mirror of https://github.com/axmolengine/axmol.git
2206 lines
82 KiB
C++
2206 lines
82 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "alu.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cassert>
|
|
#include <chrono>
|
|
#include <climits>
|
|
#include <cstdarg>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <new>
|
|
#include <stdint.h>
|
|
#include <utility>
|
|
|
|
#include "almalloc.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "alspan.h"
|
|
#include "alstring.h"
|
|
#include "atomic.h"
|
|
#include "core/ambidefs.h"
|
|
#include "core/async_event.h"
|
|
#include "core/bformatdec.h"
|
|
#include "core/bs2b.h"
|
|
#include "core/bsinc_defs.h"
|
|
#include "core/bsinc_tables.h"
|
|
#include "core/bufferline.h"
|
|
#include "core/buffer_storage.h"
|
|
#include "core/context.h"
|
|
#include "core/cpu_caps.h"
|
|
#include "core/devformat.h"
|
|
#include "core/device.h"
|
|
#include "core/effects/base.h"
|
|
#include "core/effectslot.h"
|
|
#include "core/filters/biquad.h"
|
|
#include "core/filters/nfc.h"
|
|
#include "core/fpu_ctrl.h"
|
|
#include "core/hrtf.h"
|
|
#include "core/mastering.h"
|
|
#include "core/mixer.h"
|
|
#include "core/mixer/defs.h"
|
|
#include "core/mixer/hrtfdefs.h"
|
|
#include "core/resampler_limits.h"
|
|
#include "core/uhjfilter.h"
|
|
#include "core/voice.h"
|
|
#include "core/voice_change.h"
|
|
#include "intrusive_ptr.h"
|
|
#include "opthelpers.h"
|
|
#include "ringbuffer.h"
|
|
#include "strutils.h"
|
|
#include "threads.h"
|
|
#include "vecmat.h"
|
|
#include "vector.h"
|
|
|
|
struct CTag;
|
|
#ifdef HAVE_SSE
|
|
struct SSETag;
|
|
#endif
|
|
#ifdef HAVE_SSE2
|
|
struct SSE2Tag;
|
|
#endif
|
|
#ifdef HAVE_SSE4_1
|
|
struct SSE4Tag;
|
|
#endif
|
|
#ifdef HAVE_NEON
|
|
struct NEONTag;
|
|
#endif
|
|
struct PointTag;
|
|
struct LerpTag;
|
|
struct CubicTag;
|
|
struct BSincTag;
|
|
struct FastBSincTag;
|
|
|
|
|
|
static_assert(!(MaxResamplerPadding&1), "MaxResamplerPadding is not a multiple of two");
|
|
|
|
|
|
namespace {
|
|
|
|
using uint = unsigned int;
|
|
using namespace std::chrono;
|
|
|
|
constexpr uint MaxPitch{10};
|
|
|
|
static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!");
|
|
static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize,
|
|
"MaxPitch and/or BufferLineSize are too large for MixerFracBits!");
|
|
|
|
using namespace std::placeholders;
|
|
|
|
float InitConeScale()
|
|
{
|
|
float ret{1.0f};
|
|
if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
|
|
{
|
|
if(al::strcasecmp(optval->c_str(), "true") == 0
|
|
|| strtol(optval->c_str(), nullptr, 0) == 1)
|
|
ret *= 0.5f;
|
|
}
|
|
return ret;
|
|
}
|
|
/* Cone scalar */
|
|
const float ConeScale{InitConeScale()};
|
|
|
|
/* Localized scalars for mono sources (initialized in aluInit, after
|
|
* configuration is loaded).
|
|
*/
|
|
float XScale{1.0f};
|
|
float YScale{1.0f};
|
|
float ZScale{1.0f};
|
|
|
|
/* Source distance scale for NFC filters. */
|
|
float NfcScale{1.0f};
|
|
|
|
|
|
struct ChanMap {
|
|
Channel channel;
|
|
float angle;
|
|
float elevation;
|
|
};
|
|
|
|
using HrtfDirectMixerFunc = void(*)(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
|
|
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, float *TempBuf,
|
|
HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);
|
|
|
|
HrtfDirectMixerFunc MixDirectHrtf{MixDirectHrtf_<CTag>};
|
|
|
|
inline HrtfDirectMixerFunc SelectHrtfMixer(void)
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixDirectHrtf_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixDirectHrtf_<SSETag>;
|
|
#endif
|
|
|
|
return MixDirectHrtf_<CTag>;
|
|
}
|
|
|
|
|
|
inline void BsincPrepare(const uint increment, BsincState *state, const BSincTable *table)
|
|
{
|
|
size_t si{BSincScaleCount - 1};
|
|
float sf{0.0f};
|
|
|
|
if(increment > MixerFracOne)
|
|
{
|
|
sf = MixerFracOne/static_cast<float>(increment) - table->scaleBase;
|
|
sf = maxf(0.0f, BSincScaleCount*sf*table->scaleRange - 1.0f);
|
|
si = float2uint(sf);
|
|
/* The interpolation factor is fit to this diagonally-symmetric curve
|
|
* to reduce the transition ripple caused by interpolating different
|
|
* scales of the sinc function.
|
|
*/
|
|
sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
|
|
}
|
|
|
|
state->sf = sf;
|
|
state->m = table->m[si];
|
|
state->l = (state->m/2) - 1;
|
|
state->filter = table->Tab + table->filterOffset[si];
|
|
}
|
|
|
|
inline ResamplerFunc SelectResampler(Resampler resampler, uint increment)
|
|
{
|
|
switch(resampler)
|
|
{
|
|
case Resampler::Point:
|
|
return Resample_<PointTag,CTag>;
|
|
case Resampler::Linear:
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return Resample_<LerpTag,NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE4_1
|
|
if((CPUCapFlags&CPU_CAP_SSE4_1))
|
|
return Resample_<LerpTag,SSE4Tag>;
|
|
#endif
|
|
#ifdef HAVE_SSE2
|
|
if((CPUCapFlags&CPU_CAP_SSE2))
|
|
return Resample_<LerpTag,SSE2Tag>;
|
|
#endif
|
|
return Resample_<LerpTag,CTag>;
|
|
case Resampler::Cubic:
|
|
return Resample_<CubicTag,CTag>;
|
|
case Resampler::BSinc12:
|
|
case Resampler::BSinc24:
|
|
if(increment > MixerFracOne)
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return Resample_<BSincTag,NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return Resample_<BSincTag,SSETag>;
|
|
#endif
|
|
return Resample_<BSincTag,CTag>;
|
|
}
|
|
/* fall-through */
|
|
case Resampler::FastBSinc12:
|
|
case Resampler::FastBSinc24:
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return Resample_<FastBSincTag,NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return Resample_<FastBSincTag,SSETag>;
|
|
#endif
|
|
return Resample_<FastBSincTag,CTag>;
|
|
}
|
|
|
|
return Resample_<PointTag,CTag>;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void aluInit(CompatFlagBitset flags, const float nfcscale)
|
|
{
|
|
MixDirectHrtf = SelectHrtfMixer();
|
|
XScale = flags.test(CompatFlags::ReverseX) ? -1.0f : 1.0f;
|
|
YScale = flags.test(CompatFlags::ReverseY) ? -1.0f : 1.0f;
|
|
ZScale = flags.test(CompatFlags::ReverseZ) ? -1.0f : 1.0f;
|
|
|
|
NfcScale = clampf(nfcscale, 0.0001f, 10000.0f);
|
|
}
|
|
|
|
|
|
ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state)
|
|
{
|
|
switch(resampler)
|
|
{
|
|
case Resampler::Point:
|
|
case Resampler::Linear:
|
|
case Resampler::Cubic:
|
|
break;
|
|
case Resampler::FastBSinc12:
|
|
case Resampler::BSinc12:
|
|
BsincPrepare(increment, &state->bsinc, &bsinc12);
|
|
break;
|
|
case Resampler::FastBSinc24:
|
|
case Resampler::BSinc24:
|
|
BsincPrepare(increment, &state->bsinc, &bsinc24);
|
|
break;
|
|
}
|
|
return SelectResampler(resampler, increment);
|
|
}
|
|
|
|
|
|
void DeviceBase::ProcessHrtf(const size_t SamplesToDo)
|
|
{
|
|
/* HRTF is stereo output only. */
|
|
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
|
|
const uint ridx{RealOut.ChannelIndex[FrontRight]};
|
|
|
|
MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
|
|
mHrtfState->mTemp.data(), mHrtfState->mChannels.data(), mHrtfState->mIrSize, SamplesToDo);
|
|
}
|
|
|
|
void DeviceBase::ProcessAmbiDec(const size_t SamplesToDo)
|
|
{
|
|
AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
|
|
}
|
|
|
|
void DeviceBase::ProcessAmbiDecStablized(const size_t SamplesToDo)
|
|
{
|
|
/* Decode with front image stablization. */
|
|
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
|
|
const uint ridx{RealOut.ChannelIndex[FrontRight]};
|
|
const uint cidx{RealOut.ChannelIndex[FrontCenter]};
|
|
|
|
AmbiDecoder->processStablize(RealOut.Buffer, Dry.Buffer.data(), lidx, ridx, cidx,
|
|
SamplesToDo);
|
|
}
|
|
|
|
void DeviceBase::ProcessUhj(const size_t SamplesToDo)
|
|
{
|
|
/* UHJ is stereo output only. */
|
|
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
|
|
const uint ridx{RealOut.ChannelIndex[FrontRight]};
|
|
|
|
/* Encode to stereo-compatible 2-channel UHJ output. */
|
|
mUhjEncoder->encode(RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
|
|
{{Dry.Buffer[0].data(), Dry.Buffer[1].data(), Dry.Buffer[2].data()}}, SamplesToDo);
|
|
}
|
|
|
|
void DeviceBase::ProcessBs2b(const size_t SamplesToDo)
|
|
{
|
|
/* First, decode the ambisonic mix to the "real" output. */
|
|
AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
|
|
|
|
/* BS2B is stereo output only. */
|
|
const uint lidx{RealOut.ChannelIndex[FrontLeft]};
|
|
const uint ridx{RealOut.ChannelIndex[FrontRight]};
|
|
|
|
/* Now apply the BS2B binaural/crossfeed filter. */
|
|
bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
|
|
SamplesToDo);
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
/* This RNG method was created based on the math found in opusdec. It's quick,
|
|
* and starting with a seed value of 22222, is suitable for generating
|
|
* whitenoise.
|
|
*/
|
|
inline uint dither_rng(uint *seed) noexcept
|
|
{
|
|
*seed = (*seed * 96314165) + 907633515;
|
|
return *seed;
|
|
}
|
|
|
|
|
|
/* Ambisonic upsampler function. It's effectively a matrix multiply. It takes
|
|
* an 'upsampler' and 'rotator' as the input matrices, and creates a matrix
|
|
* that behaves as if the B-Format input was first decoded to a speaker array
|
|
* at its input order, encoded back into the higher order mix, then finally
|
|
* rotated.
|
|
*/
|
|
void UpsampleBFormatTransform(
|
|
const al::span<std::array<float,MaxAmbiChannels>,MaxAmbiChannels> output,
|
|
const al::span<const std::array<float,MaxAmbiChannels>> upsampler,
|
|
const al::span<std::array<float,MaxAmbiChannels>,MaxAmbiChannels> rotator, size_t coeffs_order)
|
|
{
|
|
const size_t num_chans{AmbiChannelsFromOrder(coeffs_order)};
|
|
for(size_t i{0};i < upsampler.size();++i)
|
|
output[i].fill(0.0f);
|
|
for(size_t i{0};i < upsampler.size();++i)
|
|
{
|
|
for(size_t k{0};k < num_chans;++k)
|
|
{
|
|
float *RESTRICT out{output[i].data()};
|
|
/* Write the full number of channels. The compiler will have an
|
|
* easier time optimizing if it has a fixed length.
|
|
*/
|
|
for(size_t j{0};j < MaxAmbiChannels;++j)
|
|
out[j] += upsampler[i][k] * rotator[k][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
|
|
{
|
|
switch(scaletype)
|
|
{
|
|
case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
|
|
case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
|
|
case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
|
|
case AmbiScaling::N3D: break;
|
|
}
|
|
return AmbiScale::FromN3D();
|
|
}
|
|
|
|
inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
|
|
{
|
|
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
|
|
return AmbiIndex::FromACN();
|
|
}
|
|
|
|
inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
|
|
{
|
|
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
|
|
return AmbiIndex::FromACN2D();
|
|
}
|
|
|
|
|
|
bool CalcContextParams(ContextBase *ctx)
|
|
{
|
|
ContextProps *props{ctx->mParams.ContextUpdate.exchange(nullptr, std::memory_order_acq_rel)};
|
|
if(!props) return false;
|
|
|
|
const alu::Vector pos{props->Position[0], props->Position[1], props->Position[2], 1.0f};
|
|
ctx->mParams.Position = pos;
|
|
|
|
/* AT then UP */
|
|
alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
|
|
N.normalize();
|
|
alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
|
|
V.normalize();
|
|
/* Build and normalize right-vector */
|
|
alu::Vector U{N.cross_product(V)};
|
|
U.normalize();
|
|
|
|
const alu::Matrix rot{
|
|
U[0], V[0], -N[0], 0.0,
|
|
U[1], V[1], -N[1], 0.0,
|
|
U[2], V[2], -N[2], 0.0,
|
|
0.0, 0.0, 0.0, 1.0};
|
|
const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0};
|
|
|
|
ctx->mParams.Matrix = rot;
|
|
ctx->mParams.Velocity = rot * vel;
|
|
|
|
ctx->mParams.Gain = props->Gain * ctx->mGainBoost;
|
|
ctx->mParams.MetersPerUnit = props->MetersPerUnit;
|
|
ctx->mParams.AirAbsorptionGainHF = props->AirAbsorptionGainHF;
|
|
|
|
ctx->mParams.DopplerFactor = props->DopplerFactor;
|
|
ctx->mParams.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
|
|
|
|
ctx->mParams.SourceDistanceModel = props->SourceDistanceModel;
|
|
ctx->mParams.mDistanceModel = props->mDistanceModel;
|
|
|
|
AtomicReplaceHead(ctx->mFreeContextProps, props);
|
|
return true;
|
|
}
|
|
|
|
bool CalcEffectSlotParams(EffectSlot *slot, EffectSlot **sorted_slots, ContextBase *context)
|
|
{
|
|
EffectSlotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)};
|
|
if(!props) return false;
|
|
|
|
/* If the effect slot target changed, clear the first sorted entry to force
|
|
* a re-sort.
|
|
*/
|
|
if(slot->Target != props->Target)
|
|
*sorted_slots = nullptr;
|
|
slot->Gain = props->Gain;
|
|
slot->AuxSendAuto = props->AuxSendAuto;
|
|
slot->Target = props->Target;
|
|
slot->EffectType = props->Type;
|
|
slot->mEffectProps = props->Props;
|
|
if(props->Type == EffectSlotType::Reverb || props->Type == EffectSlotType::EAXReverb)
|
|
{
|
|
slot->RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
|
|
slot->DecayTime = props->Props.Reverb.DecayTime;
|
|
slot->DecayLFRatio = props->Props.Reverb.DecayLFRatio;
|
|
slot->DecayHFRatio = props->Props.Reverb.DecayHFRatio;
|
|
slot->DecayHFLimit = props->Props.Reverb.DecayHFLimit;
|
|
slot->AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
|
|
}
|
|
else
|
|
{
|
|
slot->RoomRolloff = 0.0f;
|
|
slot->DecayTime = 0.0f;
|
|
slot->DecayLFRatio = 0.0f;
|
|
slot->DecayHFRatio = 0.0f;
|
|
slot->DecayHFLimit = false;
|
|
slot->AirAbsorptionGainHF = 1.0f;
|
|
}
|
|
|
|
EffectState *state{props->State.release()};
|
|
EffectState *oldstate{slot->mEffectState.release()};
|
|
slot->mEffectState.reset(state);
|
|
|
|
/* Only release the old state if it won't get deleted, since we can't be
|
|
* deleting/freeing anything in the mixer.
|
|
*/
|
|
if(!oldstate->releaseIfNoDelete())
|
|
{
|
|
/* Otherwise, if it would be deleted send it off with a release event. */
|
|
RingBuffer *ring{context->mAsyncEvents.get()};
|
|
auto evt_vec = ring->getWriteVector();
|
|
if(evt_vec.first.len > 0) [[likely]]
|
|
{
|
|
AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
|
|
AsyncEvent::ReleaseEffectState)};
|
|
evt->u.mEffectState = oldstate;
|
|
ring->writeAdvance(1);
|
|
}
|
|
else
|
|
{
|
|
/* If writing the event failed, the queue was probably full. Store
|
|
* the old state in the property object where it can eventually be
|
|
* cleaned up sometime later (not ideal, but better than blocking
|
|
* or leaking).
|
|
*/
|
|
props->State.reset(oldstate);
|
|
}
|
|
}
|
|
|
|
AtomicReplaceHead(context->mFreeEffectslotProps, props);
|
|
|
|
EffectTarget output;
|
|
if(EffectSlot *target{slot->Target})
|
|
output = EffectTarget{&target->Wet, nullptr};
|
|
else
|
|
{
|
|
DeviceBase *device{context->mDevice};
|
|
output = EffectTarget{&device->Dry, &device->RealOut};
|
|
}
|
|
state->update(context, slot, &slot->mEffectProps, output);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
|
|
* front.
|
|
*/
|
|
inline float ScaleAzimuthFront(float azimuth, float scale)
|
|
{
|
|
const float abs_azi{std::fabs(azimuth)};
|
|
if(!(abs_azi >= al::numbers::pi_v<float>*0.5f))
|
|
return std::copysign(minf(abs_azi*scale, al::numbers::pi_v<float>*0.5f), azimuth);
|
|
return azimuth;
|
|
}
|
|
|
|
/* Wraps the given value in radians to stay between [-pi,+pi] */
|
|
inline float WrapRadians(float r)
|
|
{
|
|
static constexpr float Pi{al::numbers::pi_v<float>};
|
|
static constexpr float Pi2{Pi*2.0f};
|
|
if(r > Pi) return std::fmod(Pi+r, Pi2) - Pi;
|
|
if(r < -Pi) return Pi - std::fmod(Pi-r, Pi2);
|
|
return r;
|
|
}
|
|
|
|
/* Begin ambisonic rotation helpers.
|
|
*
|
|
* Rotating first-order B-Format just needs a straight-forward X/Y/Z rotation
|
|
* matrix. Higher orders, however, are more complicated. The method implemented
|
|
* here is a recursive algorithm (the rotation for first-order is used to help
|
|
* generate the second-order rotation, which helps generate the third-order
|
|
* rotation, etc).
|
|
*
|
|
* Adapted from
|
|
* <https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSHrotMtx.m>,
|
|
* provided under the BSD 3-Clause license.
|
|
*
|
|
* Copyright (c) 2015, Archontis Politis
|
|
* Copyright (c) 2019, Christopher Robinson
|
|
*
|
|
* The u, v, and w coefficients used for generating higher-order rotations are
|
|
* precomputed since they're constant. The second-order coefficients are
|
|
* followed by the third-order coefficients, etc.
|
|
*/
|
|
template<size_t L>
|
|
constexpr size_t CalcRotatorSize()
|
|
{ return (L*2 + 1)*(L*2 + 1) + CalcRotatorSize<L-1>(); }
|
|
|
|
template<> constexpr size_t CalcRotatorSize<0>() = delete;
|
|
template<> constexpr size_t CalcRotatorSize<1>() = delete;
|
|
template<> constexpr size_t CalcRotatorSize<2>() { return 5*5; }
|
|
|
|
struct RotatorCoeffs {
|
|
struct CoeffValues {
|
|
float u, v, w;
|
|
};
|
|
std::array<CoeffValues,CalcRotatorSize<MaxAmbiOrder>()> mCoeffs{};
|
|
|
|
RotatorCoeffs()
|
|
{
|
|
auto coeffs = mCoeffs.begin();
|
|
|
|
for(int l=2;l <= MaxAmbiOrder;++l)
|
|
{
|
|
for(int n{-l};n <= l;++n)
|
|
{
|
|
for(int m{-l};m <= l;++m)
|
|
{
|
|
// compute u,v,w terms of Eq.8.1 (Table I)
|
|
const bool d{m == 0}; // the delta function d_m0
|
|
const float denom{static_cast<float>((std::abs(n) == l) ?
|
|
(2*l) * (2*l - 1) : (l*l - n*n))};
|
|
|
|
const int abs_m{std::abs(m)};
|
|
coeffs->u = std::sqrt(static_cast<float>(l*l - m*m)/denom);
|
|
coeffs->v = std::sqrt(static_cast<float>(l+abs_m-1) *
|
|
static_cast<float>(l+abs_m) / denom) * (1.0f+d) * (1.0f - 2.0f*d) * 0.5f;
|
|
coeffs->w = std::sqrt(static_cast<float>(l-abs_m-1) *
|
|
static_cast<float>(l-abs_m) / denom) * (1.0f-d) * -0.5f;
|
|
++coeffs;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
const RotatorCoeffs RotatorCoeffArray{};
|
|
|
|
/**
|
|
* Given the matrix, pre-filled with the (zeroth- and) first-order rotation
|
|
* coefficients, this fills in the coefficients for the higher orders up to and
|
|
* including the given order. The matrix is in ACN layout.
|
|
*/
|
|
void AmbiRotator(AmbiRotateMatrix &matrix, const int order)
|
|
{
|
|
/* Don't do anything for < 2nd order. */
|
|
if(order < 2) return;
|
|
|
|
auto P = [](const int i, const int l, const int a, const int n, const size_t last_band,
|
|
const AmbiRotateMatrix &R)
|
|
{
|
|
const float ri1{ R[ 1+2][static_cast<size_t>(i+2)]};
|
|
const float rim1{R[-1+2][static_cast<size_t>(i+2)]};
|
|
const float ri0{ R[ 0+2][static_cast<size_t>(i+2)]};
|
|
|
|
const size_t y{last_band + static_cast<size_t>(a+l-1)};
|
|
if(n == -l)
|
|
return ri1*R[last_band][y] + rim1*R[last_band + static_cast<size_t>(l-1)*2][y];
|
|
if(n == l)
|
|
return ri1*R[last_band + static_cast<size_t>(l-1)*2][y] - rim1*R[last_band][y];
|
|
return ri0*R[last_band + static_cast<size_t>(n+l-1)][y];
|
|
};
|
|
|
|
auto U = [P](const int l, const int m, const int n, const size_t last_band,
|
|
const AmbiRotateMatrix &R)
|
|
{
|
|
return P(0, l, m, n, last_band, R);
|
|
};
|
|
auto V = [P](const int l, const int m, const int n, const size_t last_band,
|
|
const AmbiRotateMatrix &R)
|
|
{
|
|
using namespace al::numbers;
|
|
if(m > 0)
|
|
{
|
|
const bool d{m == 1};
|
|
const float p0{P( 1, l, m-1, n, last_band, R)};
|
|
const float p1{P(-1, l, -m+1, n, last_band, R)};
|
|
return d ? p0*sqrt2_v<float> : (p0 - p1);
|
|
}
|
|
const bool d{m == -1};
|
|
const float p0{P( 1, l, m+1, n, last_band, R)};
|
|
const float p1{P(-1, l, -m-1, n, last_band, R)};
|
|
return d ? p1*sqrt2_v<float> : (p0 + p1);
|
|
};
|
|
auto W = [P](const int l, const int m, const int n, const size_t last_band,
|
|
const AmbiRotateMatrix &R)
|
|
{
|
|
assert(m != 0);
|
|
if(m > 0)
|
|
{
|
|
const float p0{P( 1, l, m+1, n, last_band, R)};
|
|
const float p1{P(-1, l, -m-1, n, last_band, R)};
|
|
return p0 + p1;
|
|
}
|
|
const float p0{P( 1, l, m-1, n, last_band, R)};
|
|
const float p1{P(-1, l, -m+1, n, last_band, R)};
|
|
return p0 - p1;
|
|
};
|
|
|
|
// compute rotation matrix of each subsequent band recursively
|
|
auto coeffs = RotatorCoeffArray.mCoeffs.cbegin();
|
|
size_t band_idx{4}, last_band{1};
|
|
for(int l{2};l <= order;++l)
|
|
{
|
|
size_t y{band_idx};
|
|
for(int n{-l};n <= l;++n,++y)
|
|
{
|
|
size_t x{band_idx};
|
|
for(int m{-l};m <= l;++m,++x)
|
|
{
|
|
float r{0.0f};
|
|
|
|
// computes Eq.8.1
|
|
const float u{coeffs->u};
|
|
if(u != 0.0f) r += u * U(l, m, n, last_band, matrix);
|
|
const float v{coeffs->v};
|
|
if(v != 0.0f) r += v * V(l, m, n, last_band, matrix);
|
|
const float w{coeffs->w};
|
|
if(w != 0.0f) r += w * W(l, m, n, last_band, matrix);
|
|
|
|
matrix[y][x] = r;
|
|
++coeffs;
|
|
}
|
|
}
|
|
last_band = band_idx;
|
|
band_idx += static_cast<uint>(l)*size_t{2} + 1;
|
|
}
|
|
}
|
|
/* End ambisonic rotation helpers. */
|
|
|
|
|
|
constexpr float Deg2Rad(float x) noexcept
|
|
{ return static_cast<float>(al::numbers::pi / 180.0 * x); }
|
|
|
|
struct GainTriplet { float Base, HF, LF; };
|
|
|
|
void CalcPanningAndFilters(Voice *voice, const float xpos, const float ypos, const float zpos,
|
|
const float Distance, const float Spread, const GainTriplet &DryGain,
|
|
const al::span<const GainTriplet,MAX_SENDS> WetGain, EffectSlot *(&SendSlots)[MAX_SENDS],
|
|
const VoiceProps *props, const ContextParams &Context, DeviceBase *Device)
|
|
{
|
|
static constexpr ChanMap MonoMap[1]{
|
|
{ FrontCenter, 0.0f, 0.0f }
|
|
}, RearMap[2]{
|
|
{ BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
|
|
{ BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
|
|
}, QuadMap[4]{
|
|
{ FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
|
|
{ BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
|
|
{ BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
|
|
}, X51Map[6]{
|
|
{ FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
|
|
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
|
|
{ SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
|
|
}, X61Map[7]{
|
|
{ FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
|
|
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
|
|
{ SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
|
|
{ SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
|
|
}, X71Map[8]{
|
|
{ FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
|
|
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
|
|
{ BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
|
|
{ SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
|
|
{ SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
|
|
};
|
|
|
|
ChanMap StereoMap[2]{
|
|
{ FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
|
|
};
|
|
|
|
const auto Frequency = static_cast<float>(Device->Frequency);
|
|
const uint NumSends{Device->NumAuxSends};
|
|
|
|
const size_t num_channels{voice->mChans.size()};
|
|
ASSUME(num_channels > 0);
|
|
|
|
for(auto &chandata : voice->mChans)
|
|
{
|
|
chandata.mDryParams.Hrtf.Target = HrtfFilter{};
|
|
chandata.mDryParams.Gains.Target.fill(0.0f);
|
|
std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
|
|
[](SendParams ¶ms) -> void { params.Gains.Target.fill(0.0f); });
|
|
}
|
|
|
|
DirectMode DirectChannels{props->DirectChannels};
|
|
const ChanMap *chans{nullptr};
|
|
switch(voice->mFmtChannels)
|
|
{
|
|
case FmtMono:
|
|
chans = MonoMap;
|
|
/* Mono buffers are never played direct. */
|
|
DirectChannels = DirectMode::Off;
|
|
break;
|
|
|
|
case FmtStereo:
|
|
if(DirectChannels == DirectMode::Off)
|
|
{
|
|
/* Convert counter-clockwise to clock-wise, and wrap between
|
|
* [-pi,+pi].
|
|
*/
|
|
StereoMap[0].angle = WrapRadians(-props->StereoPan[0]);
|
|
StereoMap[1].angle = WrapRadians(-props->StereoPan[1]);
|
|
}
|
|
chans = StereoMap;
|
|
break;
|
|
|
|
case FmtRear: chans = RearMap; break;
|
|
case FmtQuad: chans = QuadMap; break;
|
|
case FmtX51: chans = X51Map; break;
|
|
case FmtX61: chans = X61Map; break;
|
|
case FmtX71: chans = X71Map; break;
|
|
|
|
case FmtBFormat2D:
|
|
case FmtBFormat3D:
|
|
case FmtUHJ2:
|
|
case FmtUHJ3:
|
|
case FmtUHJ4:
|
|
case FmtSuperStereo:
|
|
DirectChannels = DirectMode::Off;
|
|
break;
|
|
}
|
|
|
|
voice->mFlags.reset(VoiceHasHrtf).reset(VoiceHasNfc);
|
|
if(auto *decoder{voice->mDecoder.get()})
|
|
decoder->mWidthControl = minf(props->EnhWidth, 0.7f);
|
|
|
|
if(IsAmbisonic(voice->mFmtChannels))
|
|
{
|
|
/* Special handling for B-Format and UHJ sources. */
|
|
|
|
if(Device->AvgSpeakerDist > 0.0f && voice->mFmtChannels != FmtUHJ2
|
|
&& voice->mFmtChannels != FmtSuperStereo)
|
|
{
|
|
if(!(Distance > std::numeric_limits<float>::epsilon()))
|
|
{
|
|
/* NOTE: The NFCtrlFilters were created with a w0 of 0, which
|
|
* is what we want for FOA input. The first channel may have
|
|
* been previously re-adjusted if panned, so reset it.
|
|
*/
|
|
voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
|
|
}
|
|
else
|
|
{
|
|
/* Clamp the distance for really close sources, to prevent
|
|
* excessive bass.
|
|
*/
|
|
const float mdist{maxf(Distance*NfcScale, Device->AvgSpeakerDist/4.0f)};
|
|
const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
|
|
|
|
/* Only need to adjust the first channel of a B-Format source. */
|
|
voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
|
|
}
|
|
|
|
voice->mFlags.set(VoiceHasNfc);
|
|
}
|
|
|
|
/* Panning a B-Format sound toward some direction is easy. Just pan the
|
|
* first (W) channel as a normal mono sound. The angular spread is used
|
|
* as a directional scalar to blend between full coverage and full
|
|
* panning.
|
|
*/
|
|
const float coverage{!(Distance > std::numeric_limits<float>::epsilon()) ? 1.0f :
|
|
(al::numbers::inv_pi_v<float>/2.0f * Spread)};
|
|
|
|
auto calc_coeffs = [xpos,ypos,zpos](RenderMode mode)
|
|
{
|
|
if(mode != RenderMode::Pairwise)
|
|
return CalcDirectionCoeffs({xpos, ypos, zpos});
|
|
|
|
/* Clamp Y, in case rounding errors caused it to end up outside
|
|
* of -1...+1.
|
|
*/
|
|
const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
|
|
/* Negate Z for right-handed coords with -Z in front. */
|
|
const float az{std::atan2(xpos, -zpos)};
|
|
|
|
/* A scalar of 1.5 for plain stereo results in +/-60 degrees
|
|
* being moved to +/-90 degrees for direct right and left
|
|
* speaker responses.
|
|
*/
|
|
return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, 0.0f);
|
|
};
|
|
auto&& scales = GetAmbiScales(voice->mAmbiScaling);
|
|
auto coeffs = calc_coeffs(Device->mRenderMode);
|
|
/* Scale the panned W signal based on the coverage (full coverage means
|
|
* no panned signal). Scale the panned W signal according to channel
|
|
* scaling.
|
|
*/
|
|
std::transform(coeffs.begin(), coeffs.end(), coeffs.begin(),
|
|
[scale=(1.0f-coverage)*scales[0]](const float c){ return c * scale; });
|
|
|
|
if(!(coverage > 0.0f))
|
|
{
|
|
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
|
|
voice->mChans[0].mDryParams.Gains.Target);
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base*scales[0],
|
|
voice->mChans[0].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Local B-Format sources have their XYZ channels rotated according
|
|
* to the orientation.
|
|
*/
|
|
/* AT then UP */
|
|
alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
|
|
N.normalize();
|
|
alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
|
|
V.normalize();
|
|
if(!props->HeadRelative)
|
|
{
|
|
N = Context.Matrix * N;
|
|
V = Context.Matrix * V;
|
|
}
|
|
/* Build and normalize right-vector */
|
|
alu::Vector U{N.cross_product(V)};
|
|
U.normalize();
|
|
|
|
/* Build a rotation matrix. Manually fill the zeroth- and first-
|
|
* order elements, then construct the rotation for the higher
|
|
* orders.
|
|
*/
|
|
AmbiRotateMatrix &shrot = Device->mAmbiRotateMatrix;
|
|
shrot.fill(AmbiRotateMatrix::value_type{});
|
|
|
|
shrot[0][0] = 1.0f;
|
|
shrot[1][1] = U[0]; shrot[1][2] = -U[1]; shrot[1][3] = U[2];
|
|
shrot[2][1] = -V[0]; shrot[2][2] = V[1]; shrot[2][3] = -V[2];
|
|
shrot[3][1] = -N[0]; shrot[3][2] = N[1]; shrot[3][3] = -N[2];
|
|
AmbiRotator(shrot, static_cast<int>(Device->mAmbiOrder));
|
|
|
|
/* If the device is higher order than the voice, "upsample" the
|
|
* matrix.
|
|
*
|
|
* NOTE: Starting with second-order, a 2D upsample needs to be
|
|
* applied with a 2D source and 3D output, even when they're the
|
|
* same order. This is because higher orders have a height offset
|
|
* on various channels (i.e. when elevation=0, those height-related
|
|
* channels should be non-0).
|
|
*/
|
|
AmbiRotateMatrix &mixmatrix = Device->mAmbiRotateMatrix2;
|
|
if(Device->mAmbiOrder > voice->mAmbiOrder
|
|
|| (Device->mAmbiOrder >= 2 && !Device->m2DMixing
|
|
&& Is2DAmbisonic(voice->mFmtChannels)))
|
|
{
|
|
if(voice->mAmbiOrder == 1)
|
|
{
|
|
auto&& upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
|
|
AmbiScale::FirstOrder2DUp : AmbiScale::FirstOrderUp;
|
|
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
|
|
}
|
|
else if(voice->mAmbiOrder == 2)
|
|
{
|
|
auto&& upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
|
|
AmbiScale::SecondOrder2DUp : AmbiScale::SecondOrderUp;
|
|
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
|
|
}
|
|
else if(voice->mAmbiOrder == 3)
|
|
{
|
|
auto&& upsampler = Is2DAmbisonic(voice->mFmtChannels) ?
|
|
AmbiScale::ThirdOrder2DUp : AmbiScale::ThirdOrderUp;
|
|
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
|
|
}
|
|
else if(voice->mAmbiOrder == 4)
|
|
{
|
|
auto&& upsampler = AmbiScale::FourthOrder2DUp;
|
|
UpsampleBFormatTransform(mixmatrix, upsampler, shrot, Device->mAmbiOrder);
|
|
}
|
|
else
|
|
al::unreachable();
|
|
}
|
|
else
|
|
mixmatrix = shrot;
|
|
|
|
/* Convert the rotation matrix for input ordering and scaling, and
|
|
* whether input is 2D or 3D.
|
|
*/
|
|
const uint8_t *index_map{Is2DAmbisonic(voice->mFmtChannels) ?
|
|
GetAmbi2DLayout(voice->mAmbiLayout).data() :
|
|
GetAmbiLayout(voice->mAmbiLayout).data()};
|
|
|
|
for(size_t c{0};c < num_channels;c++)
|
|
{
|
|
const size_t acn{index_map[c]};
|
|
const float scale{scales[acn] * coverage};
|
|
|
|
/* For channel 0, combine the B-Format signal (scaled according
|
|
* to the coverage amount) with the directional pan. For all
|
|
* other channels, use just the (scaled) B-Format signal.
|
|
*/
|
|
for(size_t x{0};x < MaxAmbiChannels;++x)
|
|
coeffs[x] += mixmatrix[acn][x] * scale;
|
|
|
|
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
|
|
voice->mChans[c].mDryParams.Gains.Target);
|
|
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[c].mWetParams[i].Gains.Target);
|
|
}
|
|
|
|
coeffs = std::array<float,MaxAmbiChannels>{};
|
|
}
|
|
}
|
|
}
|
|
else if(DirectChannels != DirectMode::Off && !Device->RealOut.RemixMap.empty())
|
|
{
|
|
/* Direct source channels always play local. Skip the virtual channels
|
|
* and write inputs to the matching real outputs.
|
|
*/
|
|
voice->mDirect.Buffer = Device->RealOut.Buffer;
|
|
|
|
for(size_t c{0};c < num_channels;c++)
|
|
{
|
|
uint idx{Device->channelIdxByName(chans[c].channel)};
|
|
if(idx != InvalidChannelIndex)
|
|
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
|
|
else if(DirectChannels == DirectMode::RemixMismatch)
|
|
{
|
|
auto match_channel = [chans,c](const InputRemixMap &map) noexcept -> bool
|
|
{ return chans[c].channel == map.channel; };
|
|
auto remap = std::find_if(Device->RealOut.RemixMap.cbegin(),
|
|
Device->RealOut.RemixMap.cend(), match_channel);
|
|
if(remap != Device->RealOut.RemixMap.cend())
|
|
{
|
|
for(const auto &target : remap->targets)
|
|
{
|
|
idx = Device->channelIdxByName(target.channel);
|
|
if(idx != InvalidChannelIndex)
|
|
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base *
|
|
target.mix;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Auxiliary sends still use normal channel panning since they mix to
|
|
* B-Format, which can't channel-match.
|
|
*/
|
|
for(size_t c{0};c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel == LFE)
|
|
continue;
|
|
|
|
const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f);
|
|
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[c].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
else if(Device->mRenderMode == RenderMode::Hrtf)
|
|
{
|
|
/* Full HRTF rendering. Skip the virtual channels and render to the
|
|
* real outputs.
|
|
*/
|
|
voice->mDirect.Buffer = Device->RealOut.Buffer;
|
|
|
|
if(Distance > std::numeric_limits<float>::epsilon())
|
|
{
|
|
const float src_ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
|
|
const float src_az{std::atan2(xpos, -zpos)};
|
|
|
|
if(voice->mFmtChannels == FmtMono)
|
|
{
|
|
Device->mHrtf->getCoeffs(src_ev, src_az, Distance*NfcScale, Spread,
|
|
voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
|
|
voice->mChans[0].mDryParams.Hrtf.Target.Delay);
|
|
voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain.Base;
|
|
|
|
const auto coeffs = CalcAngleCoeffs(src_az, src_ev, Spread);
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[0].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
else for(size_t c{0};c < num_channels;c++)
|
|
{
|
|
using namespace al::numbers;
|
|
|
|
/* Skip LFE */
|
|
if(chans[c].channel == LFE) continue;
|
|
|
|
/* Warp the channel position toward the source position as the
|
|
* source spread decreases. With no spread, all channels are at
|
|
* the source position, at full spread (pi*2), each channel is
|
|
* left unchanged.
|
|
*/
|
|
const float ev{lerpf(src_ev, chans[c].elevation, inv_pi_v<float>/2.0f * Spread)};
|
|
|
|
float az{chans[c].angle - src_az};
|
|
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
|
|
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
|
|
|
|
az *= inv_pi_v<float>/2.0f * Spread;
|
|
|
|
az += src_az;
|
|
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
|
|
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
|
|
|
|
Device->mHrtf->getCoeffs(ev, az, Distance*NfcScale, 0.0f,
|
|
voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
|
|
voice->mChans[c].mDryParams.Hrtf.Target.Delay);
|
|
voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;
|
|
|
|
const auto coeffs = CalcAngleCoeffs(az, ev, 0.0f);
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[c].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* With no distance, spread is only meaningful for mono sources
|
|
* where it can be 0 or full (non-mono sources are always full
|
|
* spread here).
|
|
*/
|
|
const float spread{Spread * (voice->mFmtChannels == FmtMono)};
|
|
|
|
/* Local sources on HRTF play with each channel panned to its
|
|
* relative location around the listener, providing "virtual
|
|
* speaker" responses.
|
|
*/
|
|
for(size_t c{0};c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel == LFE)
|
|
continue;
|
|
|
|
/* Get the HRIR coefficients and delays for this channel
|
|
* position.
|
|
*/
|
|
Device->mHrtf->getCoeffs(chans[c].elevation, chans[c].angle,
|
|
std::numeric_limits<float>::infinity(), spread,
|
|
voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
|
|
voice->mChans[c].mDryParams.Hrtf.Target.Delay);
|
|
voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;
|
|
|
|
/* Normal panning for auxiliary sends. */
|
|
const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, spread);
|
|
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[c].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
|
|
voice->mFlags.set(VoiceHasHrtf);
|
|
}
|
|
else
|
|
{
|
|
/* Non-HRTF rendering. Use normal panning to the output. */
|
|
|
|
if(Distance > std::numeric_limits<float>::epsilon())
|
|
{
|
|
/* Calculate NFC filter coefficient if needed. */
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* Clamp the distance for really close sources, to prevent
|
|
* excessive bass.
|
|
*/
|
|
const float mdist{maxf(Distance*NfcScale, Device->AvgSpeakerDist/4.0f)};
|
|
const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
|
|
|
|
/* Adjust NFC filters. */
|
|
for(size_t c{0};c < num_channels;c++)
|
|
voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
|
|
|
|
voice->mFlags.set(VoiceHasNfc);
|
|
}
|
|
|
|
if(voice->mFmtChannels == FmtMono)
|
|
{
|
|
auto calc_coeffs = [xpos,ypos,zpos,Spread](RenderMode mode)
|
|
{
|
|
if(mode != RenderMode::Pairwise)
|
|
return CalcDirectionCoeffs({xpos, ypos, zpos}, Spread);
|
|
const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
|
|
const float az{std::atan2(xpos, -zpos)};
|
|
return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread);
|
|
};
|
|
const auto coeffs = calc_coeffs(Device->mRenderMode);
|
|
|
|
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
|
|
voice->mChans[0].mDryParams.Gains.Target);
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[0].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
using namespace al::numbers;
|
|
|
|
const float src_ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
|
|
const float src_az{std::atan2(xpos, -zpos)};
|
|
|
|
for(size_t c{0};c < num_channels;c++)
|
|
{
|
|
/* Special-case LFE */
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
|
|
{
|
|
const uint idx{Device->channelIdxByName(chans[c].channel)};
|
|
if(idx != InvalidChannelIndex)
|
|
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Warp the channel position toward the source position as
|
|
* the spread decreases. With no spread, all channels are
|
|
* at the source position, at full spread (pi*2), each
|
|
* channel position is left unchanged.
|
|
*/
|
|
const float ev{lerpf(src_ev, chans[c].elevation,
|
|
inv_pi_v<float>/2.0f * Spread)};
|
|
|
|
float az{chans[c].angle - src_az};
|
|
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
|
|
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
|
|
|
|
az *= inv_pi_v<float>/2.0f * Spread;
|
|
|
|
az += src_az;
|
|
if(az < -pi_v<float>) az += pi_v<float>*2.0f;
|
|
else if(az > pi_v<float>) az -= pi_v<float>*2.0f;
|
|
|
|
if(Device->mRenderMode == RenderMode::Pairwise)
|
|
az = ScaleAzimuthFront(az, 3.0f);
|
|
const auto coeffs = CalcAngleCoeffs(az, ev, 0.0f);
|
|
|
|
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
|
|
voice->mChans[c].mDryParams.Gains.Target);
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[c].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* If the source distance is 0, simulate a plane-wave by using
|
|
* infinite distance, which results in a w0 of 0.
|
|
*/
|
|
static constexpr float w0{0.0f};
|
|
for(size_t c{0};c < num_channels;c++)
|
|
voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
|
|
|
|
voice->mFlags.set(VoiceHasNfc);
|
|
}
|
|
|
|
/* With no distance, spread is only meaningful for mono sources
|
|
* where it can be 0 or full (non-mono sources are always full
|
|
* spread here).
|
|
*/
|
|
const float spread{Spread * (voice->mFmtChannels == FmtMono)};
|
|
for(size_t c{0};c < num_channels;c++)
|
|
{
|
|
/* Special-case LFE */
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
|
|
{
|
|
const uint idx{Device->channelIdxByName(chans[c].channel)};
|
|
if(idx != InvalidChannelIndex)
|
|
voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const auto coeffs = CalcAngleCoeffs((Device->mRenderMode == RenderMode::Pairwise)
|
|
? ScaleAzimuthFront(chans[c].angle, 3.0f) : chans[c].angle,
|
|
chans[c].elevation, spread);
|
|
|
|
ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
|
|
voice->mChans[c].mDryParams.Gains.Target);
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
if(const EffectSlot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
|
|
voice->mChans[c].mWetParams[i].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
const float hfNorm{props->Direct.HFReference / Frequency};
|
|
const float lfNorm{props->Direct.LFReference / Frequency};
|
|
|
|
voice->mDirect.FilterType = AF_None;
|
|
if(DryGain.HF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
|
|
if(DryGain.LF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
|
|
|
|
auto &lowpass = voice->mChans[0].mDryParams.LowPass;
|
|
auto &highpass = voice->mChans[0].mDryParams.HighPass;
|
|
lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, DryGain.HF, 1.0f);
|
|
highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, DryGain.LF, 1.0f);
|
|
for(size_t c{1};c < num_channels;c++)
|
|
{
|
|
voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
|
|
voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
|
|
}
|
|
}
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
const float hfNorm{props->Send[i].HFReference / Frequency};
|
|
const float lfNorm{props->Send[i].LFReference / Frequency};
|
|
|
|
voice->mSend[i].FilterType = AF_None;
|
|
if(WetGain[i].HF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
|
|
if(WetGain[i].LF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
|
|
|
|
auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
|
|
auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
|
|
lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, WetGain[i].HF, 1.0f);
|
|
highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, WetGain[i].LF, 1.0f);
|
|
for(size_t c{1};c < num_channels;c++)
|
|
{
|
|
voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
|
|
voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CalcNonAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
|
|
{
|
|
DeviceBase *Device{context->mDevice};
|
|
EffectSlot *SendSlots[MAX_SENDS];
|
|
|
|
voice->mDirect.Buffer = Device->Dry.Buffer;
|
|
for(uint i{0};i < Device->NumAuxSends;i++)
|
|
{
|
|
SendSlots[i] = props->Send[i].Slot;
|
|
if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
|
|
{
|
|
SendSlots[i] = nullptr;
|
|
voice->mSend[i].Buffer = {};
|
|
}
|
|
else
|
|
voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
|
|
}
|
|
|
|
/* Calculate the stepping value */
|
|
const auto Pitch = static_cast<float>(voice->mFrequency) /
|
|
static_cast<float>(Device->Frequency) * props->Pitch;
|
|
if(Pitch > float{MaxPitch})
|
|
voice->mStep = MaxPitch<<MixerFracBits;
|
|
else
|
|
voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
|
|
voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
|
|
|
|
/* Calculate gains */
|
|
GainTriplet DryGain;
|
|
DryGain.Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) * props->Direct.Gain *
|
|
context->mParams.Gain, GainMixMax);
|
|
DryGain.HF = props->Direct.GainHF;
|
|
DryGain.LF = props->Direct.GainLF;
|
|
GainTriplet WetGain[MAX_SENDS];
|
|
for(uint i{0};i < Device->NumAuxSends;i++)
|
|
{
|
|
WetGain[i].Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) *
|
|
props->Send[i].Gain * context->mParams.Gain, GainMixMax);
|
|
WetGain[i].HF = props->Send[i].GainHF;
|
|
WetGain[i].LF = props->Send[i].GainLF;
|
|
}
|
|
|
|
CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, WetGain, SendSlots, props,
|
|
context->mParams, Device);
|
|
}
|
|
|
|
void CalcAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
|
|
{
|
|
DeviceBase *Device{context->mDevice};
|
|
const uint NumSends{Device->NumAuxSends};
|
|
|
|
/* Set mixing buffers and get send parameters. */
|
|
voice->mDirect.Buffer = Device->Dry.Buffer;
|
|
EffectSlot *SendSlots[MAX_SENDS];
|
|
uint UseDryAttnForRoom{0};
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
SendSlots[i] = props->Send[i].Slot;
|
|
if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
|
|
SendSlots[i] = nullptr;
|
|
else if(!SendSlots[i]->AuxSendAuto)
|
|
{
|
|
/* If the slot's auxiliary send auto is off, the data sent to the
|
|
* effect slot is the same as the dry path, sans filter effects.
|
|
*/
|
|
UseDryAttnForRoom |= 1u<<i;
|
|
}
|
|
|
|
if(!SendSlots[i])
|
|
voice->mSend[i].Buffer = {};
|
|
else
|
|
voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
|
|
}
|
|
|
|
/* Transform source to listener space (convert to head relative) */
|
|
alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
|
|
alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
|
|
alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
|
|
if(!props->HeadRelative)
|
|
{
|
|
/* Transform source vectors */
|
|
Position = context->mParams.Matrix * (Position - context->mParams.Position);
|
|
Velocity = context->mParams.Matrix * Velocity;
|
|
Direction = context->mParams.Matrix * Direction;
|
|
}
|
|
else
|
|
{
|
|
/* Offset the source velocity to be relative of the listener velocity */
|
|
Velocity += context->mParams.Velocity;
|
|
}
|
|
|
|
const bool directional{Direction.normalize() > 0.0f};
|
|
alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
|
|
const float Distance{ToSource.normalize()};
|
|
|
|
/* Calculate distance attenuation */
|
|
float ClampedDist{Distance};
|
|
float DryGainBase{props->Gain};
|
|
float WetGainBase{props->Gain};
|
|
|
|
switch(context->mParams.SourceDistanceModel ? props->mDistanceModel
|
|
: context->mParams.mDistanceModel)
|
|
{
|
|
case DistanceModel::InverseClamped:
|
|
if(props->MaxDistance < props->RefDistance) break;
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
/*fall-through*/
|
|
case DistanceModel::Inverse:
|
|
if(props->RefDistance > 0.0f)
|
|
{
|
|
float dist{lerpf(props->RefDistance, ClampedDist, props->RolloffFactor)};
|
|
if(dist > 0.0f) DryGainBase *= props->RefDistance / dist;
|
|
|
|
dist = lerpf(props->RefDistance, ClampedDist, props->RoomRolloffFactor);
|
|
if(dist > 0.0f) WetGainBase *= props->RefDistance / dist;
|
|
}
|
|
break;
|
|
|
|
case DistanceModel::LinearClamped:
|
|
if(props->MaxDistance < props->RefDistance) break;
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
/*fall-through*/
|
|
case DistanceModel::Linear:
|
|
if(props->MaxDistance != props->RefDistance)
|
|
{
|
|
float attn{(ClampedDist-props->RefDistance) /
|
|
(props->MaxDistance-props->RefDistance) * props->RolloffFactor};
|
|
DryGainBase *= maxf(1.0f - attn, 0.0f);
|
|
|
|
attn = (ClampedDist-props->RefDistance) /
|
|
(props->MaxDistance-props->RefDistance) * props->RoomRolloffFactor;
|
|
WetGainBase *= maxf(1.0f - attn, 0.0f);
|
|
}
|
|
break;
|
|
|
|
case DistanceModel::ExponentClamped:
|
|
if(props->MaxDistance < props->RefDistance) break;
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
/*fall-through*/
|
|
case DistanceModel::Exponent:
|
|
if(ClampedDist > 0.0f && props->RefDistance > 0.0f)
|
|
{
|
|
const float dist_ratio{ClampedDist/props->RefDistance};
|
|
DryGainBase *= std::pow(dist_ratio, -props->RolloffFactor);
|
|
WetGainBase *= std::pow(dist_ratio, -props->RoomRolloffFactor);
|
|
}
|
|
break;
|
|
|
|
case DistanceModel::Disable:
|
|
break;
|
|
}
|
|
|
|
/* Calculate directional soundcones */
|
|
float ConeHF{1.0f}, WetConeHF{1.0f};
|
|
if(directional && props->InnerAngle < 360.0f)
|
|
{
|
|
static constexpr float Rad2Deg{static_cast<float>(180.0 / al::numbers::pi)};
|
|
const float Angle{Rad2Deg*2.0f * std::acos(-Direction.dot_product(ToSource)) * ConeScale};
|
|
|
|
float ConeGain{1.0f};
|
|
if(Angle >= props->OuterAngle)
|
|
{
|
|
ConeGain = props->OuterGain;
|
|
ConeHF = lerpf(1.0f, props->OuterGainHF, props->DryGainHFAuto);
|
|
}
|
|
else if(Angle >= props->InnerAngle)
|
|
{
|
|
const float scale{(Angle-props->InnerAngle) / (props->OuterAngle-props->InnerAngle)};
|
|
ConeGain = lerpf(1.0f, props->OuterGain, scale);
|
|
ConeHF = lerpf(1.0f, props->OuterGainHF, scale * props->DryGainHFAuto);
|
|
}
|
|
|
|
DryGainBase *= ConeGain;
|
|
WetGainBase *= lerpf(1.0f, ConeGain, props->WetGainAuto);
|
|
|
|
WetConeHF = lerpf(1.0f, ConeHF, props->WetGainHFAuto);
|
|
}
|
|
|
|
/* Apply gain and frequency filters */
|
|
DryGainBase = clampf(DryGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
|
|
WetGainBase = clampf(WetGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
|
|
|
|
GainTriplet DryGain{};
|
|
DryGain.Base = minf(DryGainBase * props->Direct.Gain, GainMixMax);
|
|
DryGain.HF = ConeHF * props->Direct.GainHF;
|
|
DryGain.LF = props->Direct.GainLF;
|
|
GainTriplet WetGain[MAX_SENDS]{};
|
|
for(uint i{0};i < NumSends;i++)
|
|
{
|
|
/* If this effect slot's Auxiliary Send Auto is off, then use the dry
|
|
* path distance and cone attenuation, otherwise use the wet (room)
|
|
* path distance and cone attenuation. The send filter is used instead
|
|
* of the direct filter, regardless.
|
|
*/
|
|
const bool use_room{!(UseDryAttnForRoom&(1u<<i))};
|
|
const float gain{use_room ? WetGainBase : DryGainBase};
|
|
WetGain[i].Base = minf(gain * props->Send[i].Gain, GainMixMax);
|
|
WetGain[i].HF = (use_room ? WetConeHF : ConeHF) * props->Send[i].GainHF;
|
|
WetGain[i].LF = props->Send[i].GainLF;
|
|
}
|
|
|
|
/* Distance-based air absorption and initial send decay. */
|
|
if(Distance > props->RefDistance) [[likely]]
|
|
{
|
|
const float distance_base{(Distance-props->RefDistance) * props->RolloffFactor};
|
|
const float distance_meters{distance_base * context->mParams.MetersPerUnit};
|
|
const float dryabsorb{distance_meters * props->AirAbsorptionFactor};
|
|
if(dryabsorb > std::numeric_limits<float>::epsilon())
|
|
DryGain.HF *= std::pow(context->mParams.AirAbsorptionGainHF, dryabsorb);
|
|
|
|
/* If the source's Auxiliary Send Filter Gain Auto is off, no extra
|
|
* adjustment is applied to the send gains.
|
|
*/
|
|
for(uint i{props->WetGainAuto ? 0u : NumSends};i < NumSends;++i)
|
|
{
|
|
if(!SendSlots[i] || !(SendSlots[i]->DecayTime > 0.0f))
|
|
continue;
|
|
|
|
auto calc_attenuation = [](float distance, float refdist, float rolloff) noexcept
|
|
{
|
|
const float dist{lerpf(refdist, distance, rolloff)};
|
|
if(dist > refdist) return refdist / dist;
|
|
return 1.0f;
|
|
};
|
|
|
|
/* The reverb effect's room rolloff factor always applies to an
|
|
* inverse distance rolloff model.
|
|
*/
|
|
WetGain[i].Base *= calc_attenuation(Distance, props->RefDistance,
|
|
SendSlots[i]->RoomRolloff);
|
|
|
|
if(distance_meters > std::numeric_limits<float>::epsilon())
|
|
WetGain[i].HF *= std::pow(SendSlots[i]->AirAbsorptionGainHF, distance_meters);
|
|
|
|
/* If this effect slot's Auxiliary Send Auto is off, don't apply
|
|
* the automatic initial reverb decay (should the reverb's room
|
|
* rolloff still apply?).
|
|
*/
|
|
if(!SendSlots[i]->AuxSendAuto)
|
|
continue;
|
|
|
|
GainTriplet DecayDistance;
|
|
/* Calculate the distances to where this effect's decay reaches
|
|
* -60dB.
|
|
*/
|
|
DecayDistance.Base = SendSlots[i]->DecayTime * SpeedOfSoundMetersPerSec;
|
|
DecayDistance.LF = DecayDistance.Base * SendSlots[i]->DecayLFRatio;
|
|
DecayDistance.HF = DecayDistance.Base * SendSlots[i]->DecayHFRatio;
|
|
if(SendSlots[i]->DecayHFLimit)
|
|
{
|
|
const float airAbsorption{SendSlots[i]->AirAbsorptionGainHF};
|
|
if(airAbsorption < 1.0f)
|
|
{
|
|
/* Calculate the distance to where this effect's air
|
|
* absorption reaches -60dB, and limit the effect's HF
|
|
* decay distance (so it doesn't take any longer to decay
|
|
* than the air would allow).
|
|
*/
|
|
static constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
|
|
const float absorb_dist{log10_decaygain / std::log10(airAbsorption)};
|
|
DecayDistance.HF = minf(absorb_dist, DecayDistance.HF);
|
|
}
|
|
}
|
|
|
|
const float baseAttn = calc_attenuation(Distance, props->RefDistance,
|
|
props->RolloffFactor);
|
|
|
|
/* Apply a decay-time transformation to the wet path, based on the
|
|
* source distance. The initial decay of the reverb effect is
|
|
* calculated and applied to the wet path.
|
|
*/
|
|
const float fact{distance_base / DecayDistance.Base};
|
|
const float gain{std::pow(ReverbDecayGain, fact)*(1.0f-baseAttn) + baseAttn};
|
|
WetGain[i].Base *= gain;
|
|
|
|
if(gain > 0.0f)
|
|
{
|
|
const float hffact{distance_base / DecayDistance.HF};
|
|
const float gainhf{std::pow(ReverbDecayGain, hffact)*(1.0f-baseAttn) + baseAttn};
|
|
WetGain[i].HF *= minf(gainhf/gain, 1.0f);
|
|
const float lffact{distance_base / DecayDistance.LF};
|
|
const float gainlf{std::pow(ReverbDecayGain, lffact)*(1.0f-baseAttn) + baseAttn};
|
|
WetGain[i].LF *= minf(gainlf/gain, 1.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Initial source pitch */
|
|
float Pitch{props->Pitch};
|
|
|
|
/* Calculate velocity-based doppler effect */
|
|
float DopplerFactor{props->DopplerFactor * context->mParams.DopplerFactor};
|
|
if(DopplerFactor > 0.0f)
|
|
{
|
|
const alu::Vector &lvelocity = context->mParams.Velocity;
|
|
float vss{Velocity.dot_product(ToSource) * -DopplerFactor};
|
|
float vls{lvelocity.dot_product(ToSource) * -DopplerFactor};
|
|
|
|
const float SpeedOfSound{context->mParams.SpeedOfSound};
|
|
if(!(vls < SpeedOfSound))
|
|
{
|
|
/* Listener moving away from the source at the speed of sound.
|
|
* Sound waves can't catch it.
|
|
*/
|
|
Pitch = 0.0f;
|
|
}
|
|
else if(!(vss < SpeedOfSound))
|
|
{
|
|
/* Source moving toward the listener at the speed of sound. Sound
|
|
* waves bunch up to extreme frequencies.
|
|
*/
|
|
Pitch = std::numeric_limits<float>::infinity();
|
|
}
|
|
else
|
|
{
|
|
/* Source and listener movement is nominal. Calculate the proper
|
|
* doppler shift.
|
|
*/
|
|
Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
|
|
}
|
|
}
|
|
|
|
/* Adjust pitch based on the buffer and output frequencies, and calculate
|
|
* fixed-point stepping value.
|
|
*/
|
|
Pitch *= static_cast<float>(voice->mFrequency) / static_cast<float>(Device->Frequency);
|
|
if(Pitch > float{MaxPitch})
|
|
voice->mStep = MaxPitch<<MixerFracBits;
|
|
else
|
|
voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
|
|
voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
|
|
|
|
float spread{0.0f};
|
|
if(props->Radius > Distance)
|
|
spread = al::numbers::pi_v<float>*2.0f - Distance/props->Radius*al::numbers::pi_v<float>;
|
|
else if(Distance > 0.0f)
|
|
spread = std::asin(props->Radius/Distance) * 2.0f;
|
|
|
|
CalcPanningAndFilters(voice, ToSource[0]*XScale, ToSource[1]*YScale, ToSource[2]*ZScale,
|
|
Distance, spread, DryGain, WetGain, SendSlots, props, context->mParams, Device);
|
|
}
|
|
|
|
void CalcSourceParams(Voice *voice, ContextBase *context, bool force)
|
|
{
|
|
VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
|
|
if(!props && !force) return;
|
|
|
|
if(props)
|
|
{
|
|
voice->mProps = *props;
|
|
|
|
AtomicReplaceHead(context->mFreeVoiceProps, props);
|
|
}
|
|
|
|
if((voice->mProps.DirectChannels != DirectMode::Off && voice->mFmtChannels != FmtMono
|
|
&& !IsAmbisonic(voice->mFmtChannels))
|
|
|| voice->mProps.mSpatializeMode == SpatializeMode::Off
|
|
|| (voice->mProps.mSpatializeMode==SpatializeMode::Auto && voice->mFmtChannels != FmtMono))
|
|
CalcNonAttnSourceParams(voice, &voice->mProps, context);
|
|
else
|
|
CalcAttnSourceParams(voice, &voice->mProps, context);
|
|
}
|
|
|
|
|
|
void SendSourceStateEvent(ContextBase *context, uint id, VChangeState state)
|
|
{
|
|
RingBuffer *ring{context->mAsyncEvents.get()};
|
|
auto evt_vec = ring->getWriteVector();
|
|
if(evt_vec.first.len < 1) return;
|
|
|
|
AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
|
|
AsyncEvent::SourceStateChange)};
|
|
evt->u.srcstate.id = id;
|
|
switch(state)
|
|
{
|
|
case VChangeState::Reset:
|
|
evt->u.srcstate.state = AsyncEvent::SrcState::Reset;
|
|
break;
|
|
case VChangeState::Stop:
|
|
evt->u.srcstate.state = AsyncEvent::SrcState::Stop;
|
|
break;
|
|
case VChangeState::Play:
|
|
evt->u.srcstate.state = AsyncEvent::SrcState::Play;
|
|
break;
|
|
case VChangeState::Pause:
|
|
evt->u.srcstate.state = AsyncEvent::SrcState::Pause;
|
|
break;
|
|
/* Shouldn't happen. */
|
|
case VChangeState::Restart:
|
|
al::unreachable();
|
|
}
|
|
|
|
ring->writeAdvance(1);
|
|
}
|
|
|
|
void ProcessVoiceChanges(ContextBase *ctx)
|
|
{
|
|
VoiceChange *cur{ctx->mCurrentVoiceChange.load(std::memory_order_acquire)};
|
|
VoiceChange *next{cur->mNext.load(std::memory_order_acquire)};
|
|
if(!next) return;
|
|
|
|
const auto enabledevt = ctx->mEnabledEvts.load(std::memory_order_acquire);
|
|
do {
|
|
cur = next;
|
|
|
|
bool sendevt{false};
|
|
if(cur->mState == VChangeState::Reset || cur->mState == VChangeState::Stop)
|
|
{
|
|
if(Voice *voice{cur->mVoice})
|
|
{
|
|
voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
|
|
voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
|
|
/* A source ID indicates the voice was playing or paused, which
|
|
* gets a reset/stop event.
|
|
*/
|
|
sendevt = voice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u;
|
|
Voice::State oldvstate{Voice::Playing};
|
|
voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
|
|
std::memory_order_relaxed, std::memory_order_acquire);
|
|
voice->mPendingChange.store(false, std::memory_order_release);
|
|
}
|
|
/* Reset state change events are always sent, even if the voice is
|
|
* already stopped or even if there is no voice.
|
|
*/
|
|
sendevt |= (cur->mState == VChangeState::Reset);
|
|
}
|
|
else if(cur->mState == VChangeState::Pause)
|
|
{
|
|
Voice *voice{cur->mVoice};
|
|
Voice::State oldvstate{Voice::Playing};
|
|
sendevt = voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
|
|
std::memory_order_release, std::memory_order_acquire);
|
|
}
|
|
else if(cur->mState == VChangeState::Play)
|
|
{
|
|
/* NOTE: When playing a voice, sending a source state change event
|
|
* depends if there's an old voice to stop and if that stop is
|
|
* successful. If there is no old voice, a playing event is always
|
|
* sent. If there is an old voice, an event is sent only if the
|
|
* voice is already stopped.
|
|
*/
|
|
if(Voice *oldvoice{cur->mOldVoice})
|
|
{
|
|
oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
|
|
oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
|
|
oldvoice->mSourceID.store(0u, std::memory_order_relaxed);
|
|
Voice::State oldvstate{Voice::Playing};
|
|
sendevt = !oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
|
|
std::memory_order_relaxed, std::memory_order_acquire);
|
|
oldvoice->mPendingChange.store(false, std::memory_order_release);
|
|
}
|
|
else
|
|
sendevt = true;
|
|
|
|
Voice *voice{cur->mVoice};
|
|
voice->mPlayState.store(Voice::Playing, std::memory_order_release);
|
|
}
|
|
else if(cur->mState == VChangeState::Restart)
|
|
{
|
|
/* Restarting a voice never sends a source change event. */
|
|
Voice *oldvoice{cur->mOldVoice};
|
|
oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
|
|
oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
|
|
/* If there's no sourceID, the old voice finished so don't start
|
|
* the new one at its new offset.
|
|
*/
|
|
if(oldvoice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u)
|
|
{
|
|
/* Otherwise, set the voice to stopping if it's not already (it
|
|
* might already be, if paused), and play the new voice as
|
|
* appropriate.
|
|
*/
|
|
Voice::State oldvstate{Voice::Playing};
|
|
oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
|
|
std::memory_order_relaxed, std::memory_order_acquire);
|
|
|
|
Voice *voice{cur->mVoice};
|
|
voice->mPlayState.store((oldvstate == Voice::Playing) ? Voice::Playing
|
|
: Voice::Stopped, std::memory_order_release);
|
|
}
|
|
oldvoice->mPendingChange.store(false, std::memory_order_release);
|
|
}
|
|
if(sendevt && enabledevt.test(AsyncEvent::SourceStateChange))
|
|
SendSourceStateEvent(ctx, cur->mSourceID, cur->mState);
|
|
|
|
next = cur->mNext.load(std::memory_order_acquire);
|
|
} while(next);
|
|
ctx->mCurrentVoiceChange.store(cur, std::memory_order_release);
|
|
}
|
|
|
|
void ProcessParamUpdates(ContextBase *ctx, const EffectSlotArray &slots,
|
|
const al::span<Voice*> voices)
|
|
{
|
|
ProcessVoiceChanges(ctx);
|
|
|
|
IncrementRef(ctx->mUpdateCount);
|
|
if(!ctx->mHoldUpdates.load(std::memory_order_acquire)) [[likely]]
|
|
{
|
|
bool force{CalcContextParams(ctx)};
|
|
auto sorted_slots = const_cast<EffectSlot**>(slots.data() + slots.size());
|
|
for(EffectSlot *slot : slots)
|
|
force |= CalcEffectSlotParams(slot, sorted_slots, ctx);
|
|
|
|
for(Voice *voice : voices)
|
|
{
|
|
/* Only update voices that have a source. */
|
|
if(voice->mSourceID.load(std::memory_order_relaxed) != 0)
|
|
CalcSourceParams(voice, ctx, force);
|
|
}
|
|
}
|
|
IncrementRef(ctx->mUpdateCount);
|
|
}
|
|
|
|
void ProcessContexts(DeviceBase *device, const uint SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
const nanoseconds curtime{device->ClockBase +
|
|
nanoseconds{seconds{device->SamplesDone}}/device->Frequency};
|
|
|
|
for(ContextBase *ctx : *device->mContexts.load(std::memory_order_acquire))
|
|
{
|
|
const EffectSlotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
|
|
const al::span<Voice*> voices{ctx->getVoicesSpanAcquired()};
|
|
|
|
/* Process pending propery updates for objects on the context. */
|
|
ProcessParamUpdates(ctx, auxslots, voices);
|
|
|
|
/* Clear auxiliary effect slot mixing buffers. */
|
|
for(EffectSlot *slot : auxslots)
|
|
{
|
|
for(auto &buffer : slot->Wet.Buffer)
|
|
buffer.fill(0.0f);
|
|
}
|
|
|
|
/* Process voices that have a playing source. */
|
|
for(Voice *voice : voices)
|
|
{
|
|
const Voice::State vstate{voice->mPlayState.load(std::memory_order_acquire)};
|
|
if(vstate != Voice::Stopped && vstate != Voice::Pending)
|
|
voice->mix(vstate, ctx, curtime, SamplesToDo);
|
|
}
|
|
|
|
/* Process effects. */
|
|
if(const size_t num_slots{auxslots.size()})
|
|
{
|
|
auto slots = auxslots.data();
|
|
auto slots_end = slots + num_slots;
|
|
|
|
/* Sort the slots into extra storage, so that effect slots come
|
|
* before their effect slot target (or their targets' target).
|
|
*/
|
|
const al::span<EffectSlot*> sorted_slots{const_cast<EffectSlot**>(slots_end),
|
|
num_slots};
|
|
/* Skip sorting if it has already been done. */
|
|
if(!sorted_slots[0])
|
|
{
|
|
/* First, copy the slots to the sorted list, then partition the
|
|
* sorted list so that all slots without a target slot go to
|
|
* the end.
|
|
*/
|
|
std::copy(slots, slots_end, sorted_slots.begin());
|
|
auto split_point = std::partition(sorted_slots.begin(), sorted_slots.end(),
|
|
[](const EffectSlot *slot) noexcept -> bool
|
|
{ return slot->Target != nullptr; });
|
|
/* There must be at least one slot without a slot target. */
|
|
assert(split_point != sorted_slots.end());
|
|
|
|
/* Simple case: no more than 1 slot has a target slot. Either
|
|
* all slots go right to the output, or the remaining one must
|
|
* target an already-partitioned slot.
|
|
*/
|
|
if(split_point - sorted_slots.begin() > 1)
|
|
{
|
|
/* At least two slots target other slots. Starting from the
|
|
* back of the sorted list, continue partitioning the front
|
|
* of the list given each target until all targets are
|
|
* accounted for. This ensures all slots without a target
|
|
* go last, all slots directly targeting those last slots
|
|
* go second-to-last, all slots directly targeting those
|
|
* second-last slots go third-to-last, etc.
|
|
*/
|
|
auto next_target = sorted_slots.end();
|
|
do {
|
|
/* This shouldn't happen, but if there's unsorted slots
|
|
* left that don't target any sorted slots, they can't
|
|
* contribute to the output, so leave them.
|
|
*/
|
|
if(next_target == split_point) [[unlikely]]
|
|
break;
|
|
|
|
--next_target;
|
|
split_point = std::partition(sorted_slots.begin(), split_point,
|
|
[next_target](const EffectSlot *slot) noexcept -> bool
|
|
{ return slot->Target != *next_target; });
|
|
} while(split_point - sorted_slots.begin() > 1);
|
|
}
|
|
}
|
|
|
|
for(const EffectSlot *slot : sorted_slots)
|
|
{
|
|
EffectState *state{slot->mEffectState.get()};
|
|
state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
|
|
}
|
|
}
|
|
|
|
/* Signal the event handler if there are any events to read. */
|
|
RingBuffer *ring{ctx->mAsyncEvents.get()};
|
|
if(ring->readSpace() > 0)
|
|
ctx->mEventSem.post();
|
|
}
|
|
}
|
|
|
|
|
|
void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const size_t SamplesToDo,
|
|
const DistanceComp::ChanData *distcomp)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
for(auto &chanbuffer : Samples)
|
|
{
|
|
const float gain{distcomp->Gain};
|
|
const size_t base{distcomp->Length};
|
|
float *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
|
|
++distcomp;
|
|
|
|
if(base < 1)
|
|
continue;
|
|
|
|
float *inout{al::assume_aligned<16>(chanbuffer.data())};
|
|
auto inout_end = inout + SamplesToDo;
|
|
if(SamplesToDo >= base) [[likely]]
|
|
{
|
|
auto delay_end = std::rotate(inout, inout_end - base, inout_end);
|
|
std::swap_ranges(inout, delay_end, distbuf);
|
|
}
|
|
else
|
|
{
|
|
auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
|
|
std::rotate(distbuf, delay_start, distbuf + base);
|
|
}
|
|
std::transform(inout, inout_end, inout, [gain](auto a){ return a * gain; });
|
|
}
|
|
}
|
|
|
|
void ApplyDither(const al::span<FloatBufferLine> Samples, uint *dither_seed,
|
|
const float quant_scale, const size_t SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
/* Dithering. Generate whitenoise (uniform distribution of random values
|
|
* between -1 and +1) and add it to the sample values, after scaling up to
|
|
* the desired quantization depth amd before rounding.
|
|
*/
|
|
const float invscale{1.0f / quant_scale};
|
|
uint seed{*dither_seed};
|
|
auto dither_sample = [&seed,invscale,quant_scale](const float sample) noexcept -> float
|
|
{
|
|
float val{sample * quant_scale};
|
|
uint rng0{dither_rng(&seed)};
|
|
uint rng1{dither_rng(&seed)};
|
|
val += static_cast<float>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
|
|
return fast_roundf(val) * invscale;
|
|
};
|
|
for(FloatBufferLine &inout : Samples)
|
|
std::transform(inout.begin(), inout.begin()+SamplesToDo, inout.begin(), dither_sample);
|
|
*dither_seed = seed;
|
|
}
|
|
|
|
|
|
/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
|
|
* chokes on that given the inline specializations.
|
|
*/
|
|
template<typename T>
|
|
inline T SampleConv(float) noexcept;
|
|
|
|
template<> inline float SampleConv(float val) noexcept
|
|
{ return val; }
|
|
template<> inline int32_t SampleConv(float val) noexcept
|
|
{
|
|
/* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
|
|
* This means a normalized float has at most 25 bits of signed precision.
|
|
* When scaling and clamping for a signed 32-bit integer, these following
|
|
* values are the best a float can give.
|
|
*/
|
|
return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
|
|
}
|
|
template<> inline int16_t SampleConv(float val) noexcept
|
|
{ return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
|
|
template<> inline int8_t SampleConv(float val) noexcept
|
|
{ return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }
|
|
|
|
/* Define unsigned output variations. */
|
|
template<> inline uint32_t SampleConv(float val) noexcept
|
|
{ return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; }
|
|
template<> inline uint16_t SampleConv(float val) noexcept
|
|
{ return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); }
|
|
template<> inline uint8_t SampleConv(float val) noexcept
|
|
{ return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); }
|
|
|
|
template<DevFmtType T>
|
|
void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset,
|
|
const size_t SamplesToDo, const size_t FrameStep)
|
|
{
|
|
ASSUME(FrameStep > 0);
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
DevFmtType_t<T> *outbase{static_cast<DevFmtType_t<T>*>(OutBuffer) + Offset*FrameStep};
|
|
size_t c{0};
|
|
for(const FloatBufferLine &inbuf : InBuffer)
|
|
{
|
|
DevFmtType_t<T> *out{outbase++};
|
|
auto conv_sample = [FrameStep,&out](const float s) noexcept -> void
|
|
{
|
|
*out = SampleConv<DevFmtType_t<T>>(s);
|
|
out += FrameStep;
|
|
};
|
|
std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
|
|
++c;
|
|
}
|
|
if(const size_t extra{FrameStep - c})
|
|
{
|
|
const auto silence = SampleConv<DevFmtType_t<T>>(0.0f);
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
{
|
|
std::fill_n(outbase, extra, silence);
|
|
outbase += FrameStep;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
uint DeviceBase::renderSamples(const uint numSamples)
|
|
{
|
|
const uint samplesToDo{minu(numSamples, BufferLineSize)};
|
|
|
|
/* Clear main mixing buffers. */
|
|
for(FloatBufferLine &buffer : MixBuffer)
|
|
buffer.fill(0.0f);
|
|
|
|
/* Increment the mix count at the start (lsb should now be 1). */
|
|
IncrementRef(MixCount);
|
|
|
|
/* Process and mix each context's sources and effects. */
|
|
ProcessContexts(this, samplesToDo);
|
|
|
|
/* Increment the clock time. Every second's worth of samples is converted
|
|
* and added to clock base so that large sample counts don't overflow
|
|
* during conversion. This also guarantees a stable conversion.
|
|
*/
|
|
SamplesDone += samplesToDo;
|
|
ClockBase += std::chrono::seconds{SamplesDone / Frequency};
|
|
SamplesDone %= Frequency;
|
|
|
|
/* Increment the mix count at the end (lsb should now be 0). */
|
|
IncrementRef(MixCount);
|
|
|
|
/* Apply any needed post-process for finalizing the Dry mix to the RealOut
|
|
* (Ambisonic decode, UHJ encode, etc).
|
|
*/
|
|
postProcess(samplesToDo);
|
|
|
|
/* Apply compression, limiting sample amplitude if needed or desired. */
|
|
if(Limiter) Limiter->process(samplesToDo, RealOut.Buffer.data());
|
|
|
|
/* Apply delays and attenuation for mismatched speaker distances. */
|
|
if(ChannelDelays)
|
|
ApplyDistanceComp(RealOut.Buffer, samplesToDo, ChannelDelays->mChannels.data());
|
|
|
|
/* Apply dithering. The compressor should have left enough headroom for the
|
|
* dither noise to not saturate.
|
|
*/
|
|
if(DitherDepth > 0.0f)
|
|
ApplyDither(RealOut.Buffer, &DitherSeed, DitherDepth, samplesToDo);
|
|
|
|
return samplesToDo;
|
|
}
|
|
|
|
void DeviceBase::renderSamples(const al::span<float*> outBuffers, const uint numSamples)
|
|
{
|
|
FPUCtl mixer_mode{};
|
|
uint total{0};
|
|
while(const uint todo{numSamples - total})
|
|
{
|
|
const uint samplesToDo{renderSamples(todo)};
|
|
|
|
auto *srcbuf = RealOut.Buffer.data();
|
|
for(auto *dstbuf : outBuffers)
|
|
{
|
|
std::copy_n(srcbuf->data(), samplesToDo, dstbuf + total);
|
|
++srcbuf;
|
|
}
|
|
|
|
total += samplesToDo;
|
|
}
|
|
}
|
|
|
|
void DeviceBase::renderSamples(void *outBuffer, const uint numSamples, const size_t frameStep)
|
|
{
|
|
FPUCtl mixer_mode{};
|
|
uint total{0};
|
|
while(const uint todo{numSamples - total})
|
|
{
|
|
const uint samplesToDo{renderSamples(todo)};
|
|
|
|
if(outBuffer) [[likely]]
|
|
{
|
|
/* Finally, interleave and convert samples, writing to the device's
|
|
* output buffer.
|
|
*/
|
|
switch(FmtType)
|
|
{
|
|
#define HANDLE_WRITE(T) case T: \
|
|
Write<T>(RealOut.Buffer, outBuffer, total, samplesToDo, frameStep); break;
|
|
HANDLE_WRITE(DevFmtByte)
|
|
HANDLE_WRITE(DevFmtUByte)
|
|
HANDLE_WRITE(DevFmtShort)
|
|
HANDLE_WRITE(DevFmtUShort)
|
|
HANDLE_WRITE(DevFmtInt)
|
|
HANDLE_WRITE(DevFmtUInt)
|
|
HANDLE_WRITE(DevFmtFloat)
|
|
#undef HANDLE_WRITE
|
|
}
|
|
}
|
|
|
|
total += samplesToDo;
|
|
}
|
|
}
|
|
|
|
void DeviceBase::handleDisconnect(const char *msg, ...)
|
|
{
|
|
IncrementRef(MixCount);
|
|
if(Connected.exchange(false, std::memory_order_acq_rel))
|
|
{
|
|
AsyncEvent evt{AsyncEvent::Disconnected};
|
|
|
|
va_list args;
|
|
va_start(args, msg);
|
|
int msglen{vsnprintf(evt.u.disconnect.msg, sizeof(evt.u.disconnect.msg), msg, args)};
|
|
va_end(args);
|
|
|
|
if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.disconnect.msg))
|
|
evt.u.disconnect.msg[sizeof(evt.u.disconnect.msg)-1] = 0;
|
|
|
|
for(ContextBase *ctx : *mContexts.load())
|
|
{
|
|
if(ctx->mEnabledEvts.load(std::memory_order_acquire).test(AsyncEvent::Disconnected))
|
|
{
|
|
RingBuffer *ring{ctx->mAsyncEvents.get()};
|
|
auto evt_data = ring->getWriteVector().first;
|
|
if(evt_data.len > 0)
|
|
{
|
|
al::construct_at(reinterpret_cast<AsyncEvent*>(evt_data.buf), evt);
|
|
ring->writeAdvance(1);
|
|
ctx->mEventSem.post();
|
|
}
|
|
}
|
|
|
|
if(!ctx->mStopVoicesOnDisconnect)
|
|
{
|
|
ProcessVoiceChanges(ctx);
|
|
continue;
|
|
}
|
|
|
|
auto voicelist = ctx->getVoicesSpanAcquired();
|
|
auto stop_voice = [](Voice *voice) -> void
|
|
{
|
|
voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
|
|
voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
|
|
voice->mSourceID.store(0u, std::memory_order_relaxed);
|
|
voice->mPlayState.store(Voice::Stopped, std::memory_order_release);
|
|
};
|
|
std::for_each(voicelist.begin(), voicelist.end(), stop_voice);
|
|
}
|
|
}
|
|
IncrementRef(MixCount);
|
|
}
|