hashOfName(0)
// userData is always inited as nil
, _userData(nullptr)
, _userObject(nullptr)
, _running(false)
, _visible(true)
, _ignoreAnchorPointForPosition(false)
, _reorderChildDirty(false)
, _isTransitionFinished(false)
#if AX_ENABLE_SCRIPT_BINDING
, _scriptHandler(0)
, _updateScriptHandler(0)
#endif
, _componentContainer(nullptr)
, _displayedOpacity(255)
, _realOpacity(255)
, _displayedColor(Color3B::WHITE)
, _realColor(Color3B::WHITE)
, _cascadeColorEnabled(false)
, _cascadeOpacityEnabled(false)
, _childFollowCameraMask(false)
, _cameraMask(1)
, _onEnterCallback(nullptr)
, _onExitCallback(nullptr)
, _onEnterTransitionDidFinishCallback(nullptr)
, _onExitTransitionDidStartCallback(nullptr)
#if defined(AX_ENABLE_PHYSICS)
, _physicsBody(nullptr)
#endif
{
// set default scheduler and actionManager
_director = Director::getInstance();
_actionManager = _director->getActionManager();
_actionManager->retain();
_scheduler = _director->getScheduler();
_scheduler->retain();
_eventDispatcher = _director->getEventDispatcher();
_eventDispatcher->retain();
_transform = _inverse = Mat4::IDENTITY;
}
Node* Node::create()
{
Node* ret = new Node();
if (ret->init())
{
ret->autorelease();
}
else
{
AX_SAFE_DELETE(ret);
}
return ret;
}
Node::~Node()
{
AXLOGV("deallocing Node: {} - tag: {}", fmt::ptr(this), _tag);
AX_SAFE_DELETE(_childrenIndexer);
#if AX_ENABLE_SCRIPT_BINDING
if (_updateScriptHandler)
{
ScriptEngineManager::getInstance()->getScriptEngine()->removeScriptHandler(_updateScriptHandler);
}
#endif
// User object has to be released before others, since userObject may have a weak reference of this node
// It may invoke `node->stopAllActions();` while `_actionManager` is null if the next line is after
// `AX_SAFE_RELEASE_NULL(_actionManager)`.
AX_SAFE_RELEASE_NULL(_userObject);
for (auto&& child : _children)
{
child->_parent = nullptr;
}
removeAllComponents();
AX_SAFE_DELETE(_componentContainer);
stopAllActions();
unscheduleAllCallbacks();
AX_SAFE_RELEASE_NULL(_actionManager);
AX_SAFE_RELEASE_NULL(_scheduler);
_eventDispatcher->removeEventListenersForTarget(this);
#if AX_NODE_DEBUG_VERIFY_EVENT_LISTENERS && _AX_DEBUG > 0
_eventDispatcher->debugCheckNodeHasNoEventListenersOnDestruction(this);
#endif
AXASSERT(!_running,
"Node still marked as running on node destruction! Was base class onExit() called in derived class "
"onExit() implementations?");
AX_SAFE_RELEASE(_eventDispatcher);
delete[] _additionalTransform;
AX_SAFE_RELEASE(_programState);
}
bool Node::init()
{
return true;
}
bool Node::initLayer() {
_ignoreAnchorPointForPosition = true;
setAnchorPoint(Vec2(0.5f, 0.5f));
setContentSize(_director->getWinSize());
return true;
}
void Node::cleanup()
{
#if AX_ENABLE_SCRIPT_BINDING
ScriptEngineManager::sendNodeEventToLua(this, kNodeOnCleanup);
#endif // #if AX_ENABLE_SCRIPT_BINDING
// actions
this->stopAllActions();
// timers
this->unscheduleAllCallbacks();
// NOTE: Although it was correct that removing event listeners associated with current node in Node::cleanup.
// But it broke the compatibility to the versions before v3.16 .
// User code may call `node->removeFromParent(true)` which will trigger node's cleanup method, when the node
// is added to scene again, event listeners like EventListenerTouchOneByOne will be lost.
// In fact, user's code should use `node->removeFromParent(false)` in order not to do a cleanup and just remove node
// from its parent. For more discussion about why we revert this change is at
// https://github.com/cocos2d/cocos2d-x/issues/18104. We need to consider more before we want to correct the old and
// wrong logic code. For now, compatiblity is the most important for our users.
// _eventDispatcher->removeEventListenersForTarget(this);
for (const auto& child : _children)
child->cleanup();
}
std::string Node::getDescription() const
{
return fmt::format("<Node | Tag = {}", _tag);
}
// MARK: getters / setters
float Node::getSkewX() const
{
return _skewX;
}
void Node::setSkewX(float skewX)
{
if (_skewX == skewX)
return;
_skewX = skewX;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
float Node::getSkewY() const
{
return _skewY;
}
void Node::setSkewY(float skewY)
{
if (_skewY == skewY)
return;
_skewY = skewY;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
void Node::setLocalZOrder(int z)
{
if (getLocalZOrder() == z)
return;
_setLocalZOrder(z);
if (_parent)
{
_parent->reorderChild(this, z);
}
_eventDispatcher->setDirtyForNode(this);
}
/// zOrder setter : private method
/// used internally to alter the zOrder variable. DON'T call this method manually
void Node::_setLocalZOrder(int z)
{
_localZOrder = z;
}
void Node::updateOrderOfArrival()
{
_orderOfArrival = (++s_globalOrderOfArrival);
}
void Node::setGlobalZOrder(float globalZOrder)
{
if (_globalZOrder != globalZOrder)
{
_globalZOrder = globalZOrder;
_eventDispatcher->setDirtyForNode(this);
}
}
/// rotation getter
float Node::getRotation() const
{
AXASSERT(_rotationZ_X == _rotationZ_Y, "CCNode#rotation. RotationX != RotationY. Don't know which one to return");
return _rotationZ_X;
}
/// rotation setter
void Node::setRotation(float rotation)
{
if (_rotationZ_X == rotation)
return;
_rotationZ_X = _rotationZ_Y = rotation;
_transformUpdated = _transformDirty = _inverseDirty = true;
updateRotationQuat();
}
float Node::getRotationSkewX() const
{
return _rotationZ_X;
}
void Node::setRotation3D(const Vec3& rotation)
{
if (_rotationX == rotation.x && _rotationY == rotation.y && _rotationZ_X == rotation.z)
return;
_transformUpdated = _transformDirty = _inverseDirty = true;
_rotationX = rotation.x;
_rotationY = rotation.y;
// rotation Z is decomposed in 2 to simulate Skew for Flash animations
_rotationZ_Y = _rotationZ_X = rotation.z;
updateRotationQuat();
}
Vec3 Node::getRotation3D() const
{
// rotation Z is decomposed in 2 to simulate Skew for Flash animations
AXASSERT(_rotationZ_X == _rotationZ_Y, "_rotationZ_X != _rotationZ_Y");
return Vec3(_rotationX, _rotationY, _rotationZ_X);
}
void Node::updateRotationQuat()
{
// convert Euler angle to quaternion
// when _rotationZ_X == _rotationZ_Y, _rotationQuat = RotationZ_X * RotationY * RotationX
// when _rotationZ_X != _rotationZ_Y, _rotationQuat = RotationY * RotationX
float halfRadx = AX_DEGREES_TO_RADIANS(_rotationX / 2.f), halfRady = AX_DEGREES_TO_RADIANS(_rotationY / 2.f),
halfRadz = _rotationZ_X == _rotationZ_Y ? -AX_DEGREES_TO_RADIANS(_rotationZ_X / 2.f) : 0;
float coshalfRadx = cosf(halfRadx), sinhalfRadx = sinf(halfRadx), coshalfRady = cosf(halfRady),
sinhalfRady = sinf(halfRady), coshalfRadz = cosf(halfRadz), sinhalfRadz = sinf(halfRadz);
_rotationQuat.x = sinhalfRadx * coshalfRady * coshalfRadz - coshalfRadx * sinhalfRady * sinhalfRadz;
_rotationQuat.y = coshalfRadx * sinhalfRady * coshalfRadz + sinhalfRadx * coshalfRady * sinhalfRadz;
_rotationQuat.z = coshalfRadx * coshalfRady * sinhalfRadz - sinhalfRadx * sinhalfRady * coshalfRadz;
_rotationQuat.w = coshalfRadx * coshalfRady * coshalfRadz + sinhalfRadx * sinhalfRady * sinhalfRadz;
}
void Node::updateRotation3D()
{
// convert quaternion to Euler angle
float x = _rotationQuat.x, y = _rotationQuat.y, z = _rotationQuat.z, w = _rotationQuat.w;
_rotationX = atan2f(2.f * (w * x + y * z), 1.f - 2.f * (x * x + y * y));
float sy = 2.f * (w * y - z * x);
sy = clampf(sy, -1, 1);
_rotationY = asinf(sy);
_rotationZ_X = atan2f(2.f * (w * z + x * y), 1.f - 2.f * (y * y + z * z));
_rotationX = AX_RADIANS_TO_DEGREES(_rotationX);
_rotationY = AX_RADIANS_TO_DEGREES(_rotationY);
_rotationZ_X = _rotationZ_Y = -AX_RADIANS_TO_DEGREES(_rotationZ_X);
}
void Node::setRotationQuat(const Quaternion& quat)
{
_rotationQuat = quat;
updateRotation3D();
_transformUpdated = _transformDirty = _inverseDirty = true;
}
Quaternion Node::getRotationQuat() const
{
return _rotationQuat;
}
void Node::setRotationSkewX(float rotationX)
{
if (_rotationZ_X == rotationX)
return;
_rotationZ_X = rotationX;
_transformUpdated = _transformDirty = _inverseDirty = true;
updateRotationQuat();
}
float Node::getRotationSkewY() const
{
return _rotationZ_Y;
}
void Node::setRotationSkewY(float rotationY)
{
if (_rotationZ_Y == rotationY)
return;
_rotationZ_Y = rotationY;
_transformUpdated = _transformDirty = _inverseDirty = true;
updateRotationQuat();
}
/// scale getter
float Node::getScale() const
{
AXASSERT(_scaleX == _scaleY, "CCNode#scale. ScaleX != ScaleY. Don't know which one to return");
return _scaleX;
}
/// scale setter
void Node::setScale(float scale)
{
if (_scaleX == scale && _scaleY == scale && _scaleZ == scale)
return;
_scaleX = _scaleY = _scaleZ = scale;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
/// scaleX getter
float Node::getScaleX() const
{
return _scaleX;
}
/// scale setter
void Node::setScale(float scaleX, float scaleY)
{
if (_scaleX == scaleX && _scaleY == scaleY)
return;
_scaleX = scaleX;
_scaleY = scaleY;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
/// scaleX setter
void Node::setScaleX(float scaleX)
{
if (_scaleX == scaleX)
return;
_scaleX = scaleX;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
/// scaleY getter
float Node::getScaleY() const
{
return _scaleY;
}
/// scaleY setter
void Node::setScaleZ(float scaleZ)
{
if (_scaleZ == scaleZ)
return;
_scaleZ = scaleZ;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
/// scaleY getter
float Node::getScaleZ() const
{
return _scaleZ;
}
/// scaleY setter
void Node::setScaleY(float scaleY)
{
if (_scaleY == scaleY)
return;
_scaleY = scaleY;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
/// position getter
const Vec2& Node::getPosition() const
{
return _position;
}
/// position setter
void Node::setPosition(const Vec2& position)
{
setPosition(position.x, position.y);
}
void Node::getPosition(float* x, float* y) const
{
*x = _position.x;
*y = _position.y;
}
void Node::setPosition(float x, float y)
{
if (_position.x == x && _position.y == y)
return;
_position.x = x;
_position.y = y;
_transformUpdated = _transformDirty = _inverseDirty = true;
_usingNormalizedPosition = false;
}
void Node::setPosition3D(const Vec3& position)
{
setPositionZ(position.z);
setPosition(position.x, position.y);
}
Vec3 Node::getPosition3D() const
{
return Vec3(_position.x, _position.y, _positionZ);
}
float Node::getPositionX() const
{
return _position.x;
}
void Node::setPositionX(float x)
{
setPosition(x, _position.y);
}
float Node::getPositionY() const
{
return _position.y;
}
void Node::setPositionY(float y)
{
setPosition(_position.x, y);
}
float Node::getPositionZ() const
{
return _positionZ;
}
void Node::setPositionZ(float positionZ)
{
if (_positionZ == positionZ)
return;
_transformUpdated = _transformDirty = _inverseDirty = true;
_positionZ = positionZ;
}
/// position getter
const Vec2& Node::getPositionNormalized() const
{
return _normalizedPosition;
}
/// position setter
void Node::setPositionNormalized(const Vec2& position)
{
if (_normalizedPosition.equals(position))
return;
_normalizedPosition = position;
_usingNormalizedPosition = true;
_normalizedPositionDirty = true;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
ssize_t Node::getChildrenCount() const
{
return _children.size();
}
/// isVisible getter
bool Node::isVisible() const
{
return _visible;
}
/// isVisible setter
void Node::setVisible(bool visible)
{
if (visible != _visible)
{
_visible = visible;
if (_visible)
_transformUpdated = _transformDirty = _inverseDirty = true;
}
}
const Vec2& Node::getAnchorPointInPoints() const
{
return _anchorPointInPoints;
}
/// anchorPoint getter
const Vec2& Node::getAnchorPoint() const
{
return _anchorPoint;
}
void Node::setAnchorPoint(const Vec2& point)
{
if (!point.equals(_anchorPoint))
{
_anchorPoint = point;
_anchorPointInPoints.set(_contentSize.width * _anchorPoint.x, _contentSize.height * _anchorPoint.y);
_transformUpdated = _transformDirty = _inverseDirty = true;
}
}
/// contentSize getter
const Vec2& Node::getContentSize() const
{
return _contentSize;
}
void Node::setContentSize(const Vec2& size)
{
if (!size.equals(_contentSize))
{
_contentSize = size;
_anchorPointInPoints.set(_contentSize.width * _anchorPoint.x, _contentSize.height * _anchorPoint.y);
_transformUpdated = _transformDirty = _inverseDirty = _contentSizeDirty = true;
}
}
bool Node::hitTest(const Vec2& worldPoint) const
{
auto p = this->convertToNodeSpace(worldPoint);
auto& s = this->getContentSize();
return Rect{0.f, 0.f, s.width, s.height}.containsPoint(p);
}
// isRunning getter
bool Node::isRunning() const
{
return _running;
}
/// parent setter
void Node::setParent(Node* parent)
{
_parent = parent;
_normalizedPositionDirty = true;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
/// isRelativeAnchorPoint getter
bool Node::isIgnoreAnchorPointForPosition() const
{
return _ignoreAnchorPointForPosition;
}
/// isRelativeAnchorPoint setter
void Node::setIgnoreAnchorPointForPosition(bool newValue)
{
if (newValue != _ignoreAnchorPointForPosition)
{
_ignoreAnchorPointForPosition = newValue;
_transformUpdated = _transformDirty = _inverseDirty = true;
}
}
/// tag getter
int Node::getTag() const
{
return _tag;
}
/// tag setter
void Node::setTag(int tag)
{
updateParentChildrenIndexer(tag);
_tag = tag;
}
std::string_view Node::getName() const
{
return _name;
}
void Node::setName(std::string_view name)
{
updateParentChildrenIndexer(name);
_name = name;
}
void Node::updateParentChildrenIndexer(int tag)
{
auto parentChildrenIndexer = getParentChildrenIndexer();
if (parentChildrenIndexer)
{
if (_tag != tag)
parentChildrenIndexer->erase(_tag);
(*parentChildrenIndexer)[tag] = this;
}
}
void Node::updateParentChildrenIndexer(std::string_view name)
{
uint64_t newHash = AX_HASH_NODE_NAME(name);
auto parentChildrenIndexer = getParentChildrenIndexer();
if (parentChildrenIndexer)
{
auto oldHash = AX_HASH_NODE_NAME(_name);
if (oldHash != newHash)
parentChildrenIndexer->erase(oldHash);
(*parentChildrenIndexer)[newHash] = this;
}
_hashOfName = newHash;
}
NodeIndexerMap_t* Node::getParentChildrenIndexer()
{
if (!_director->isChildrenIndexerEnabled())
return nullptr;
auto parent = getParent();
if (parent)
{
auto& indexer = parent->_childrenIndexer;
if (!indexer)
indexer = new NodeIndexerMap_t();
return indexer;
}
return nullptr;
}
/// userData setter
void Node::setUserData(void* userData)
{
_userData = userData;
}
void Node::setUserObject(Object* userObject)
{
#if AX_ENABLE_GC_FOR_NATIVE_OBJECTS
auto sEngine = ScriptEngineManager::getInstance()->getScriptEngine();
if (sEngine)
{
if (userObject)
sEngine->retainScriptObject(this, userObject);
if (_userObject)
sEngine->releaseScriptObject(this, _userObject);
}
#endif // AX_ENABLE_GC_FOR_NATIVE_OBJECTS
AX_SAFE_RETAIN(userObject);
AX_SAFE_RELEASE(_userObject);
_userObject = userObject;
}
Scene* Node::getScene() const
{
if (!_parent)
return nullptr;
auto sceneNode = _parent;
while (sceneNode->_parent)
{
sceneNode = sceneNode->_parent;
}
return dynamic_cast<Scene*>(sceneNode);
}
Rect Node::getBoundingBox() const
{
Rect rect(0, 0, _contentSize.width, _contentSize.height);
return RectApplyAffineTransform(rect, getNodeToParentAffineTransform());
}
// MARK: Children logic
// lazy allocs
void Node::childrenAlloc()
{
_children.reserve(4);
}
Node* Node::getChildByTag(int tag) const
{
AXASSERT(tag != Node::INVALID_TAG, "Invalid tag");
if (_childrenIndexer)
{
auto it = _childrenIndexer->find(tag);
if (it != _childrenIndexer->end())
return it->second;
}
for (const auto child : _children)
{
if (child && child->_tag == tag)
return child;
}
return nullptr;
}
Node* Node::getChildByName(std::string_view name) const
{
// AXASSERT(!name.empty(), "Invalid name");
auto hash = AX_HASH_NODE_NAME(name);
if (_childrenIndexer)
{
auto it = _childrenIndexer->find(hash);
if (it != _childrenIndexer->end())
return it->second;
}
for (const auto& child : _children)
{
// Different strings may have the same hash code, but can use it to compare first for speed
if (child->_hashOfName == hash && child->_name.compare(name) == 0)
return child;
}
return nullptr;
}
void Node::enumerateChildren(std::string_view name, std::function<bool(Node*)> callback) const
{
AXASSERT(!name.empty(), "Invalid name");
AXASSERT(callback != nullptr, "Invalid callback function");
size_t length = name.length();
size_t subStrStartPos = 0; // sub string start index
size_t subStrlength = length; // sub string length
// Starts with '//'?
bool searchRecursively = false;
if (length > 2 && name[0] == '/' && name[1] == '/')
{
searchRecursively = true;
subStrStartPos = 2;
subStrlength -= 2;
}
// End with '/..'?
bool searchFromParent = false;
if (length > 3 && name[length - 3] == '/' && name[length - 2] == '.' && name[length - 1] == '.')
{
searchFromParent = true;
subStrlength -= 3;
}
// Remove '//', '/..' if exist
auto newName = name.substr(subStrStartPos, subStrlength);
const Node* target = this;
if (searchFromParent)
{
if (nullptr == _parent)
{
return;
}
target = _parent;
}
if (searchRecursively)
{
// name is '//xxx'
target->doEnumerateRecursive(target, newName, callback);
}
else
{
// name is xxx
target->doEnumerate(std::string{newName}, callback);
}
}
bool Node::doEnumerateRecursive(const Node* node, std::string_view name, std::function<bool(Node*)> callback) const
{
bool ret = false;
if (node->doEnumerate(std::string{name}, callback))
{
// search itself
ret = true;
}
else
{
// search its children
for (const auto& child : node->getChildren())
{
if (doEnumerateRecursive(child, name, callback))
{
ret = true;
break;
}
}
}
return ret;
}
bool Node::doEnumerate(std::string name, std::function<bool(Node*)> callback) const
{
// name may be xxx/yyy, should find its parent
size_t pos = name.find('/');
std::string searchName = name;
bool needRecursive = false;
if (pos != name.npos)
{
searchName = name.substr(0, pos);
name.erase(0, pos + 1);
needRecursive = true;
}
bool ret = false;
for (const auto& child : getChildren())
{
if (std::regex_match(child->_name, std::regex(searchName)))
{
if (!needRecursive)
{
// terminate enumeration if callback return true
if (callback(child))
{
ret = true;
break;
}
}
else
{
ret = child->doEnumerate(name, callback);
if (ret)
break;
}
}
}
return ret;
}
/* "add" logic MUST only be on this method
* If a class want's to extend the 'addChild' behavior it only needs
* to override this method
*/
void Node::addChild(Node* child, int localZOrder, int tag)
{
AXASSERT(child != nullptr, "Argument must be non-nil");
AXASSERT(child->_parent == nullptr, "child already added. It can't be added again");
addChildHelper(child, localZOrder, tag, "", true);
}
void Node::addChild(Node* child, int localZOrder, std::string_view name)
{
AXASSERT(child != nullptr, "Argument must be non-nil");
AXASSERT(child->_parent == nullptr, "child already added. It can't be added again");
addChildHelper(child, localZOrder, INVALID_TAG, name, false);
}
void Node::addChildHelper(Node* child, int localZOrder, int tag, std::string_view name, bool setTag)
{
auto assertNotSelfChild([this, child]() -> bool {
for (Node* parent(getParent()); parent != nullptr; parent = parent->getParent())
if (parent == child)
return false;
return true;
});
(void)assertNotSelfChild;
AXASSERT(assertNotSelfChild(), "A node cannot be the child of his own children");
if (_children.empty())
{
this->childrenAlloc();
}
this->insertChild(child, localZOrder);
child->setParent(this);
if (_childFollowCameraMask)
{
child->setCameraMask(this->getCameraMask());
child->applyMaskOnEnter(true);
}
if (setTag)
{
child->setTag(tag);
child->updateParentChildrenIndexer(child->getName());
}
else
{
child->setName(name);
child->updateParentChildrenIndexer(child->getTag());
}
child->updateOrderOfArrival();
if (_running)
{
child->onEnter();
// prevent onEnterTransitionDidFinish to be called twice when a node is added in onEnter
if (_isTransitionFinished)
{
child->onEnterTransitionDidFinish();
}
}
if (_cascadeColorEnabled)
{
updateCascadeColor();
}
if (_cascadeOpacityEnabled)
{
updateCascadeOpacity();
}
}
void Node::addChild(Node* child, int zOrder)
{
AXASSERT(child != nullptr, "Argument must be non-nil");
this->addChild(child, zOrder, child->_name);
}
void Node::addChild(Node* child)
{
AXASSERT(child != nullptr, "Argument must be non-nil");
this->addChild(child, child->getLocalZOrder(), child->_name);
}
void Node::removeFromParent()
{
this->removeFromParentAndCleanup(true);
}
void Node::removeFromParentAndCleanup(bool cleanup)
{
if (_parent != nullptr)
{
_parent->removeChild(this, cleanup);
}
}
/* "remove" logic MUST only be on this method
* If a class want's to extend the 'removeChild' behavior it only needs
* to override this method
*/
void Node::removeChild(Node* child, bool cleanup /* = true */)
{
// explicit nil handling
if (_children.empty())
{
return;
}
ssize_t index = _children.getIndex(child);
if (index != AX_INVALID_INDEX)
this->detachChild(child, index, cleanup);
}
void Node::removeChildByTag(int tag, bool cleanup /* = true */)
{
AXASSERT(tag != Node::INVALID_TAG, "Invalid tag");
Node* child = this->getChildByTag(tag);
if (child == nullptr)
{
AXLOGD("axmol: removeChildByTag(tag = {}): child not found!", tag);
}
else
{
this->removeChild(child, cleanup);
}
}
void Node::removeChildByName(std::string_view name, bool cleanup)
{
AXASSERT(!name.empty(), "Invalid name");
Node* child = this->getChildByName(name);
if (child == nullptr)
{
AXLOGD("axmol: removeChildByName(name = {}): child not found!", name);
}
else
{
this->removeChild(child, cleanup);
}
}
void Node::removeAllChildren()
{
this->removeAllChildrenWithCleanup(true);
}
void Node::removeAllChildrenWithCleanup(bool cleanup)
{
// not using detachChild improves speed here
for (const auto& child : _children)
{
resetChild(child, cleanup);
}
_children.clear();
AX_SAFE_DELETE(_childrenIndexer);
}
void Node::resetChild(Node* child, bool cleanup)
{ // IMPORTANT:
// -1st do onExit
// -2nd cleanup
if (_running)
{
child->onExitTransitionDidStart();
child->onExit();
}
// If you don't do cleanup, the child's actions will not get removed and the
// its scheduledSelectors_ dict will not get released!
if (cleanup)
{
child->cleanup();
}
#if AX_ENABLE_GC_FOR_NATIVE_OBJECTS
auto sEngine = ScriptEngineManager::getInstance()->getScriptEngine();
if (sEngine)
{
sEngine->releaseScriptObject(this, child);
}
#endif // AX_ENABLE_GC_FOR_NATIVE_OBJECTS
// set parent nil at the end
child->setParent(nullptr);
}
void Node::detachChild(Node* child, ssize_t childIndex, bool cleanup)
{
if (_childrenIndexer)
{
_childrenIndexer->erase(child->_tag);
_childrenIndexer->erase(child->_hashOfName);
}
resetChild(child, cleanup);
_children.erase(childIndex);
}
// helper used by reorderChild & add
void Node::insertChild(Node* child, int z)
{
#if AX_ENABLE_GC_FOR_NATIVE_OBJECTS
auto sEngine = ScriptEngineManager::getInstance()->getScriptEngine();
if (sEngine)
{
sEngine->retainScriptObject(this, child);
}
#endif // AX_ENABLE_GC_FOR_NATIVE_OBJECTS
_transformUpdated = true;
_reorderChildDirty = true;
_children.pushBack(child);
child->_setLocalZOrder(z);
}
void Node::reorderChild(Node* child, int zOrder)
{
AXASSERT(child != nullptr, "Child must be non-nil");
_reorderChildDirty = true;
child->updateOrderOfArrival();
child->_setLocalZOrder(zOrder);
}
void Node::sortAllChildren()
{
if (_reorderChildDirty)
{
sortNodes(_children);
_reorderChildDirty = false;
_eventDispatcher->setDirtyForNode(this);
}
}
// MARK: draw / visit
void Node::draw()
{
auto renderer = _director->getRenderer();
draw(renderer, _modelViewTransform, FLAGS_TRANSFORM_DIRTY);
}
void Node::draw(Renderer* /*renderer*/, const Mat4& /*transform*/, uint32_t /*flags*/) {}
void Node::visit()
{
auto renderer = _director->getRenderer();
auto& parentTransform = _director->getMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW);
visit(renderer, parentTransform, FLAGS_TRANSFORM_DIRTY);
}
uint32_t Node::processParentFlags(const Mat4& parentTransform, uint32_t parentFlags)
{
if (_usingNormalizedPosition)
{
AXASSERT(_parent, "setPositionNormalized() doesn't work with orphan nodes");
if ((parentFlags & FLAGS_CONTENT_SIZE_DIRTY) || _normalizedPositionDirty)
{
auto& s = _parent->getContentSize();
_position.x = _normalizedPosition.x * s.width;
_position.y = _normalizedPosition.y * s.height;
_transformUpdated = _transformDirty = _inverseDirty = true;
_normalizedPositionDirty = false;
}
}
// Fixes Github issue #16100. Basically when having two cameras, one camera might set as dirty the
// node that is not visited by it, and might affect certain calculations. Besides, it is faster to do this.
if (!isVisitableByVisitingCamera())
return parentFlags;
uint32_t flags = parentFlags;
flags |= (_transformUpdated ? FLAGS_TRANSFORM_DIRTY : 0);
flags |= (_contentSizeDirty ? FLAGS_CONTENT_SIZE_DIRTY : 0);
if (flags & FLAGS_DIRTY_MASK)
_modelViewTransform = this->transform(parentTransform);
_transformUpdated = false;
_contentSizeDirty = false;
return flags;
}
bool Node::isVisitableByVisitingCamera() const
{
auto camera = Camera::getVisitingCamera();
bool visibleByCamera = camera ? ((unsigned short)camera->getCameraFlag() & _cameraMask) != 0 : true;
return visibleByCamera;
}
void Node::visit(Renderer* renderer, const Mat4& parentTransform, uint32_t parentFlags)
{
// quick return if not visible. children won't be drawn.
if (!_visible)
{
return;
}
uint32_t flags = processParentFlags(parentTransform, parentFlags);
// IMPORTANT:
// To ease the migration to v3.0, we still support the Mat4 stack,
// but it is deprecated and your code should not rely on it
_director->pushMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW);
_director->loadMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW, _modelViewTransform);
bool visibleByCamera = isVisitableByVisitingCamera();
int i = 0;
if (!_children.empty())
{
sortAllChildren();
// draw children zOrder < 0
for (auto size = _children.size(); i < size; ++i)
{
auto node = _children.at(i);
if (node && node->_localZOrder < 0)
node->visit(renderer, _modelViewTransform, flags);
else
break;
}
// self draw
if (visibleByCamera)
this->draw(renderer, _modelViewTransform, flags);
for (auto it = _children.cbegin() + i, itCend = _children.cend(); it != itCend; ++it)
(*it)->visit(renderer, _modelViewTransform, flags);
}
else if (visibleByCamera)
{
this->draw(renderer, _modelViewTransform, flags);
}
_director->popMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW);
// FIX ME: Why need to set _orderOfArrival to 0??
// Please refer to https://github.com/cocos2d/cocos2d-x/pull/6920
// reset for next frame
// _orderOfArrival = 0;
}
Mat4 Node::transform(const Mat4& parentTransform)
{
return parentTransform * this->getNodeToParentTransform();
}
// MARK: events
void Node::onEnter()
{
if (!_running)
{
++__attachedNodeCount;
}
if (_onEnterCallback)
_onEnterCallback();
if (_componentContainer && !_componentContainer->isEmpty())
{
_componentContainer->onEnter();
}
_isTransitionFinished = false;
for (const auto& child : _children)
child->onEnter();
this->resume();
_running = true;
#if AX_ENABLE_SCRIPT_BINDING
ScriptEngineManager::sendNodeEventToLua(this, kNodeOnEnter);
#endif
}
void Node::onEnterTransitionDidFinish()
{
if (_onEnterTransitionDidFinishCallback)
_onEnterTransitionDidFinishCallback();
_isTransitionFinished = true;
for (const auto& child : _children)
child->onEnterTransitionDidFinish();
#if AX_ENABLE_SCRIPT_BINDING
ScriptEngineManager::sendNodeEventToLua(this, kNodeOnEnterTransitionDidFinish);
#endif
}
void Node::onExitTransitionDidStart()
{
if (_onExitTransitionDidStartCallback)
_onExitTransitionDidStartCallback();
for (const auto& child : _children)
child->onExitTransitionDidStart();
#if AX_ENABLE_SCRIPT_BINDING
ScriptEngineManager::sendNodeEventToLua(this, kNodeOnExitTransitionDidStart);
#endif
}
void Node::onExit()
{
if (_running)
{
--__attachedNodeCount;
}
if (_onExitCallback)
_onExitCallback();
if (_componentContainer && !_componentContainer->isEmpty())
{
_componentContainer->onExit();
}
this->pause();
_running = false;
for (const auto& child : _children)
child->onExit();
#if AX_ENABLE_SCRIPT_BINDING
ScriptEngineManager::sendNodeEventToLua(this, kNodeOnExit);
#endif
}
void Node::setEventDispatcher(EventDispatcher* dispatcher)
{
if (dispatcher != _eventDispatcher)
{
_eventDispatcher->removeEventListenersForTarget(this);
AX_SAFE_RETAIN(dispatcher);
AX_SAFE_RELEASE(_eventDispatcher);
_eventDispatcher = dispatcher;
}
}
void Node::setActionManager(ActionManager* actionManager)
{
if (actionManager != _actionManager)
{
this->stopAllActions();
AX_SAFE_RETAIN(actionManager);
AX_SAFE_RELEASE(_actionManager);
_actionManager = actionManager;
}
}
// MARK: actions
Action* Node::runAction(Action* action)
{
AXASSERT(action != nullptr, "Argument must be non-nil");
_actionManager->addAction(action, this, !_running);
return action;
}
void Node::stopAllActions()
{
_actionManager->removeAllActionsFromTarget(this);
}
void Node::stopAction(Action* action)
{
_actionManager->removeAction(action);
}
void Node::stopActionByTag(int tag)
{
AXASSERT(tag != Action::INVALID_TAG, "Invalid tag");
_actionManager->removeActionByTag(tag, this);
}
void Node::stopAllActionsByTag(int tag)
{
AXASSERT(tag != Action::INVALID_TAG, "Invalid tag");
_actionManager->removeAllActionsByTag(tag, this);
}
void Node::stopActionsByFlags(unsigned int flags)
{
if (flags > 0)
{
_actionManager->removeActionsByFlags(flags, this);
}
}
Action* Node::getActionByTag(int tag)
{
AXASSERT(tag != Action::INVALID_TAG, "Invalid tag");
return _actionManager->getActionByTag(tag, this);
}
ssize_t Node::getNumberOfRunningActions() const
{
return _actionManager->getNumberOfRunningActionsInTarget(this);
}
ssize_t Node::getNumberOfRunningActionsByTag(int tag) const
{
return _actionManager->getNumberOfRunningActionsInTargetByTag(this, tag);
}
// MARK: Callbacks
void Node::setScheduler(Scheduler* scheduler)
{
if (scheduler != _scheduler)
{
this->unscheduleAllCallbacks();
AX_SAFE_RETAIN(scheduler);
AX_SAFE_RELEASE(_scheduler);
_scheduler = scheduler;
}
}
bool Node::isScheduled(SEL_SCHEDULE selector) const
{
return _scheduler->isScheduled(selector, this);
}
bool Node::isScheduled(std::string_view key) const
{
return _scheduler->isScheduled(key, this);
}
void Node::scheduleUpdate()
{
scheduleUpdateWithPriority(0);
}
void Node::scheduleUpdateWithPriority(int priority)
{
_scheduler->scheduleUpdate(this, priority, !_running);
}
void Node::scheduleUpdateWithPriorityLua(int nHandler, int priority)
{
unscheduleUpdate();
#if AX_ENABLE_SCRIPT_BINDING
_updateScriptHandler = nHandler;
#endif
_scheduler->scheduleUpdate(this, priority, !_running);
}
void Node::unscheduleUpdate()
{
_scheduler->unscheduleUpdate(this);
#if AX_ENABLE_SCRIPT_BINDING
if (_updateScriptHandler)
{
ScriptEngineManager::getInstance()->getScriptEngine()->removeScriptHandler(_updateScriptHandler);
_updateScriptHandler = 0;
}
#endif
}
void Node::schedule(SEL_SCHEDULE selector)
{
this->schedule(selector, 0.0f, AX_REPEAT_FOREVER, 0.0f);
}
void Node::schedule(SEL_SCHEDULE selector, float interval)
{
this->schedule(selector, interval, AX_REPEAT_FOREVER, 0.0f);
}
void Node::schedule(SEL_SCHEDULE selector, float interval, unsigned int repeat, float delay)
{
AXASSERT(selector, "Argument must be non-nil");
AXASSERT(interval >= 0, "Argument must be positive");
_scheduler->schedule(selector, this, interval, repeat, delay, !_running);
}
void Node::schedule(const std::function<void(float)>& callback, std::string_view key)
{
_scheduler->schedule(callback, this, 0, !_running, key);
}
void Node::schedule(const std::function<void(float)>& callback, float interval, std::string_view key)
{
_scheduler->schedule(callback, this, interval, !_running, key);
}
void Node::schedule(const std::function<void(float)>& callback,
float interval,
unsigned int repeat,
float delay,
std::string_view key)
{
_scheduler->schedule(callback, this, interval, repeat, delay, !_running, key);
}
void Node::scheduleOnce(SEL_SCHEDULE selector, float delay)
{
this->schedule(selector, 0.0f, 0, delay);
}
void Node::scheduleOnce(const std::function<void(float)>& callback, float delay, std::string_view key)
{
_scheduler->schedule(callback, this, 0, 0, delay, !_running, key);
}
void Node::unschedule(SEL_SCHEDULE selector)
{
// explicit null handling
if (selector == nullptr)
return;
_scheduler->unschedule(selector, this);
}
void Node::unschedule(std::string_view key)
{
_scheduler->unschedule(key, this);
}
void Node::unscheduleAllCallbacks()
{
_scheduler->unscheduleAllForTarget(this);
}
void Node::resume()
{
_scheduler->resumeTarget(this);
_actionManager->resumeTarget(this);
_eventDispatcher->resumeEventListenersForTarget(this);
}
void Node::pause()
{
_scheduler->pauseTarget(this);
_actionManager->pauseTarget(this);
_eventDispatcher->pauseEventListenersForTarget(this);
}
// override me
void Node::update(float fDelta)
{
#if AX_ENABLE_SCRIPT_BINDING
if (0 != _updateScriptHandler)
{
// only lua use
SchedulerScriptData data(_updateScriptHandler, fDelta);
ScriptEvent event(kScheduleEvent, &data);
ScriptEngineManager::sendEventToLua(event);
}
#endif
if (_componentContainer && !_componentContainer->isEmpty())
{
_componentContainer->visit(fDelta);
}
}
// MARK: coordinates
AffineTransform Node::getNodeToParentAffineTransform() const
{
AffineTransform ret;
GLToCGAffine(getNodeToParentTransform().m, &ret);
return ret;
}
Mat4 Node::getNodeToParentTransform(Node* ancestor) const
{
Mat4 t(this->getNodeToParentTransform());
for (Node* p = _parent; p != nullptr && p != ancestor; p = p->getParent())
{
t = p->getNodeToParentTransform() * t;
}
return t;
}
AffineTransform Node::getNodeToParentAffineTransform(Node* ancestor) const
{
AffineTransform t(this->getNodeToParentAffineTransform());
for (Node* p = _parent; p != nullptr && p != ancestor; p = p->getParent())
t = AffineTransformConcat(t, p->getNodeToParentAffineTransform());
return t;
}
const Mat4& Node::getNodeToParentTransform() const
{
if (_transformDirty)
{
// Translate values
float x = _position.x;
float y = _position.y;
float z = _positionZ;
if (_ignoreAnchorPointForPosition)
{
x += _anchorPointInPoints.x;
y += _anchorPointInPoints.y;
}
bool needsSkewMatrix = (_skewX || _skewY);
// Build Transform Matrix = translation * rotation * scale
Mat4 translation;
// move to anchor point first, then rotate
Mat4::createTranslation(x, y, z, &translation);
Mat4::createRotation(_rotationQuat, &_transform);
if (_rotationZ_X != _rotationZ_Y)
{
// Rotation values
// Change rotation code to handle X and Y
// If we skew with the exact same value for both x and y then we're simply just rotating
float radiansX = -AX_DEGREES_TO_RADIANS(_rotationZ_X);
float radiansY = -AX_DEGREES_TO_RADIANS(_rotationZ_Y);
float cx = cosf(radiansX);
float sx = sinf(radiansX);
float cy = cosf(radiansY);
float sy = sinf(radiansY);
float m0 = _transform.m[0], m1 = _transform.m[1], m4 = _transform.m[4], m5 = _transform.m[5],
m8 = _transform.m[8], m9 = _transform.m[9];
_transform.m[0] = cy * m0 - sx * m1;
_transform.m[4] = cy * m4 - sx * m5;
_transform.m[8] = cy * m8 - sx * m9;
_transform.m[1] = sy * m0 + cx * m1;
_transform.m[5] = sy * m4 + cx * m5;
_transform.m[9] = sy * m8 + cx * m9;
}
_transform = translation * _transform;
if (_scaleX != 1.f)
{
_transform.m[0] *= _scaleX;
_transform.m[1] *= _scaleX;
_transform.m[2] *= _scaleX;
}
if (_scaleY != 1.f)
{
_transform.m[4] *= _scaleY;
_transform.m[5] *= _scaleY;
_transform.m[6] *= _scaleY;
}
if (_scaleZ != 1.f)
{
_transform.m[8] *= _scaleZ;
_transform.m[9] *= _scaleZ;
_transform.m[10] *= _scaleZ;
}
// FIXME:: Try to inline skew
// If skew is needed, apply skew and then anchor point
if (needsSkewMatrix)
{
float skewMatArray[16] = {1,
(float)tanf(AX_DEGREES_TO_RADIANS(_skewY)),
0,
0,
(float)tanf(AX_DEGREES_TO_RADIANS(_skewX)),
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1};
Mat4 skewMatrix(skewMatArray);
_transform = _transform * skewMatrix;
}
// adjust anchor point
if (!_anchorPointInPoints.isZero())
{
// FIXME:: Argh, Mat4 needs a "translate" method.
// FIXME:: Although this is faster than multiplying a vec4 * mat4
_transform.m[12] += _transform.m[0] * -_anchorPointInPoints.x + _transform.m[4] * -_anchorPointInPoints.y;
_transform.m[13] += _transform.m[1] * -_anchorPointInPoints.x + _transform.m[5] * -_anchorPointInPoints.y;
_transform.m[14] += _transform.m[2] * -_anchorPointInPoints.x + _transform.m[6] * -_anchorPointInPoints.y;
}
}
if (_additionalTransform)
{
// This is needed to support both Node::setNodeToParentTransform() and Node::setAdditionalTransform()
// at the same time. The scenario is this:
// at some point setNodeToParentTransform() is called.
// and later setAdditionalTransform() is called every time. And since _transform
// is being overwritten everyframe, _additionalTransform[1] is used to have a copy
// of the last "_transform without _additionalTransform"
if (_transformDirty)
_additionalTransform[1] = _transform;
if (_transformUpdated)
_transform = _additionalTransform[1] * _additionalTransform[0];
}
_transformDirty = _additionalTransformDirty = false;
return _transform;
}
void Node::setNodeToParentTransform(const Mat4& transform)
{
_transform = transform;
_transformDirty = false;
_transformUpdated = true;
if (_additionalTransform)
// _additionalTransform[1] has a copy of lastest transform
_additionalTransform[1] = transform;
}
void Node::setAdditionalTransform(const AffineTransform& additionalTransform)
{
Mat4 tmp;
CGAffineToGL(additionalTransform, tmp.m);
setAdditionalTransform(&tmp);
}
void Node::setAdditionalTransform(const Mat4* additionalTransform)
{
if (additionalTransform == nullptr)
{
if (_additionalTransform)
_transform = _additionalTransform[1];
delete[] _additionalTransform;
_additionalTransform = nullptr;
}
else
{
if (!_additionalTransform)
{
_additionalTransform = new Mat4[2];
// _additionalTransform[1] is used as a backup for _transform
_additionalTransform[1] = _transform;
}
_additionalTransform[0] = *additionalTransform;
}
_transformUpdated = _additionalTransformDirty = _inverseDirty = true;
}
void Node::setAdditionalTransform(const Mat4& additionalTransform)
{
setAdditionalTransform(&additionalTransform);
}
AffineTransform Node::getParentToNodeAffineTransform() const
{
AffineTransform ret;
GLToCGAffine(getParentToNodeTransform().m, &ret);
return ret;
}
const Mat4& Node::getParentToNodeTransform() const
{
if (_inverseDirty)
{
_inverse = getNodeToParentTransform().getInversed();
_inverseDirty = false;
}
return _inverse;
}
AffineTransform Node::getNodeToWorldAffineTransform() const
{
return this->getNodeToParentAffineTransform(nullptr);
}
Mat4 Node::getNodeToWorldTransform() const
{
return this->getNodeToParentTransform(nullptr);
}
AffineTransform Node::getWorldToNodeAffineTransform() const
{
return AffineTransformInvert(this->getNodeToWorldAffineTransform());
}
Mat4 Node::getWorldToNodeTransform() const
{
return getNodeToWorldTransform().getInversed();
}
Vec2 Node::convertToNodeSpace(const Vec2& worldPoint) const
{
Mat4 tmp = getWorldToNodeTransform();
Vec3 vec3(worldPoint.x, worldPoint.y, 0);
Vec3 ret;
tmp.transformPoint(vec3, &ret);
return Vec2(ret.x, ret.y);
}
Vec2 Node::convertToWorldSpace(const Vec2& nodePoint) const
{
Mat4 tmp = getNodeToWorldTransform();
Vec3 vec3(nodePoint.x, nodePoint.y, 0);
Vec3 ret;
tmp.transformPoint(vec3, &ret);
return Vec2(ret.x, ret.y);
}
Vec2 Node::convertToNodeSpaceAR(const Vec2& worldPoint) const
{
Vec2 nodePoint(convertToNodeSpace(worldPoint));
return nodePoint - _anchorPointInPoints;
}
Vec2 Node::convertToWorldSpaceAR(const Vec2& nodePoint) const
{
return convertToWorldSpace(nodePoint + _anchorPointInPoints);
}
Vec2 Node::convertToWindowSpace(const Vec2& nodePoint) const
{
Vec2 worldPoint(this->convertToWorldSpace(nodePoint));
return _director->convertToUI(worldPoint);
}
// convenience methods which take a Touch instead of Vec2
Vec2 Node::convertTouchToNodeSpace(Touch* touch) const
{
return this->convertToNodeSpace(touch->getLocation());
}
Vec2 Node::convertTouchToNodeSpaceAR(Touch* touch) const
{
Vec2 point = touch->getLocation();
return this->convertToNodeSpaceAR(point);
}
Vec2 Node::getWorldPosition() const
{
return convertToWorldSpace(Vec2(_anchorPoint.x * _contentSize.width, _anchorPoint.y * _contentSize.height));
}
void Node::setWorldPosition(const Vec2& position)
{
auto p = getParent();
if (p)
{
auto m = p->getNodeToWorldTransform();
auto v = m.getInversed() * (Vec3(-m.m[12], -m.m[13], 0) + Vec3(position.x, position.y, 0));
setPosition(Vec2(v.x, v.y));
}
else setPosition(position);
}
void Node::updateTransform()
{
// Recursively iterate over children
for (const auto& child : _children)
child->updateTransform();
}
// MARK: components
Component* Node::getComponent(std::string_view name)
{
if (_componentContainer)
return _componentContainer->get(name);
return nullptr;
}
bool Node::addComponent(Component* component)
{
// lazy alloc
if (!_componentContainer)
_componentContainer = new ComponentContainer(this);
// should enable schedule update, then all components can receive this call back
scheduleUpdate();
const auto added = _componentContainer->add(component);
if (added && _running)
component->onEnter();
return added;
}
bool Node::removeComponent(std::string_view name)
{
if (_componentContainer)
return _componentContainer->remove(name);
return false;
}
bool Node::removeComponent(Component* component)
{
if (_componentContainer)
{
return _componentContainer->remove(component);
}
return false;
}
void Node::removeAllComponents()
{
if (_componentContainer)
_componentContainer->removeAll();
}
// MARK: Opacity and Color
uint8_t Node::getOpacity() const
{
return _realOpacity;
}
uint8_t Node::getDisplayedOpacity() const
{
return _displayedOpacity;
}
void Node::setOpacity(uint8_t opacity)
{
_displayedOpacity = _realOpacity = opacity;
updateCascadeOpacity();
}
void Node::updateDisplayedOpacity(uint8_t parentOpacity)
{
_displayedOpacity = _realOpacity * parentOpacity / 255.0;
updateColor();
if (_cascadeOpacityEnabled)
{
for (const auto& child : _children)
{
child->updateDisplayedOpacity(_displayedOpacity);
}
}
}
bool Node::isCascadeOpacityEnabled() const
{
return _cascadeOpacityEnabled;
}
void Node::setCascadeOpacityEnabled(bool cascadeOpacityEnabled)
{
if (_cascadeOpacityEnabled == cascadeOpacityEnabled)
{
return;
}
_cascadeOpacityEnabled = cascadeOpacityEnabled;
if (cascadeOpacityEnabled)
{
updateCascadeOpacity();
}
else
{
disableCascadeOpacity();
}
}
void Node::updateCascadeOpacity()
{
uint8_t parentOpacity = 255;
if (_parent != nullptr && _parent->isCascadeOpacityEnabled())
{
parentOpacity = _parent->getDisplayedOpacity();
}
updateDisplayedOpacity(parentOpacity);
}
void Node::disableCascadeOpacity()
{
_displayedOpacity = _realOpacity;
for (const auto& child : _children)
{
child->updateDisplayedOpacity(255);
}
}
void Node::setOpacityModifyRGB(bool /*value*/) {}
bool Node::isOpacityModifyRGB() const
{
return false;
}
const Color3B& Node::getColor() const
{
return _realColor;
}
const Color3B& Node::getDisplayedColor() const
{
return _displayedColor;
}
void Node::setColor(const Color3B& color)
{
_displayedColor = _realColor = color;
updateCascadeColor();
}
void Node::updateDisplayedColor(const Color3B& parentColor)
{
_displayedColor.r = _realColor.r * parentColor.r / 255.0;
_displayedColor.g = _realColor.g * parentColor.g / 255.0;
_displayedColor.b = _realColor.b * parentColor.b / 255.0;
updateColor();
if (_cascadeColorEnabled)
{
for (const auto& child : _children)
{
child->updateDisplayedColor(_displayedColor);
}
}
}
bool Node::isCascadeColorEnabled() const
{
return _cascadeColorEnabled;
}
void Node::setCascadeColorEnabled(bool cascadeColorEnabled)
{
if (_cascadeColorEnabled == cascadeColorEnabled)
{
return;
}
_cascadeColorEnabled = cascadeColorEnabled;
if (_cascadeColorEnabled)
{
updateCascadeColor();
}
else
{
disableCascadeColor();
}
}
void Node::updateCascadeColor()
{
Color3B parentColor = Color3B::WHITE;
if (_parent && _parent->isCascadeColorEnabled())
{
parentColor = _parent->getDisplayedColor();
}
updateDisplayedColor(parentColor);
}
void Node::disableCascadeColor()
{
for (const auto& child : _children)
{
child->updateDisplayedColor(Color3B::WHITE);
}
}
bool isScreenPointInRect(const Vec2& pt, const Camera* camera, const Mat4& w2l, const Rect& rect, Vec3* p)
{
if (nullptr == camera || rect.size.width <= 0 || rect.size.height <= 0)
{
return false;
}
// first, convert pt to near/far plane, get Pn and Pf
Vec3 Pn(pt.x, pt.y, -1), Pf(pt.x, pt.y, 1);
Pn = camera->unprojectGL(Pn);
Pf = camera->unprojectGL(Pf);
// then convert Pn and Pf to node space
w2l.transformPoint(&Pn);
w2l.transformPoint(&Pf);
// Pn and Pf define a line Q(t) = D + t * E which D = Pn
auto E = Pf - Pn;
// second, get three points which define content plane
// these points define a plane P(u, w) = A + uB + wC
Vec3 A = Vec3(rect.origin.x, rect.origin.y, 0);
Vec3 B(rect.origin.x + rect.size.width, rect.origin.y, 0);
Vec3 C(rect.origin.x, rect.origin.y + rect.size.height, 0);
B = B - A;
C = C - A;
// the line Q(t) intercept with plane P(u, w)
// calculate the intercept point P = Q(t)
// (BxC).A - (BxC).D
// t = -----------------
// (BxC).E
Vec3 BxC;
Vec3::cross(B, C, &BxC);
auto BxCdotE = BxC.dot(E);
if (BxCdotE == 0)
{
return false;
}
auto t = (BxC.dot(A) - BxC.dot(Pn)) / BxCdotE;
Vec3 P = Pn + t * E;
if (p)
{
*p = P;
}
return rect.containsPoint(Vec2(P.x, P.y));
}
void Node::applyMaskOnEnter(bool applyChildren)
{
_childFollowCameraMask = applyChildren;
}
// MARK: Camera
void Node::setCameraMask(unsigned short mask, bool applyChildren)
{
_cameraMask = mask;
if (applyChildren)
{
for (const auto& child : _children)
{
child->setCameraMask(mask, applyChildren);
}
}
}
int Node::getAttachedNodeCount()
{
return __attachedNodeCount;
}
void Node::setProgramStateWithRegistry(uint32_t programType, Texture2D* texture)
{
auto samplerFlags = texture ? texture->getSamplerFlags() : 0;
auto programState = backend::ProgramStateRegistry::getInstance()->newProgramState(programType, samplerFlags);
setProgramState(programState, true);
}
bool Node::setProgramState(backend::ProgramState* programState, bool ownPS/* = false*/)
{
if (_programState != programState)
{
AX_SAFE_RELEASE(_programState);
_programState = programState;
if (!ownPS)
AX_SAFE_RETAIN(_programState);
return !!_programState;
}
return false;
}
backend::ProgramState* Node::setProgramStateByProgramId(uint64_t programId)
{
auto prog = ProgramManager::getInstance()->loadProgram(programId);
if (prog)
{
this->setProgramState(new ProgramState(prog), true);
return _programState;
}
return nullptr;
}
void Node::updateProgramStateTexture(Texture2D* texture)
{
if (texture == nullptr || texture->getBackendTexture() == nullptr || _programState == nullptr)
return;
_programState->setTexture(texture->getBackendTexture());
}
backend::ProgramState* Node::getProgramState() const
{
return _programState;
}
NS_AX_END