mirror of https://github.com/axmolengine/axmol.git
300 lines
8.6 KiB
C++
300 lines
8.6 KiB
C++
#ifndef AL_NUMERIC_H
|
|
#define AL_NUMERIC_H
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#ifdef HAVE_INTRIN_H
|
|
#include <intrin.h>
|
|
#endif
|
|
#ifdef HAVE_SSE_INTRINSICS
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#include "opthelpers.h"
|
|
|
|
|
|
inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
|
|
inline constexpr uint64_t operator "" _u64(unsigned long long int n) noexcept { return static_cast<uint64_t>(n); }
|
|
|
|
|
|
constexpr inline float minf(float a, float b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline float maxf(float a, float b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline float clampf(float val, float min, float max) noexcept
|
|
{ return minf(max, maxf(min, val)); }
|
|
|
|
constexpr inline double mind(double a, double b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline double maxd(double a, double b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline double clampd(double val, double min, double max) noexcept
|
|
{ return mind(max, maxd(min, val)); }
|
|
|
|
constexpr inline unsigned int minu(unsigned int a, unsigned int b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline unsigned int maxu(unsigned int a, unsigned int b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline unsigned int clampu(unsigned int val, unsigned int min, unsigned int max) noexcept
|
|
{ return minu(max, maxu(min, val)); }
|
|
|
|
constexpr inline int mini(int a, int b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline int maxi(int a, int b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline int clampi(int val, int min, int max) noexcept
|
|
{ return mini(max, maxi(min, val)); }
|
|
|
|
constexpr inline int64_t mini64(int64_t a, int64_t b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline int64_t maxi64(int64_t a, int64_t b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline int64_t clampi64(int64_t val, int64_t min, int64_t max) noexcept
|
|
{ return mini64(max, maxi64(min, val)); }
|
|
|
|
constexpr inline uint64_t minu64(uint64_t a, uint64_t b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline uint64_t maxu64(uint64_t a, uint64_t b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline uint64_t clampu64(uint64_t val, uint64_t min, uint64_t max) noexcept
|
|
{ return minu64(max, maxu64(min, val)); }
|
|
|
|
constexpr inline size_t minz(size_t a, size_t b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline size_t maxz(size_t a, size_t b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline size_t clampz(size_t val, size_t min, size_t max) noexcept
|
|
{ return minz(max, maxz(min, val)); }
|
|
|
|
|
|
constexpr inline float lerpf(float val1, float val2, float mu) noexcept
|
|
{ return val1 + (val2-val1)*mu; }
|
|
constexpr inline float cubic(float val1, float val2, float val3, float val4, float mu) noexcept
|
|
{
|
|
const float mu2{mu*mu}, mu3{mu2*mu};
|
|
const float a0{-0.5f*mu3 + mu2 + -0.5f*mu};
|
|
const float a1{ 1.5f*mu3 + -2.5f*mu2 + 1.0f};
|
|
const float a2{-1.5f*mu3 + 2.0f*mu2 + 0.5f*mu};
|
|
const float a3{ 0.5f*mu3 + -0.5f*mu2};
|
|
return val1*a0 + val2*a1 + val3*a2 + val4*a3;
|
|
}
|
|
|
|
|
|
/** Find the next power-of-2 for non-power-of-2 numbers. */
|
|
inline uint32_t NextPowerOf2(uint32_t value) noexcept
|
|
{
|
|
if(value > 0)
|
|
{
|
|
value--;
|
|
value |= value>>1;
|
|
value |= value>>2;
|
|
value |= value>>4;
|
|
value |= value>>8;
|
|
value |= value>>16;
|
|
}
|
|
return value+1;
|
|
}
|
|
|
|
/** Round up a value to the next multiple. */
|
|
inline size_t RoundUp(size_t value, size_t r) noexcept
|
|
{
|
|
value += r-1;
|
|
return value - (value%r);
|
|
}
|
|
|
|
|
|
/**
|
|
* Fast float-to-int conversion. No particular rounding mode is assumed; the
|
|
* IEEE-754 default is round-to-nearest with ties-to-even, though an app could
|
|
* change it on its own threads. On some systems, a truncating conversion may
|
|
* always be the fastest method.
|
|
*/
|
|
inline int fastf2i(float f) noexcept
|
|
{
|
|
#if defined(HAVE_SSE_INTRINSICS)
|
|
return _mm_cvt_ss2si(_mm_set_ss(f));
|
|
|
|
#elif defined(_MSC_VER) && defined(_M_IX86_FP)
|
|
|
|
int i;
|
|
__asm fld f
|
|
__asm fistp i
|
|
return i;
|
|
|
|
#elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
|
|
|
|
int i;
|
|
#ifdef __SSE_MATH__
|
|
__asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
|
|
#else
|
|
__asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
|
|
#endif
|
|
return i;
|
|
|
|
#else
|
|
|
|
return static_cast<int>(f);
|
|
#endif
|
|
}
|
|
inline unsigned int fastf2u(float f) noexcept
|
|
{ return static_cast<unsigned int>(fastf2i(f)); }
|
|
|
|
/** Converts float-to-int using standard behavior (truncation). */
|
|
inline int float2int(float f) noexcept
|
|
{
|
|
#if defined(HAVE_SSE_INTRINSICS)
|
|
return _mm_cvtt_ss2si(_mm_set_ss(f));
|
|
|
|
#elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0) \
|
|
|| ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
|
|
&& !defined(__SSE_MATH__))
|
|
int sign, shift, mant;
|
|
union {
|
|
float f;
|
|
int i;
|
|
} conv;
|
|
|
|
conv.f = f;
|
|
sign = (conv.i>>31) | 1;
|
|
shift = ((conv.i>>23)&0xff) - (127+23);
|
|
|
|
/* Over/underflow */
|
|
if UNLIKELY(shift >= 31 || shift < -23)
|
|
return 0;
|
|
|
|
mant = (conv.i&0x7fffff) | 0x800000;
|
|
if LIKELY(shift < 0)
|
|
return (mant >> -shift) * sign;
|
|
return (mant << shift) * sign;
|
|
|
|
#else
|
|
|
|
return static_cast<int>(f);
|
|
#endif
|
|
}
|
|
inline unsigned int float2uint(float f) noexcept
|
|
{ return static_cast<unsigned int>(float2int(f)); }
|
|
|
|
/** Converts double-to-int using standard behavior (truncation). */
|
|
inline int double2int(double d) noexcept
|
|
{
|
|
#if defined(HAVE_SSE_INTRINSICS)
|
|
return _mm_cvttsd_si32(_mm_set_sd(d));
|
|
|
|
#elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) \
|
|
|| ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
|
|
&& !defined(__SSE2_MATH__))
|
|
int sign, shift;
|
|
int64_t mant;
|
|
union {
|
|
double d;
|
|
int64_t i64;
|
|
} conv;
|
|
|
|
conv.d = d;
|
|
sign = (conv.i64 >> 63) | 1;
|
|
shift = ((conv.i64 >> 52) & 0x7ff) - (1023 + 52);
|
|
|
|
/* Over/underflow */
|
|
if UNLIKELY(shift >= 63 || shift < -52)
|
|
return 0;
|
|
|
|
mant = (conv.i64 & 0xfffffffffffff_i64) | 0x10000000000000_i64;
|
|
if LIKELY(shift < 0)
|
|
return (int)(mant >> -shift) * sign;
|
|
return (int)(mant << shift) * sign;
|
|
|
|
#else
|
|
|
|
return static_cast<int>(d);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Rounds a float to the nearest integral value, according to the current
|
|
* rounding mode. This is essentially an inlined version of rintf, although
|
|
* makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
|
|
*/
|
|
inline float fast_roundf(float f) noexcept
|
|
{
|
|
#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
|
|
&& !defined(__SSE_MATH__)
|
|
|
|
float out;
|
|
__asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
|
|
return out;
|
|
|
|
#elif (defined(__GNUC__) || defined(__clang__)) && defined(__aarch64__)
|
|
|
|
float out;
|
|
__asm__ volatile("frintx %s0, %s1" : "=w"(out) : "w"(f));
|
|
return out;
|
|
|
|
#else
|
|
|
|
/* Integral limit, where sub-integral precision is not available for
|
|
* floats.
|
|
*/
|
|
static const float ilim[2]{
|
|
8388608.0f /* 0x1.0p+23 */,
|
|
-8388608.0f /* -0x1.0p+23 */
|
|
};
|
|
unsigned int sign, expo;
|
|
union {
|
|
float f;
|
|
unsigned int i;
|
|
} conv;
|
|
|
|
conv.f = f;
|
|
sign = (conv.i>>31)&0x01;
|
|
expo = (conv.i>>23)&0xff;
|
|
|
|
if UNLIKELY(expo >= 150/*+23*/)
|
|
{
|
|
/* An exponent (base-2) of 23 or higher is incapable of sub-integral
|
|
* precision, so it's already an integral value. We don't need to worry
|
|
* about infinity or NaN here.
|
|
*/
|
|
return f;
|
|
}
|
|
/* Adding the integral limit to the value (with a matching sign) forces a
|
|
* result that has no sub-integral precision, and is consequently forced to
|
|
* round to an integral value. Removing the integral limit then restores
|
|
* the initial value rounded to the integral. The compiler should not
|
|
* optimize this out because of non-associative rules on floating-point
|
|
* math (as long as you don't use -fassociative-math,
|
|
* -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
|
|
* may break).
|
|
*/
|
|
f += ilim[sign];
|
|
return f - ilim[sign];
|
|
#endif
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
constexpr const T& clamp(const T& value, const T& min_value, const T& max_value) noexcept
|
|
{
|
|
return std::min(std::max(value, min_value), max_value);
|
|
}
|
|
|
|
// Converts level (mB) to gain.
|
|
inline float level_mb_to_gain(float x)
|
|
{
|
|
if(x <= -10'000.0f)
|
|
return 0.0f;
|
|
return std::pow(10.0f, x / 2'000.0f);
|
|
}
|
|
|
|
// Converts gain to level (mB).
|
|
inline float gain_to_level_mb(float x)
|
|
{
|
|
if (x <= 0.0f)
|
|
return -10'000.0f;
|
|
return maxf(std::log10(x) * 2'000.0f, -10'000.0f);
|
|
}
|
|
|
|
#endif /* AL_NUMERIC_H */
|