axmol/chipmunk/src/cpArbiter.c

275 lines
7.0 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include "chipmunk.h"
#include "constraints/util.h"
cpFloat cp_bias_coef = 0.1f;
cpFloat cp_collision_slop = 0.1f;
cpContact*
cpContactInit(cpContact *con, cpVect p, cpVect n, cpFloat dist, cpHashValue hash)
{
con->p = p;
con->n = n;
con->dist = dist;
con->jnAcc = 0.0f;
con->jtAcc = 0.0f;
con->jBias = 0.0f;
con->hash = hash;
return con;
}
cpVect
cpArbiterTotalImpulse(cpArbiter *arb)
{
cpContact *contacts = arb->contacts;
cpVect sum = cpvzero;
for(int i=0, count=arb->numContacts; i<count; i++){
cpContact *con = &contacts[i];
sum = cpvadd(sum, cpvmult(con->n, con->jnAcc));
}
return sum;
}
cpVect
cpArbiterTotalImpulseWithFriction(cpArbiter *arb)
{
cpContact *contacts = arb->contacts;
cpVect sum = cpvzero;
for(int i=0, count=arb->numContacts; i<count; i++){
cpContact *con = &contacts[i];
sum = cpvadd(sum, cpvrotate(con->n, cpv(con->jnAcc, con->jtAcc)));
}
return sum;
}
cpFloat
cpContactsEstimateCrushingImpulse(cpContact *contacts, int numContacts)
{
cpFloat fsum = 0.0f;
cpVect vsum = cpvzero;
for(int i=0; i<numContacts; i++){
cpContact *con = &contacts[i];
cpVect j = cpvrotate(con->n, cpv(con->jnAcc, con->jtAcc));
fsum += cpvlength(j);
vsum = cpvadd(vsum, j);
}
cpFloat vmag = cpvlength(vsum);
return (1.0f - vmag/fsum);
}
void
cpArbiterIgnore(cpArbiter *arb)
{
arb->state = cpArbiterStateIgnore ;
}
cpArbiter*
cpArbiterAlloc(void)
{
return (cpArbiter *)cpcalloc(1, sizeof(cpArbiter));
}
cpArbiter*
cpArbiterInit(cpArbiter *arb, cpShape *a, cpShape *b)
{
arb->numContacts = 0;
arb->contacts = NULL;
arb->private_a = a;
arb->private_b = b;
arb->stamp = -1;
arb->state = cpArbiterStateFirstColl;
return arb;
}
cpArbiter*
cpArbiterNew(cpShape *a, cpShape *b)
{
return cpArbiterInit(cpArbiterAlloc(), a, b);
}
void
cpArbiterDestroy(cpArbiter *arb)
{
// if(arb->contacts) cpfree(arb->contacts);
}
void
cpArbiterFree(cpArbiter *arb)
{
if(arb){
cpArbiterDestroy(arb);
cpfree(arb);
}
}
void
cpArbiterUpdate(cpArbiter *arb, cpContact *contacts, int numContacts, cpCollisionHandler *handler, cpShape *a, cpShape *b)
{
// Arbiters without contact data may exist if a collision function rejected the collision.
if(arb->contacts){
// Iterate over the possible pairs to look for hash value matches.
for(int i=0; i<arb->numContacts; i++){
cpContact *old = &arb->contacts[i];
for(int j=0; j<numContacts; j++){
cpContact *new_contact = &contacts[j];
// This could trigger false positives, but is fairly unlikely nor serious if it does.
if(new_contact->hash == old->hash){
// Copy the persistant contact information.
new_contact->jnAcc = old->jnAcc;
new_contact->jtAcc = old->jtAcc;
}
}
}
// cpfree(arb->contacts);
}
arb->contacts = contacts;
arb->numContacts = numContacts;
arb->handler = handler;
arb->swappedColl = (a->collision_type != handler->a);
arb->e = a->e * b->e;
arb->u = a->u * b->u;
arb->surface_vr = cpvsub(a->surface_v, b->surface_v);
// For collisions between two similar primitive types, the order could have been swapped.
arb->private_a = a; arb->private_b = b;
}
void
cpArbiterPreStep(cpArbiter *arb, cpFloat dt_inv)
{
cpShape *shapea = arb->private_a;
cpShape *shapeb = arb->private_b;
cpBody *a = shapea->body;
cpBody *b = shapeb->body;
for(int i=0; i<arb->numContacts; i++){
cpContact *con = &arb->contacts[i];
// Calculate the offsets.
con->r1 = cpvsub(con->p, a->p);
con->r2 = cpvsub(con->p, b->p);
// Calculate the mass normal and mass tangent.
con->nMass = 1.0f/k_scalar(a, b, con->r1, con->r2, con->n);
con->tMass = 1.0f/k_scalar(a, b, con->r1, con->r2, cpvperp(con->n));
// Calculate the target bias velocity.
con->bias = -cp_bias_coef*dt_inv*cpfmin(0.0f, con->dist + cp_collision_slop);
con->jBias = 0.0f;
// Calculate the target bounce velocity.
con->bounce = normal_relative_velocity(a, b, con->r1, con->r2, con->n)*arb->e;//cpvdot(con->n, cpvsub(v2, v1))*e;
}
}
void
cpArbiterApplyCachedImpulse(cpArbiter *arb)
{
cpShape *shapea = arb->private_a;
cpShape *shapeb = arb->private_b;
arb->u = shapea->u * shapeb->u;
arb->surface_vr = cpvsub(shapeb->surface_v, shapea->surface_v);
cpBody *a = shapea->body;
cpBody *b = shapeb->body;
for(int i=0; i<arb->numContacts; i++){
cpContact *con = &arb->contacts[i];
apply_impulses(a, b, con->r1, con->r2, cpvrotate(con->n, cpv(con->jnAcc, con->jtAcc)));
}
}
void
cpArbiterApplyImpulse(cpArbiter *arb, cpFloat eCoef)
{
cpBody *a = arb->private_a->body;
cpBody *b = arb->private_b->body;
for(int i=0; i<arb->numContacts; i++){
cpContact *con = &arb->contacts[i];
cpVect n = con->n;
cpVect r1 = con->r1;
cpVect r2 = con->r2;
// Calculate the relative bias velocities.
cpVect vb1 = cpvadd(a->v_bias, cpvmult(cpvperp(r1), a->w_bias));
cpVect vb2 = cpvadd(b->v_bias, cpvmult(cpvperp(r2), b->w_bias));
cpFloat vbn = cpvdot(cpvsub(vb2, vb1), n);
// Calculate and clamp the bias impulse.
cpFloat jbn = (con->bias - vbn)*con->nMass;
cpFloat jbnOld = con->jBias;
con->jBias = cpfmax(jbnOld + jbn, 0.0f);
jbn = con->jBias - jbnOld;
// Apply the bias impulse.
apply_bias_impulses(a, b, r1, r2, cpvmult(n, jbn));
// Calculate the relative velocity.
cpVect vr = relative_velocity(a, b, r1, r2);
cpFloat vrn = cpvdot(vr, n);
// Calculate and clamp the normal impulse.
cpFloat jn = -(con->bounce*eCoef + vrn)*con->nMass;
cpFloat jnOld = con->jnAcc;
con->jnAcc = cpfmax(jnOld + jn, 0.0f);
jn = con->jnAcc - jnOld;
// Calculate the relative tangent velocity.
cpFloat vrt = cpvdot(cpvadd(vr, arb->surface_vr), cpvperp(n));
// Calculate and clamp the friction impulse.
cpFloat jtMax = arb->u*con->jnAcc;
cpFloat jt = -vrt*con->tMass;
cpFloat jtOld = con->jtAcc;
con->jtAcc = cpfclamp(jtOld + jt, -jtMax, jtMax);
jt = con->jtAcc - jtOld;
// Apply the final impulse.
apply_impulses(a, b, r1, r2, cpvrotate(n, cpv(jn, jt)));
}
}