mirror of https://github.com/axmolengine/axmol.git
167 lines
4.7 KiB
C++
167 lines
4.7 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "alcomplex.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <utility>
|
|
|
|
#include "albit.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "opthelpers.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using ushort = unsigned short;
|
|
using ushort2 = std::pair<ushort,ushort>;
|
|
|
|
/* Because std::array doesn't have constexpr non-const accessors in C++14. */
|
|
template<typename T, size_t N>
|
|
struct our_array {
|
|
T mData[N];
|
|
};
|
|
|
|
constexpr size_t BitReverseCounter(size_t log2_size) noexcept
|
|
{
|
|
/* Some magic math that calculates the number of swaps needed for a
|
|
* sequence of bit-reversed indices when index < reversed_index.
|
|
*/
|
|
return (1u<<(log2_size-1)) - (1u<<((log2_size-1u)/2u));
|
|
}
|
|
|
|
template<size_t N>
|
|
constexpr auto GetBitReverser() noexcept
|
|
{
|
|
static_assert(N <= sizeof(ushort)*8, "Too many bits for the bit-reversal table.");
|
|
|
|
our_array<ushort2, BitReverseCounter(N)> ret{};
|
|
const size_t fftsize{1u << N};
|
|
size_t ret_i{0};
|
|
|
|
/* Bit-reversal permutation applied to a sequence of fftsize items. */
|
|
for(size_t idx{1u};idx < fftsize-1;++idx)
|
|
{
|
|
size_t revidx{0u}, imask{idx};
|
|
for(size_t i{0};i < N;++i)
|
|
{
|
|
revidx = (revidx<<1) | (imask&1);
|
|
imask >>= 1;
|
|
}
|
|
|
|
if(idx < revidx)
|
|
{
|
|
ret.mData[ret_i].first = static_cast<ushort>(idx);
|
|
ret.mData[ret_i].second = static_cast<ushort>(revidx);
|
|
++ret_i;
|
|
}
|
|
}
|
|
assert(ret_i == al::size(ret.mData));
|
|
return ret;
|
|
}
|
|
|
|
/* These bit-reversal swap tables support up to 10-bit indices (1024 elements),
|
|
* which is the largest used by OpenAL Soft's filters and effects. Larger FFT
|
|
* requests, used by some utilities where performance is less important, will
|
|
* use a slower table-less path.
|
|
*/
|
|
constexpr auto BitReverser2 = GetBitReverser<2>();
|
|
constexpr auto BitReverser3 = GetBitReverser<3>();
|
|
constexpr auto BitReverser4 = GetBitReverser<4>();
|
|
constexpr auto BitReverser5 = GetBitReverser<5>();
|
|
constexpr auto BitReverser6 = GetBitReverser<6>();
|
|
constexpr auto BitReverser7 = GetBitReverser<7>();
|
|
constexpr auto BitReverser8 = GetBitReverser<8>();
|
|
constexpr auto BitReverser9 = GetBitReverser<9>();
|
|
constexpr auto BitReverser10 = GetBitReverser<10>();
|
|
constexpr al::span<const ushort2> gBitReverses[11]{
|
|
{}, {},
|
|
BitReverser2.mData,
|
|
BitReverser3.mData,
|
|
BitReverser4.mData,
|
|
BitReverser5.mData,
|
|
BitReverser6.mData,
|
|
BitReverser7.mData,
|
|
BitReverser8.mData,
|
|
BitReverser9.mData,
|
|
BitReverser10.mData
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void complex_fft(const al::span<std::complex<double>> buffer, const double sign)
|
|
{
|
|
const size_t fftsize{buffer.size()};
|
|
/* Get the number of bits used for indexing. Simplifies bit-reversal and
|
|
* the main loop count.
|
|
*/
|
|
const size_t log2_size{static_cast<size_t>(al::countr_zero(fftsize))};
|
|
|
|
if(unlikely(log2_size >= al::size(gBitReverses)))
|
|
{
|
|
for(size_t idx{1u};idx < fftsize-1;++idx)
|
|
{
|
|
size_t revidx{0u}, imask{idx};
|
|
for(size_t i{0};i < log2_size;++i)
|
|
{
|
|
revidx = (revidx<<1) | (imask&1);
|
|
imask >>= 1;
|
|
}
|
|
|
|
if(idx < revidx)
|
|
std::swap(buffer[idx], buffer[revidx]);
|
|
}
|
|
}
|
|
else for(auto &rev : gBitReverses[log2_size])
|
|
std::swap(buffer[rev.first], buffer[rev.second]);
|
|
|
|
/* Iterative form of Danielson-Lanczos lemma */
|
|
const double pi{al::numbers::pi * sign};
|
|
size_t step2{1u};
|
|
for(size_t i{0};i < log2_size;++i)
|
|
{
|
|
const double arg{pi / static_cast<double>(step2)};
|
|
|
|
/* TODO: Would std::polar(1.0, arg) be any better? */
|
|
const std::complex<double> w{std::cos(arg), std::sin(arg)};
|
|
std::complex<double> u{1.0, 0.0};
|
|
const size_t step{step2 << 1};
|
|
for(size_t j{0};j < step2;j++)
|
|
{
|
|
for(size_t k{j};k < fftsize;k+=step)
|
|
{
|
|
std::complex<double> temp{buffer[k+step2] * u};
|
|
buffer[k+step2] = buffer[k] - temp;
|
|
buffer[k] += temp;
|
|
}
|
|
|
|
u *= w;
|
|
}
|
|
|
|
step2 <<= 1;
|
|
}
|
|
}
|
|
|
|
void complex_hilbert(const al::span<std::complex<double>> buffer)
|
|
{
|
|
inverse_fft(buffer);
|
|
|
|
const double inverse_size = 1.0/static_cast<double>(buffer.size());
|
|
auto bufiter = buffer.begin();
|
|
const auto halfiter = bufiter + (buffer.size()>>1);
|
|
|
|
*bufiter *= inverse_size; ++bufiter;
|
|
bufiter = std::transform(bufiter, halfiter, bufiter,
|
|
[inverse_size](const std::complex<double> &c) -> std::complex<double>
|
|
{ return c * (2.0*inverse_size); });
|
|
*bufiter *= inverse_size; ++bufiter;
|
|
|
|
std::fill(bufiter, buffer.end(), std::complex<double>{});
|
|
|
|
forward_fft(buffer);
|
|
}
|